
Network performance implications of multi-
dimensional variability in data traffic

Chris Roadknight, Ian Marshall and George Bilchev.

BT Adastral Park, Martlesham Heath, SUFFOLK, IP5 3RE, UK

{christopher.roadknight, ian.w.marshall, george.bilchev}@bt.com

Abstract.

WWW traffic will dominate network traffic for the foreseeable future. Accurate
predictions of network performance can only be achieved if network models reflect
WWW traffic statistics. Through analysis of usage logs at a range of caches we
confirm that WWW traffic is not a Poisson arrival process, and that it shows
significant levels of self-similarity. We show for the first time that the self-similar
variability extends to demand for individual pages, and is far more pervasive than
previously thought. These measurements are used as the basis for a cache modelling
toolkit. Using this software we illustrate the impact of the variability on predictive
planning. The model predicts that optimisations based on predictive algorithms (such
as least recently used discard) are likely to reduce performance very quickly. This
means that far from improving the efficiency of the network, conventional approaches
to network planning and engineering will tend to reduce efficiency and increase costs.

Keywords Web traffic, self-similarity

1 INTRODUCTION

Approximately half of the traffic carried by the worlds major telecommunication
networks is now data traffic originating from modems and LANs. Extrapolating
current growth trends we can predict that this ’Internet’ traffic will represent 90% of
the total within 5 years. The World-Wide Web currently generates over 80% of the

’Internet’ traffic and is likely to remain the dominant traffic source for some time.
Network performance is thus likely to be dominated by web traffic statistics and web
performance for much of the coming decade. Current traffic models are based on
Poisson arrival processes, which are a good fit to observed telephony traffic, but data
traffic does not fit a Poisson arrival process. Over the last decade evidence has been
accumulating that data traffic (and web traffic in particular) exhibits a range of long
range dependencies [1,2,3], which manifest in the traffic as burstiness that does not
average out when the traffic is multiplexed. This burstiness can persist to extremely
long timescales. To accurately predict quality of service and performance levels in a
network dominated by data traffic a seismic shift in modelling approaches will
therefore be required. Pending development of accurate traffic models a more
heuristic approach has been applied.

A large proportion of web objects are static [4], so caching popular files nearer to
the users reduces demand on remote network devices, and minimises the probability
of overload at bottlenecks due to bursts in demand for a particular object. WWW
caches have therefore been deployed globally in an effort to decrease the load on
network and server hardware [5]. Subsequently many efforts have focused on the
effectiveness of cache replacement algorithms [6], in an effort to minimise the cost of
the caches and maximise their scalability. However the studies are based on
assumptions of independence at large timescales. To validate or refute the
assumptions there is a need to understand the long-term temporal characteristics of
the traffic load in greater detail.

For example, self-similarity is the property of a series of data points to retain a
pattern or appearance regardless of the level of granularity used and is the result of
long range dependence (LRD) in the data series. A system is said to be long range
dependent if the auto-covariance function decays hyperbolically, a memory-less
process decays exponentially. Fractal patterns are the clearest exhibition of this
property, where regardless of how much one zooms into (or out of) a pattern, the
basic appearance remains fundamentally unchanged. A truly fractal demand pattern
for a Web object would imply the possibility of bursts in demand, similar to the
largest observed burst, occurring at arbitrarily large time intervals. It also implies that
however long the measurement interval there is no guarantee that representative burst
statistics for an object have been observed. The implications for predictive planning
algorithms (such as cache replacement) are potentially very serious. Of course real
world data cannot be expected to precisely match the mathematical definitions, but if
self-similarity is observed between time intervals over several orders of magnitude
this would be sufficient to significantly impact network performance.

In this paper we provide an analysis of the temporal properties of Web traffic and
their performance impacts. In particular we show that Web traffic is self-similar over
a very large timescale range, and that individual page popularity is far more bursty
than has previously been assumed. We have built an analytic model based on our
observations, and present some performance predictions of the model that confirm the
significant impact of the observed temporal behaviours.

