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Abstract A finite-dimensional Lie algebra L over a field F of character-
istic zero is called elementary if each of its subalgebras has trivial Frattini
ideal; it is an A-algebra if every nilpotent subalgebra is abelian. This paper
is a continuation of the study of these algebras initiated by the authors in
[10]. If we denote by A, G, E , L, Φ the classes of A-algebras, almost algebraic
algebras, E-algebras, elementary algebras and φ-free algebras respectively,
then it is shown that:

L ⊂ Φ ⊂ G, L ⊂ A ⊂ E and G ∩ A = L.

It is also shown that if L is a semisimple Lie algebra all of whose min-
imal parabolic subalgebras are φ-free then L is an A-algebra, and hence
elementary. This requires a number of quite delicate properties of parabolic
subalgebras. Finally characterisations are given of E-algebras and of Lie
algebras all of whose proper subalgebras are elementary.
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1 Introduction

This paper is a continuation of the study initiated by the authors in [10].
Throughout L will denote a finite-dimensional Lie algebra over a field F .
The Frattini ideal of L, φ(L), is the largest ideal of L contained in all
maximal subalgebras of L. The Lie algebra L is called φ-free if φ(L) = 0,
and elementary if φ(B) = 0 for every subalgebra B of L. Lie algebras all of
whose nilpotent subalgebras are abelian are called A-algebras; Lie algebras
L such that φ(B) ≤ φ(L) for all subalgebras B of L are called E-algebras.
We are seeking to determine properties of, and inter-relationships between,
these three classes of algebras. A linear Lie algebra L ≤ gl(V ) is almost
algebraic if L contains the nilpotent and semisimple Jordan components of
its elements; an abstract Lie algebra L is then called almost algebraic if
adL ≤ gl(L) is almost algebraic.

Throughout sections two and three F is assumed to have characteristic
zero. In section 2 we show first that L is φ-free if and only if it is almost
algebraic and its nilradical is abelian. It follows from this that if L is almost
algebraic then φ(L) = N2, where N is the nilradical of L. Zhao and Lu
proved in [13] that every almost-algebraic A-algebra is elementary, whenever
the ground field is algebraically closed of characteristic zero. We generalise
this by showing that L is an almost-algebraic A-algebra if and only if it is
elementary (and without the assumption of an algebraically closed field).
From this we deduce that if L is a Lie A-algebra with a φ-free solvable
radical, then L is elementary. The final result in this section is that if L is
a Lie A-algebra then it is an E-algebra.

A subalgebra P of L is called parabolic if P ⊗F F contains a Borel sub-
algebra (that is, a maximal solvable subalgebra) of L⊗F F , where F is the
algebraic closure of F . The main purpose of section 3 is to prove two re-
sults. The first is that if P is a minimal parabolic subalgebra of L then
the following are equivalent: P is φ-free; the nilradical of P is abelian; and
P is elementary. The second is that if L is a semisimple Lie algebra all
of whose minimal parabolic subalgebras are φ-free then L is an A-algebra,
and hence elementary. In order to establish these results we need a number
of properties of parabolic subalgebras. Some of these may be known, but
we know of no references to them other than that Völklein in [12] shows
that if L is semisimple then the minimal parabolic subalgebras of L are
the idealisers of the maximal nil subalgebras of L. He uses, however, the
canonical correspondence between the connected subgroups of the identity
component of the automorphism group of L and the algebraic subalgebras
of L. Our proofs are based entirely on internal properties of L itself and so,
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we believe, are of interest in themselves. We also include these proofs for
the convenience of the reader.

In the final section we look more closely at Lie E-algebras. In particular
we give a characterisation of them over a field of characteristic zero. We also
characterise Lie algebras all of whose proper subalgebras are elementary.
These generalise Theorems 4.3 and 4.7 and Corollaries 4.4 and 4.5 of [9] by
removing the requirement that the underlying field be algebraically closed.

We will denote vector space direct sums by ⊕ and semidirect products
by o. If A is a subalgebra of B we will write A ≤ B, whereas A < B
will mean that A is a proper subalgebra of B. The (solvable) radical (resp.
nilradical) of L will be denoted by R(L) (resp. N(L)), whilst Asoc(L) will
denote the sum (necessarily direct) of the minimal abelian ideals of L.

