Lancaster EPrints

Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in distributed rainfall-runoff modelling within GLUE framework.

Choi, Hyung Tae and Beven, Keith J. (2007) Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in distributed rainfall-runoff modelling within GLUE framework. Journal of Hydrology, 332 (3-4). pp. 316-336.

Full text not available from this repository.

Abstract

A new approach to multi-criteria model evaluation is presented. The approach is consistent with the equifinality thesis and is developed within the Generalised Likelihood Uncertainty Estimation (GLUE) framework. The predictions of Monte Carlo realisations of TOPMODEL parameter sets are evaluated using a number of performance measures calibrated for both global (annual) and seasonal (30 day) periods. The seasonal periods were clustered using a Fuzzy C-means algorithm, into 15 types representing different hydrological conditions. The model shows good performance on a classical efficiency measure at the global level, but no model realizations were found that were behavioural over all multi-period clusters and all performance measures, raising questions about what should be considered as an acceptable model performance. Prediction uncertainties can still be calculated by allowing that different clusters require different parameter sets. Variations in parameter distributions between clusters, as well as examination of where observed discharges depart from model prediction bounds, give some indication of model structure deficiencies.

Item Type: Article
Journal or Publication Title: Journal of Hydrology
Uncontrolled Keywords: TOPMODEL ; GLUE ; Seasonality ; Multi-criteria evaluation ; Fuzzy classification
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 27345
Deposited By: Mr Richard Ingham
Deposited On: 19 Oct 2009 12:09
Refereed?: Yes
Published?: Published
Last Modified: 26 Jul 2012 16:41
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/27345

Actions (login required)

View Item