2 DETERMINISTIC BEHAVIOUR IN WEB TRAFFIC

To obtain meaningful analysis results it was important to use recent data sets of
high quality and covering a significant time and request period for a substantial
number of users. We were lucky to be able to use details of individual requests from
several user groups, the most frequently used being the request logs from NLANR
(ircache.nlanr.net/Cache/Statistics/) and EduWeb, an Internet service for use by
teachers and pupils in the U.K (www.eduweb.co.uk/).

2.1 Self-Similarity.

Hit rate, the % of file requests served from the cache, was chosen as a metric of the
community’s behaviour. This single metric is useful as it gives some idea of possible
similarities in behaviour and also a very important metric for evaluating the
performance of a cache. Plotting the hit rate variance, Var(x(m)), against the
aggregation level of the signal, m, on a log-log plot will result in points falling on a
straight line fit if the process x, under consideration, exhibits the property of self-
similarity, that straight line should decay at a rate slower than m-1, with the decay rate,
m-β (that is, the slope of the straight line, -β) giving an estimate of the Hurst
parameter, H = 1 – β/2. For completely self-similar processes H equals 1, but a value
of between 0.5 and 1 points to an increasing amount of underlying self-similarity.

y = 5 .7 6 37 x
-0 .4 3 5 4

R
2
 = 0 .9 9 8 6

0 .1

1

1 0

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0

A n a ly s is in te rv a l (m in)

Figure 1. Aggregate Variance Plot Showing Self-Similarity Over 4 Orders of
Magnitude.

Normally, self-similarity is estimated using an aggregate variance method [7,8].
However this technique is only accurate for stationary data sets, and it is known that
cache hit rates exhibit a diurnal variation. The data sets were therefore normalised

(by subtracting a suitable moving average) and also analysed using a wavelet
estimator [9]. The benefit of wavelet estimators is that they require fewer
assumptions about the data and are relatively unaffected by periodic behaviour or
systematic noise in the data. The method was applied to long term data sets from the
NLANR-LJ cache and the EduWeb cache. Fig 1 shows clearly that significant self-
similarity can be observed over at least 4 orders of magnitude at the NLANR-LJ
cache. The exponent of -0.435 equates to a Hurst parameter of ~0.78, which is high
enough to suggest a large amount of self-similarity is influencing the data [8]. This
was confirmed by wavelet estimation giving H = 0.805 ± 0.012. These results were
further validated by using daily hit rate statistics for an 18 month period at the
NLANR caches (available at http://ircache.nlanr.net/Cache/ Statistics /Reports/) to
generate aggregate variance plots. This analysis is less accurate, so the predicted
Hurst parameter of up to 0.923 is less reliable. However, the longer sampling period
indicated self-similarity extends to periods of at least 54 days. Similar results were
observed at the EduWeb cache, where we observed H = 0.861 ± 0.046, using log file
data covering 6 weeks. It is likely that the self-similarity at EduWeb extends to
longer timescales, but insufficient data was available to confirm this.

Given that self-similarity is observed in web traffic, what factors could be the
causes for this? Long-range dependence can only arise from a process, or set of
processes, which have memory, so that a stimulus that occurs at one moment may
trigger another related event at another later time. Several causes have been proposed
for this including heavy tailed distributions for session lengths [3], file lengths [4],
and packetization. However, a further cause is required to explain the long timescale
dependency we have observed. With the notable exceptions of web spiders and robot
assisted browsing, all web requests emanate from a human user. We have shown [5]
that individual user traces can exhibit long-range dependent behaviour. Figure 2
shows some examples. It is thus extremely likely that one of the contributing factors
is the memory of the users, which clearly persists over the required timescale of
several months and may be aided by memory aids such as bookmarks.