2 Preliminary results

First we reveal the relationship between almost-algebraic and φ-free Lie
algebras.

Proposition 2.1 Let L be a Lie algebra over a field of characteristic zero.

(i) If L is φ-free, then L is almost algebraic.

(ii) Let L be almost algebraic. Then L is φ-free if and only if its nilradical
is abelian.

Proof. (i) Let L be φ-free. By [8] we have that L = N(L) + S where S
is a subalgebra of L such that adLS is completely reducible and N(L) =
Asoc(L). From [1, Theorem 2.2] it follows that L is almost algebraic.

(ii) By [1, Theorem 2.2] we have that L = N(L) + S where S is a
subalgebra of L such that adLS is completely reducible. Now, assume that
N(L) is abelian. Then we have that N(L) = Asoc L. So L is φ-free by [8].
The converse follows from [8].

Corollary 2.2 Let L be an almost-algebraic Lie algebra over a field of char-
acteristic zero. Then φ(L) = N2, where N is the nilradical of L.
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Proof. Clearly N2 is almost algebraic and so L/N2 is almost algebraic, by [1,
Lemma 4.1]. Moreover, N(L/N2) is abelian and hence φ-free by Proposition
2.1. It follows that φ(L) ⊆ N2. The reverse inclusion is given by [8, Theorem
6.5].

If B is a subalgebra of L we define the idealiser of B in L to be IL(B) =
{x ∈ L : [x,B] ≤ B}. Next we show that a Lie algebra is an almost-algebraic
A-algebra if and only if it is elementary, thereby generalising the result of
Zhao and Lu proved in [13]. First we need the following result.

Proposition 2.3 Let L be an almost-algebraic Lie algebra over a field of
characteristic zero. If every almost-algebraic subalgebra of L is φ-free, then
L is elementary.

Proof. Let B be a subalgebra of L. Then the idealiser of B in L, IL(B),
is almost algebraic, by [1, Theorem 2.3]. By our hypothesis, we have
φ(IL(B)) = 0. But now B is an ideal of IL(B), so φ(B) ≤ φ(IL(B)),
by [8, Corollary 4.2]. Hence L is elementary.

Theorem 2.4 Let L be a Lie algebra over a field of characteristic zero.
Then L is an almost-algebraic A-algebra if and only if it is elementary.

Proof. (⇒) Let L be an almost-algebraic A-algebra and let B be an almost-
algebraic subalgebra of L. Then by Corollary 2.2 it follows that φ(B) = N2,
where N is the nilradical of B. Therefore, φ(B) = 0 since N is abelian.
Hence L is elementary by Proposition 2.3.

(⇐) This follows from [10, Corollary 4.7].

Corollary 2.5 Let L be a Lie A-algebra over a field of characteristic zero.
If R(L) is φ-free, then L is elementary.

Proof. Assume that R(L) is φ-free. By Proposition 2.1 we have that R(L)
is almost algebraic. Then, from [1, Corollary 3.1] it follows that L is also
almost algebraic. So, L is elementary by Theorem 2.4.

Corollary 2.6 Let L be an almost-algebraic Lie A-algebra over a field of
characteristic zero. Then L splits over each of its ideals.
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Proof. This follows from Theorem 2.4 and [9, Lemma 2.3].

Finally we have that Lie A-algebras are necessarily E-algebras.

Proposition 2.7 Let L be a Lie A-algebra over a field of characteristic
zero. Then L is an E-algebra.

Proof. We have that L/φ(L) is an A-algebra, by [6, Lemma 1]. On the other
hand, we have that L/φ(L) is φ-free and so almost algebraic by Proposition
2.1. Then L/φ(L) is elementary, by Theorem 2.4. So, L is an E-algebra, by
[11, Proposition 2].

Denote by A, G, E , L, Φ the classes of A-algebras, almost algebraic
algebras, E-algebras, elementary algebras and φ-free algebras respectively.
Then, to summarise, what we have shown is the following:

L ⊂ Φ ⊂ G, L ⊂ A ⊂ E and G ∩ A = L.