1 0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 1 0 0 10 0 0 10 0 0 0

R e q ue s ts

B T C lie n t
H = 0 .7
H it ra te ~2 4 %

B U C lie nt
H = 0.5 5
A u to h it ra te ~ 65 %

R M P L C C lie n t
H = 0.6
H it R a te ~ 1 6 %

R M P L C C lie n t
H = 0 .6 6
H it R a te ~ 4 0 %

Figure 2. Single users also exhibit signs of self-similarity.

2.2 Temporal Request Dynamics.

The observed self-similarity in hit rate also immediately suggests that page
popularity is highly dynamic, contrary to simplifying assumptions made in some
models (e.g. [6]). To verify this we have examined the temporal variation in demand
for individual pages. Figure 3 shows the popularity of some typical websites (their
ranking on that day) over 3 weeks at an Australian university cache (eg.
http://squid.latrobe.edu.au/usage/days/hosts/proxy.895.total-remote-hosts.html). The
figure clearly illustrates the range of variation in demand one can expect for popular
pages over the course of a three week period.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time (days)

www-aus.cricket.org

www.comsec.com.au

ad.au.doubleclick.net

home.microsoft.com

Figure 3. Examples of Temporal Dynamics at 4 Sites.

It should be apparent that the popularity of each site over time varies in different
ways. See how:

1. A cricket site’s popularity seems very erratic, possibly varying with occurrence of
important matches.

2. Microsoft’s site seems consistently popular demonstrating its time independent
nature.

3. Doubleclick is an ’adbanner’ site where automatic requests are made to from a
large selection of web sites so is stable over time.

4. A share dealing site (www.comsec.au.com) is much less popular at weekends
when share dealing is not possible.

These are some simple examples. It is expected that most page dynamics will be
much more complex than this, often with overlays of several influencing factors and
with less clear definitions of cause-effect relationships.

We automatically classified each file into one of 27 types judged on their degree
(high, medium, low) of each of the three metrics, over a 25 day period. The definition
of high medium and low is presently subjective, but could be classified more
rigorously given data sets from a wider range of caches. We do not feel the precise
categorisation boundaries significantly affected the results.

We performed this analysis, covering the entire cache, based on 3 key time
dependent metrics over the specified time period:

1. Presence. What fraction of days/hours was a file requested at least once during
the period of analysis, typically 25 days. (Pres-low, Pres-med, Pres-high)

2. Frequency or crossover rate. How many times did the daily request rate cross
the average request rate (+ and - a 10% buffer zone) for the period. (Cross-low, Cross-
med, Cross-high)

3. Amplitude. This is the variance in daily request rate divided by the average
daily request rate for the file in question. (Amp-low, Amp-med, Amp-high)

Figure 4. File Grouping Based on 3 Key Temporal Characteristics.

Sampling a range of caches we have derived a mean value for the proportion of
pages in each category, illustrated in figure 4. It is immediately apparent that the
majority of the popular pages (high presence) are not continuously popular as has
been assumed in the past, and a significant proportion of the popular pages are not
requested on every day (medium and low presence).

Pres-low
pres-med

pres-high

0

20

40

60

80

100

Amp-low

Pres-low
pres-med

pres-high

Amp - med

Pres-low
pres-med

pres-high

Cross-low

Cross-med

Cross-high

Amp - high

In addition to analysing the popularity of individual pages we analysed the
variability of the popularity curve. The popularity curve is normally assumed to be a
Zipf curve where normalised probability of a request equals (popularity)α. The
exponent is a number close to -1, which is assumed to be constant. In practice we
observed that α varies in a self-similar way with a Hurst parameter of approximately
0.8 at the caches we analysed. Figure 5 shows the aggregate variance plot for this
series of exponents and the calculated Hurst parameter for this plot (0.81), showing
strong signs of self-similarity. This variability must also be factored into more
accurate model of cache performance.

N L AN R - S V

y = 0 .0006x
-0 .3 81 9

R 2 = 0 .97 58

0.000 1

0.001

1 10 100

ag g regate o ver x d ays

H = 0 .81

Figure 5. Self-similarity in the exponent of the popularity ranking curve

3. SYSTEMATIC CAUSES FOR DIFFERENCES IN
POPULARITY EXPONENT

Cache logs are used to analyse file popularity. A simple, least squares method was
used to fit power law curves to the popularity curve (rank vs. popularity), and the
locality can then be equated to the slope (exponent) of the resulting curve. The
quality of the fit can then be checked using the standard R2 test. This exponent seems
the best single metric to encapsulate request behaviour. A simple examination of file
popularity exponents at several caches over time reveals that, like hit rates, these
exponents are not universal, different caches have different exponents and these
differences are significant [9,10]. These exponents are always between -0.5 and -1
but have a value that is specific.

Caches are arranged in hierarchies, some caches receive requests direct from the
users (eg, browser caches, some local caches), some receive requests from first level
caches and browser caches and so on to very high level caches that only take requests
from other high level caches. An examination of the exponents at these caches and
the physical position in the hierarchy suggests a direct relationship between position
and exponent [9]: the popularity curve gets steeper (bigger negative exponent) as the
position of the cache gets ’nearer’ the clients (table 1). It has been shown that the
request popularity curve for a single user over time, at the source of these requests, is
close to -1 [3], so it must be assumed that as intercepting caches are placed on the
network the popularity curve slope observed at these caches get increasingly shallow.

Cache Position Exponent R squared Error estimate
NLANR - lj Highest -0.644 0.9897 ±0.024
PISA Local -0.913 0.9807 ±0.038
FUNET National -0.699 0.9883 ±0.046
SPAIN National -0.724 0.9817 ±0.045
RMPLC Local -0.858 0.9795 ±0.109

Table 1. Cache factors of Interest

Another approach was investigated that used data from a cache hierarchy
visualization tool called plankton (http://www.ircache.net/Cache/Plankton/). This
tool gives information about the origin of all requests reaching the NLANR servers.
From the number of requests presented on all the links and the topology of the node to
node links, it is possible to estimate the depth the NLANR cache over a time period.
Depth is taken to mean the average number of caches (not including any browser
cache) a request has passed through before it reaches the NLANR cache.

Figure 6 shows a clear relationship between depth and exponent. Only one graph
is shown, but all best fit analysis from all NLANR caches showed a relationship of
the same direction, suggesting that the more intervening caches that a set of requests
go through the smaller the curve exponent is. The simplest explanation for this is that
each intervening cache is systematically filtering out request so as to make more
popular files appear to be less popular, thus decreasing the slope of the popularity
curve.

These results show that locality can be characterized with a single parameter,
which primarily varies with the topological position of the cache. Accurate cache
models can therefore be built without any need to consider cultural effects that are
hard to predict.

NLANR - PB

y = 1.6916x-0.9895

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65

Popularity Curve Exponent

Figure 6. Relationship Between Popularity Curve Slope and Cache Depth

It was also found that curves needed to be fitted to a large number of requests
(>500 000) this is due to the self-similar nature of requests making conventional
sampling regimes insufficient.

4. CACHE MODEL

The starting assumption of our model is that users access the WWW via a proxy
cache, i.e., all the url requests pass through the proxy cache and the proxy either
provides the data as a local copy or downloads it from the origin server. We then
develop a model for a user community as seen from the proxy. Analysed log data
suggests that there are two types of user activity patterns – a daily activity pattern and
a stochastic component.

The daily activity pattern is modelled as a trend using a ‘superposition’ of periodic
functions:

{ })(max)(

0),2sin(max)(

trendtrend

trend

tyty

d
T

t
cbaty

i
i

iiiii

=

 ++= π

where ia is an amplitude shift, ib is the amplitude, ic is the frequency, id is the

phase and T is the period during which cyclic patterns are observed. Once the trend

has been approximated the stochastic component can be modelled as a Brownian
motion:

η+−=)1()(BMBM tyty

Since the number of requested files is always non-negative we have to truncate a
negative value of)(BM ty to zero. Also bursts in positive direction are higher than

bursts in negative direction and to accommodate for this we define η as:

 >

=
otherwise

’

0’ if ’

λ
η

ηη
η

where),0Norm(’ ση ∈ and λ is a parameter determining the ratio between the

heights of the positive and negative bursts. The second modification also has the
effect of reducing the number of times the series has to be truncated due to negative
values.