3 Parabolic subalgebras

Throughout this section L denotes a (non-zero) semisimple Lie algebra over
a field F of characteristic zero. We denote by F the algebraic closure of F ,
and write S = S ⊗F F for each subspace S of L. For each subalgebra S of
L, let U(S) denote the set of ad-nilpotent elements in the solvable radical,
R(S), of S. Our main objective in this section is to show that in order to
check whether a Lie algebra is elementary it suffices to look at its minimal
parabolic subalgebras. First we have some properties of the nilradical of a
parabolic subalgebra.

Proposition 3.1 Let P be a parabolic subalgebra of L. Then

(i) N(P ) is nil in L;

(ii) if P < Q < L, then N(Q) < N(P ); and

(iii) P = IL(N(P )).
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Proof. Since N(P ) is the nilradical of P and IL(N(P )) = IL(N(P )) (see
[2, pages 42 and 36]) we may assume that F is algebraically closed. Now P
is conjugate to a standard parabolic subalgebra and so we can assume it is
of the following form. Let H be a Cartan subalgebra of L and let ∆ be the
set of roots corresponding to H. Then

P = H ⊕ Σα∈∆+Lα ⊕ Σα∈Ω1Lα,

where Ω1 ⊆ ∆−. Let Ω′
1 = {α ∈ ∆+ | −α 6∈ Ω1}. Then we have that

N(P ) = Σα∈Ω′
1
Lα

It follows that N(P ) is nil in L and (i) is proved.
To prove (ii), suppose that P < Q < L. Then Q is also parabolic and

so has the same form as P but with Ω1 replaced by Ω2 where Ω1 ⊂ Ω2. We
have that Ω′

2 ⊂ Ω′
1 and hence N(Q) < N(P ).

To prove (iii), put Q = IL(N(P )) and suppose that P < Q. By (ii) we
have N(Q) < N(P ). On the other hand, as N(P ) is a nilpotent ideal of Q
we have N(P ) ≤ N(Q), which is a contradiction. Now the proof is complete.

The centre of L is the set Z(L) = {x ∈ L : [x, L] = 0}. A subalgebra T of
L is said to be a toral subalgebra of L if T is abelian and adLt is semisimple
for every t ∈ T . Next we need that if P is an algebraic subalgebra of L then
U(P ) behaves well under field extension.

Lemma 3.2 Let U be a nil subalgebra of L. Then U is also a nil subalgebra
of L

Proof. We have that U is a nilpotent algebraic subalgebra of L, since
these properties are inherited from U (see [4, p.181]). So, U = U(U) ⊕ T ,
where T is a toral subalgebra of L and [T,U(U)] = 0, by [3, Theorem 4]. We
have T ≤ Z(U) = Z(U) (see [2, page 36]). As Z(U) consists of commuting
ad-nilpotent elements, we have that Z(U) is a nil subalgebra of L. This
yields that T is both nil and toral in L and so T ≤ Z(L) = 0. This yields
that U = U(U) and so U is nil in L.

Proposition 3.3 Let P be an algebraic subalgebra of L. Then U(P ) =
U(P )
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Proof. Since P is algebraic, we have that P = U(P ) ⊕M , where M =
S ⊕ Z(M) and S is semisimple (M is a Levi factor of P ), by [3, Theorem
4]. It follows that P = U(P )⊕M and M = S ⊕Z(M). On the other hand,
from Lemma 3.2, it follows that U(P ) is a nil ideal of L. So, U(P ) ≤ U(P ).
This yields that U(P ) = U(P ).

The following results are concerned with relationships between parabolic
subalgebras and certain nil subalgebras.

Lemma 3.4 Let U be a nil subalgebra of L and put P = IL(U). If U =
U(P ), then P is parabolic.

Proof. This follows from Proposition 3.3 and [7, Theorem 29.8.1]

Proposition 3.5 Let U be a nil subalgebra of L and put P = IL(U). Then
there is a parabolic subalgebra Q of L satisfying:

(i) U ≤ U(Q);

(ii) P ≤ Q; and

(iii) U(P ) ≤ U(Q).