Since the stochastic component must be superimposed on the trend, a way of
“guiding” the random walk of the Brownian motion towards the trend without
destroying the above described properties is needed. We suggest using a sequence of
non-overlapping random walks each starting from around the trend:

),0()()(trendtrend σNormtkytky +∆=∆

 i.e., at each time step ,...2,1,0, =∆ ktk , a Brownian motion process begins for t∆
steps:

η+−+∆=+∆)1()(BMBM mtkymtky

where, 1,...,2,1 −∆= tm . Then it stops and a new process begins. This completes our

model of the intensity of the http requests. For the popularity distribution of the url
requests we have selected to use a Zipf’s-like distribution, which conforms to our real
data analysis.

After developing the user community model we proceed with the cache proxy
model. The cache proxy is modelled by Web content expiry statistics and it also
implements a simplified caching algorithm. The expiry statistics models both the rate
of change of Web pages (reflecting server assigned time-to-live or TTL) and cache
purging due to stale data (i.e., cache assigned TTL). To account for caches of limited
size, the model also implements a replacement algorithm, e.g. the least recently used
(LRU) replacement algorithm.

The simulation works as follows. The proxy cache receives requests for
individual files. It checks if the requested file has already been registered in the cache
model before. If not, the file is time-stamped, registered in the cache and a miss is
reported (i.e., this reflects downloading the file from the origin server and caching it).
If the requested file has been registered in the cache before, the proxy checks the

TTL. If the file has expired the proxy verifies whether the file has changed. If so, a
miss is reported and the time stamp of the file is reset (this reflects downloading of
the new version of the file from the origin server). If the file has not changed, a hit is
reported and again the time stamp is reset.

Once the single proxy has been modelled, we can build meshes of
interconnected proxy caches. To achieve this we have developed a simulation toolbox
that allows caches to be linked together to form various caching infrastructures.

In order to analyse the performance of a cache and to reliably compare it with other
caches, the following performance measures have been defined:

• Request Hit Rate is a measure of the efficiency of the cache. It does not
correspond one-to-one with the saved bandwidth since the requests are for files
with various sizes. The importance of this measure, however, stems from the fact
that opening an HTTP connection is a relatively expensive process comparable to
the actual time needed for smaller files to be transferred.

[%]
Requests of No. Total

Hits of No.
 RateHit Request =

• Byte Hit Rate is also a measure of the efficiency of the cache. It reflects the actual
amount of saved bandwidth.

[%]
Data Requested Total theof Volume

Cache in the Found Data Requested of Volume
 RateHit Byte =

• Saved Bandwidth is a measure of particular interest to network designers,
showing the actual effect of the cache on the network. It is defined as the volume
of the requested data minus the volume of data not in the cache.

5. PERFORMANCE IMPLICATIONS

Our research efforts have shown that WWW traffic is self similar over many orders
of magnitude. There are probably several mechanisms causing the self-similarity,
each of them acting on different time scales. Buffering and queuing behavior cause
burstiness at very short time scales, less than the buffer residency time. At timescales
between 10s and an hour the self-similarity is primarily due to the heavy tailed
properties of session lengths and file sizes [11]. For longer timescales between an
hour and 3 months the observed self-similarity probably relates to users revisiting
useful links (i.e. it originates in the persistent memory of users). This is shown most
clearly in the bursty demand for specific pages and in traces of traffic from single
users that also exhibit self-similarity. The self-similarity has important consequences
for the design of web servers and networks. In particular, the advantages of caching

are much greater than the average reduction in load one might deduce from the hit
rate. Distributing web content widely into caches offers significant performance
improvements to web users during demand bursts since the target server is rarely
overloaded. Caching also protects other network users from performance degradation
due to packet losses on a link that is unpredictably saturated by a burst in demand for
a particular web page. On the other hand, since apparently unpopular pages can
suddenly experience a demand burst, the storage capacity of caches needs to be very
large. Also, as the bursts can be widely separated in time, the current practice of
minimising disk usage by operating a cache replacement algorithm (such as least
frequently used) on an hourly basis leads to a rapid increase in the latency
experienced by end users

We have created an analytic model, section 4, of cache behaviour [12], that
reproduces the statistical properties we have observed in real traffic logs. This model
successfully predicted the weak dependence of the popularity exponent on
hierarchical position that we report in section 3. The model allows us to create a wide
variety of network scenarios, with different cache distributions and hierarchies and
different demand distributions. We can then evaluate the performance of each
scenario and predict an optimum hierarchy for a given traffic load.

The possible explanations for the observed changes in the popularity curve include:

♦ Merging requests from communities with diverse interests
♦ The filtering effect of lower level caches
♦ Both of the above

To test the first possible explanation we have merged 500,000 file requests from
NLANR and EduWeb and calculated the slope of the new popularity curve. If the
hypothesis were likely to be true then the merged slope should be less steep than the
slopes of the two comprising individual logs. The slope of NLANR was –0.703 and
for EduWeb: -0.858, which averages to –0.78. The slope of the merged file request
popularity was –0.794, which is steeper than both NLANR’s slope and the average,
thereby implying that increasing a cache's geographical, demographic and cultural
diversity fails to significantly reduce the slope of the file popularity curve. We have
further verified these results with other experiments from Funet [http://www.funet.fi/]
and a simulated model [12]. This indicates that there is neither direct nor indirect
evidence for the first hypothesis to be true.

The second hypothesis is more difficult to test with existing log data. Therefore,
we have set up a simulation experiment in which five first level caches are connected
to a common second level cache.

All the first level caches exhibit popularity curve slope of –0.75. They also have
the same cache size, which we can vary during the set of experiments. We start with a
large cache size (10% of the overall simulated domain, i.e. the number of simulated
static web pages) and gradually reduce it. This results in reducing the filtering effect

of the first level caches. At cache sizes of 10%, 1%, 0.1% and 0.01% of the domain
size, we see exponents of -0.463, -0.602, -0.686 and -0.693.

These results show that the less filtering effect the first level caches possess, the
bigger the slope of the observed popularity curve at the second level cache. This gives
evidence that the second possible explanation holds true and the observed changes in
the popularity slope are largely due to the filtering effect of lower level caches.

To illustrate the impact of self-similarity on predictive algorithms we used the
model to predict the performance of a single cache using a simple Least Recently
Used (LRU) cache replacement algorithm. The results shown in figure 7 show how
even small amounts of purging can have a significant effect of cache performance.
Assuming a hit rate of 30%, a mean retrieval time from the target server of 4 seconds
and a mean time to fetch from the cache of 500ms (suggested by end-user logs in our
laboratory) a reduction of 1% in hit rate results in an increase of 1.2% in mean
waiting time for the user. We consider that saving a few dollars on disk capacity
probably does not justify the reduction in quality of service.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10000 20000 30000 40000 50000

Number of files purged down to daily using LRU

NB. 50 000 = no purging

Figure 7. Predicted performance impact of predictive cache replacement
algorithm.

This result is not surprising. Very large sample sizes are needed to make
reasonable predictions. The cache we modelled was purging on a daily basis and was
receiving requests for about 2% of the total file pool per day. Some large caches such
as the NLANR cluster have similar request rates, so even here, predictions made on a
daily sample will not be accurate since the observed burstiness extends over a period
of weeks. Only a least frequently used algorithm using a sample period of 3 months

is likely to deliver accurate results, and in this case the reduction in disk usage will be
small. Other predictive algorithms, such as those used in network dimensioning will
face similar difficulties.