Proof. Put U0 = U and Q1 = IL(U0). Define inductively the two sequences
{Ui}i≥0, {Qi}i≥1 by Qi = IL(Ui−1) Ui = U(Qi). Then Qi = IL(Ui−1) =
IL(U(Qi−1)) ≥ Qi−1, so these sequences are increasing. This yields that
there is an integer j such that Qj = Qj+1; that is Qj = IL(Uj). It follows
from Lemma 3.4 that Q = Qj is a parabolic subalgebra of L. We have that
U ≤ Uj = U(Q), giving (i), and P = IL(U) = Q1 ≤ Q, giving (ii).

Finally, Qi = IL(Ui−1) so Ui−1 is a nil ideal of Qi and Ui−1 ≤ U(Qi),
whence U1 = U(P ) ≤ U(Q), giving (iii).

Proposition 3.6 (i) If U is a maximal nil subalgebra of L, then IL(U)
is a minimal parabolic subalgebra of L.

(ii) If P is a minimal parabolic subalgebra of L, then U(P ) is a maximal
nil subalgebra of L
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Proof. (i): Let U be a maximal nil subalgebra of L. We have that U is a nil
ideal of IL(U) and so U ≤ U(IL(U). By the maximality of U , we must have
that U = U(IL(U)). From Lemma 3.4 it follows that IL(U) is parabolic.
Now let Q be a parabolic subalgebra with Q ≤ IL(U). By Proposition 3.1
we have that U = N(IL(U)) ≤ N(Q) = U(Q). By the maximality of U
it follows that U = N(Q). This yields that IL(U) = Q by Proposition 3.1
again, and so IL(U) is a minimal parabolic subalgebra of L.

(ii): Let P be a minimal parabolic subalgebra of L. Suppose that there
is a nil subalgebra V of L such that U(P ) < V . By Engel’s Theorem we
have that U(P ) < V ∩ IL(U(P )). As P is parabolic, IL(U(P )) = P . Put
W = V ∩ P . Let M be a Levi factor of P ; so that P = U(P ) ⊕ M ,
M = Z(M)⊕S where Z(M) is toral in L and S is a semisimple subalgebra
of L.

We see that W = U(P )⊕ (M ∩ V ). Since Z(M) is toral it follows that
M ∩ V = S ∩ V . So, S ∩ V is a non-trivial nil subalgebra of the semisimple
Lie algebra S. From Proposition 3.5 there is a parabolic subalgebra Q of
S, Q 6= S, containing S ∩ V . Let B a Borel subalgebra of S contained in
Q. Then, we have that R(P ) + B is a maximal solvable subalgebra of P .
Since P is parabolic in L, it follows that R(P ) + B is a Borel subalgebra of
L. We have R(P ) + Q = R(P ) + Q ≥ R(P ) + B. Therefore, R(P ) + Q is a
parabolic subalgebra of L contained in P , which contradicts the minimality
of P . Hence U(P ) is a maximal nil subalgebra of L.

A Lie algebra L is said to be ad-semisimple if adx is semisimple for every
x ∈ L. Then we have the following criterion for a parabolic subalgebra to
be minimal.

Corollary 3.7 A parabolic subalgebra P of L is minimal if and only if
P/U(P ) is ad-semisimple.

Proof. Let M be a Levi factor of P . Let us first suppose that P is minimal.
Then, by Proposition 3.6 it follows that U(P ) is a maximal nil subalgebra of
L and so M is ad-semisimple. Now assume that P/U(P ) is ad-semisimple,
so that M is ad-semisimple. As Z(L) = 0, we see that U(P ) is a maximal
nil subalgebra of P . Since P = IL(P ), it follows from Engel’s Theorem that
U(P ) is maximal nil subalgebra of L.

We now have the results that we need to show the role played by the min-
imal parabolic subalgebras in determining whether or not L is elementary.

8



Lemma 3.8 Let P be a minimal parabolic subalgebra of L. Then the fol-
lowing are equivalent

(i) P is φ-free;

(ii) N(P ) is abelian; and

(iii) P is elementary.

Proof. (i)⇒(ii): Since P is algebraic, it follows from Corollary 2.2 that
N(P )2 = φ(P ) = 0.