5 CONCLUSIONS

We have found that many aspects of WWW traffic (the dominant component of
data traffic in todays networks) exhibit significant self similarity at large timescales.
An important causal factor being repetitive behaviour by users. Many existing
models make simplifying assumptions that do not fit our observations. We have
therefore introduced a new simulation model that attempts to account for all of the
variability we have observed. The model has made accurate predictions of observed
behaviour. The model has also been used to predict the impact of the observed self-
similarity on predictive optimisations. As might be expected from qualitative
arguments about the properties of fractal traffic, the model has demonstrated that
algorithms that predict behaviour in the current time interval by extrapolating from
previous time intervals are not useful in the presence of traffic that is self similar at
the timescale of the measurement interval. Failure to recognise this can lead to a
serious overestimation of the benefits of predictive optimisations and planning
algorithms. Given the very long timescale self-similarity we have observed, the
measurement intervals required to make accurate predictions will often need to be
longer than the desired response time of the network. We therefore suggest that rapid
network responses should not be based on predictive approaches. A better approach
might be to enable extensive load balancing to respond to the local overloads that
cannot be predicted.

6 REFERENCES

[1] W Willinger, M Taqqu, R Sherman and D Wilson. Self-Similarity through
high variability: Statistical analysis of ethernet LAN traffic at source level.
Proceedings of SIGCOMM ’95 (1995) p. 100-113

[2] K Park, G Kim and M Crovella. On the effect of traffic self-similarity on
network performance. Performance and Control of Network Systems, The
International Society for Network Engineering. (1997) 3231: 296-310.

[3] I Marshall, C Roadknight, ’Linking cache performance to user behaviour’,
’Computer Networks and ISDN systems’ 30 (1998), pp.2123-2130.

[4] R Caceres, F Douglis, A Feldmann, G Glass and M Rabinovich. Web Proxy
Caching: The Devil is in the Detail. 1st Workshop on Internet Server Performance in
conjunction with ACM SIGMETRICS. 1998. P111-118

[5] M. Baentsch, L. Baum, G. Molter, S. Rothkugel and P. Sturm. Enhancing the
web’s infrastructure: From caching to replication. IEEE Internet Computing. March
1997. P. 18-27.

[6] L Breslau, P Cao, L Fan, G Phillips and S Shenker. ’Web Caching and Zipf-
like Distributions: Evidence and Implications.’ IEEE Infocom ’99.
http://www.cs.wisc.edu/~cao/papers/zipf-implications.html.

[7] M Taqqu, V Teverovsky and W Willinger. ’Estimators for long-range
dependance: an empirical study.’ Fractals. Vol 3, No. 4 (1995) 785-788.

[8] J Beran. ’Statistical methods for data with long-range dependence’. Statistical
Sciences 1992, Vol. 7, No. 4, 404-427.

[9] C Roadknight, I Marshall and D Vearer. ’File popularity characterisation’.
Second Workshop on Internet Server Performance in conjunction with ACM
SIGMETRICS 99.
http://www.cc.gatech.edu/fac/Ellen.Zegura/wisp99/accepted.html

[10] L Breslau, P Cao, L Fan, G Phillips and S Shenker. ’Web Caching and Zipf-
like Distributions: Evidence and Implications.’ IEEE Infocom ’99.
http://www.cs.wisc.edu/~cao/papers/zipf-implications.html.

[11] P. Barford and M. E. Crovella, ’Generating Representative Web Workloads
for Network and Server Performance Evaluation,’ in Proceedings of Performance
’98/ACM SIGMETRICS ’98, pp. 151-160, Madison WI.

[12] G Bilchev, I Marshall, C Roadknight and S Olafsson. Modelling and
Performance Analysis of Cache Networks. Fifteenth Annual UK Performance
Engineering Workshop. 1999. P367-378.