(ii)⇒(iii): Since N(R(P )) = N(P ) and R(P ) is algebraic, it follows
from Proposition 2.1 that R(P ) is φ-free. By [10, Theorem 2.5] we have
that R(P ) is elementary. On the other hand, since U(P ) ≤ R(P ), it follows
from Corollary 3.7 that P/R(P ) is ad-semisimple. But [10, Proposition 4.4]
now implies that P is elementary.

(iii)⇒(i): This is trivial.

Theorem 3.9 Let L be a semisimple Lie algebra over a field of characteris-
tic zero, and suppose that all minimal parabolic subalgebras of L are φ-free.
Then L is an A-algebra, and hence elementary.

Proof. First we show that L is an A-algebra. Let U be a nilpotent subalgebra
of L. Then U is contained in a maximal solvable subalgebra Γ of L. As Γ is
algebraic we can write Γ = U(Γ)+̇T where T is a toral subalgebra. Let N
be a maximal nil subalgebra of L containing U(Γ), and let P be the idealiser
in L of N . By Proposition 3.6, P is minimal parabolic and hence φ-free. It
follows from Lemma 3.8 that P is elementary, and hence an A-algebra by
Proposition 2.4. This yields that U(Γ) is abelian. But then Γ is φ-free and
hence elementary, by [10, Theorem 2.5]. It follows that U is abelian and
that L is an A-algebra.

By 2.4 it follows that L is elementary.

4 E-algebras

First we have an easy strengthening of Corollary 2.2 of [10].
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Proposition 4.1 Let L be a solvable Lie algebra over a perfect field. Then
L is an E-algebra if and only if L is strongly solvable.

Proof. This follows from [10, Corollary 2.2] and [11].

Next we have the following versions of Theorem 4.3 and Corollaries 4.4
and 4.5 of [9] with the assumption that the underlying field be algebraically
closed removed.

Theorem 4.2 Let L be a Lie algebra over a field of characteristic zero.
Then L is an E-algebra if and only if one of the following holds:

(i) L is solvable;

(ii) L is elementary and semisimple; or

(iii) L = R⊕S, where R = R(L) is the radical of L, S = S1⊕S2, S1 is an
ad-semisimple ideal of S, S2 is an elementary and semisimple ideal of
S, and S2R ≤ φ(L).

Proof. (⇒): Let L be an E-algebra and suppose that L is not solvable
or semisimple. By Levi’s Theorem we can write L = R ⊕ S where S is a
semisimple subalgebra of L. If U is a subalgebra of L then write U for its
image in L/φ(L) under the natural homomorphism. We have L = R ⊕ S
and S ∼= S is elementary and semisimple. Put S = S1 ⊕ S2 where S2 is the
largest semisimple ideal of L. If S1 6= 0, then S1

∼= S1 is ad-semisimple, as
in [10, Theorem 4.6]. Clearly S2R ≤ φ(L), so (iii) holds.

(⇐): If (i) holds then L is strongly solvable (since the ground field has
characteristic 0) and the result follows from Proposition 4.1 above. If (ii)
holds the result is clear. So suppose that (iii) holds. Then L = L1⊕S2 where
L1 = R ⊕ S1. Now L1/R ∼= S1

∼= S1 is ad-semisimple and R is elementary,
so L1 is elementary, by [10, Proposition 4.4]. It follows that L is elementary,
and hence that L is an E-algebra.

Corollary 4.3 Let L be a Lie algebra over a field of characteristic zero,
and suppose that the radical of L is nilpotent. Then Lis an E-algebra if and
only if one of the following holds:

(i) L is nilpotent;
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(ii) L is elementary and semisimple; or

(iii) L = (R ⊕ S1)⊕ S2, where R = R(L) is the radical of L, S1 is an ad-
semisimple subalgebra of L, and S2 is an elementary and semisimple
ideal of L.

Proof. This follows as in [9, Corollary 4.4].

Corollary 4.4 Let L be a perfect Lie algebra (i.e., L = L2) over a field of
characteristic zero. Then L is an E-algebra if and only if L is elementary
and semisimple.

Finally we consider non-elementary Lie algebras all of whose proper sub-
algebras are elementary. We call such algebras minimal non-elementary Lie
algebras. The following extends Theorem 4.7 of [9].

Theorem 4.5 Let L be a Lie algebra over a field of characteristic zero.
Then L is a minimal non-elementary Lie algebra if and only if

(i) L = L2 oFx, where L2 is abelian and 0 6= φ(L) = AsocL is the biggest
ideal of L properly contained in L2, or

(ii) L is the three-dimensional Heisenberg algebra.

Proof. (⇒) First note that L must be an E-algebra. Suppose that L is
not solvable. Then R = R(L) is elementary and so almost algebraic by
[10, Proposition 4.1]. Hence L is almost algebraic, by [1, Corollary 3.1].
Moreover, the nilradical is elementary and so abelian. It follows that L is
φ-free, by Proposition 2.1, and so elementary - a contradiction. This yields
that L is solvable.

Suppose that L is not nilpotent. Then φ(L) 6= L2 (see, for example, [8,
section 5]), so there is a maximal subalgebra M of L such that L = L2 +M .
Choosing B to be a subalgebra minimal with respect to the property that
L = L2 +B we have L2∩B ≤ φ(B) = 0 (see [8, Lemma 7.1]), so L = L2⊕B
and B is abelian. Moreover, L2 is nilpotent and elementary, and so abelian.

Suppose that dimB > 1. Let K be a maximal subalgebra of B. Then
M = L2 + K is a maximal subalgebra of L, so M is elementary and hence
φ-free. It follows from [8, Theorem 7.4] that L2 is completely reducible as

11



a K- module, and hence that each element of K acts semisimply on L2 ([5,
Theorem 10, page 81]). But every element of B is contained in a maximal
subalgebra of B and so acts semisimply on L2. This yields that L2 is a
completely reducible B-module, whence L2 ≤ Asoc L and L splits over
Asoc L. But then φ(L) = 0, by [8, Theorem 7.3], and L is elementary, a
contradiction. Thus dimB = 1, so put B = Fx.

So we now have L = L2 o Fx where L2 is abelian. Let C be an ideal of
L with Asoc L < C < L2 and put D = C + Fx. Then D 6= L so φ(D) = 0,
giving Asoc D = N(D) ≥ C. But every minimal ideal of D is inside L2 and
invariant under adx and so is an ideal of L. It follows that C = Asoc D ≤
Asoc L, a contradiction. Hence Asoc L is the biggest ideal of L properly
contained in L2. We must have Asoc L ≤ φ(L), since otherwise L splits over
Asoc L, as in paragraph two above. As φ(L) 6= L2 this means that φ(L) =
Asoc L and we have case (i).

Suppose now that L is nilpotent. Then L is not abelian, so dim L ≥ 3
and L has a chain of ideals

0 = L0 < L1 < ... < Ln = L,

where dim Li = i and LLi ≤ Li−1 for 1 ≤ i ≤ n. Let L1 = Fz, L2 = Fy+Fz,
and let x be any element of L. If Fx + Fy + Fz is abelian for every x ∈ L
then L is abelian, a contradiction. Hence L has a subalgebra isomorphic
to the three-dimensional Heisenberg algebra. Such a subalgebra cannot be
proper as it is not elementary.

(⇐) It is clear that the three-dimensional Heisenberg algebra is minimal
non-elementary, so assume that L is as described in (i). It suffices to show
that the maximal subalgebras of L are elementary. Let M be a maximal
subalgebra of L. Since Asoc L ≤ M either M = L2 or M = Asoc L + Fx
for some x ∈ L \ L2. In the former case M is abelian and so elementary.
So assume that M = Asoc L + Fx and L = L2 + Fx. Let A be a minimal
ideal of M . Then A ≤ Asoc L and [A,L] ≤ [A, x] ≤ A so A is an ideal of L.
It follows that Asoc M = Asoc L and M splits over Asoc M . Hence M is
φ-free. Since M is clearly an E-algebra, it is elementary.

Note: The algebras L described in Theorem 4.5 (i) are A-algebras (as
every nilpotent subalgebra of L is inside L2) that are not elementary. They
are therefore not almost algebraic.
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