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Abstract—A new technique to the design and use of inferential4
sensors in the process industry is proposed in this paper, which5
is based on the recently introduced concept of evolving fuzzy6
models (EFMs). They address the challenge that the modern7
process industry faces today, namely, to develop such adaptive and8
self-calibrating online inferential sensors that reduce the mainte-9
nance costs while keeping the high precision and interpretability/10
transparency. The proposed new methodology makes possible11
inferential sensors to recalibrate automatically, which reduces12
significantly the life-cycle efforts for their maintenance. This is13
achieved by the adaptive and flexible open-structure EFM used.14
The novelty of this paper lies in the following: 1) the overall15
concept of inferential sensors with evolving and self-developing16
structure from the data streams); 2) the new methodology for17
online automatic selection of input variables that are most relevant18
for the prediction; 3) the technique to detect automatically a shift19
in the data pattern using the age of the clusters (and fuzzy rules);20
4) the online standardization technique used by the learning pro-21
cedure of the evolving model; and 5) the application of this inno-22
vative approach to several real-life industrial processes from the23
chemical industry (evolving inferential sensors, namely, eSensors,24
were used for predicting the chemical properties of different25
products in The Dow Chemical Company, Freeport, TX). It should26
be noted, however, that the methodology and conclusions of this27
paper are valid for the broader area of chemical and process indus-28
tries in general. The results demonstrate that well-interpretable29
and with-simple-structure inferential sensors can automatically be30
designed from the data stream in real time, which predict various31
process variables of interest. The proposed approach can be used32
as a basis for the development of a new generation of adaptive and33
evolving inferential sensors that can address the challenges of the34
modern advanced process industry.35

Index Terms—Concept shift in data streams, evolving fuzzy36
systems, fuzzy-rule aging, inferential sensors, learning and adap-37
tation, Takagi–Sugeno (TS) fuzzy models.38

I. INTRODUCTION39

INFERENTIAL sensors [1], [21], [23], [27], [28] are able to40

provide accurate real-time estimates of difficult-to-measure41

parameters or expensive measurements (like emissions, bio-42

mass, melt index, etc.) from the available cheap sensors43

(like temperatures, pressures, and flows). Different empirical44
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methods have been used to develop inferential sensors, such 45

as statistical models [2], neural networks (NNs) [3], support- 46

vector machines [4], [22], and genetic programming [5], [13]. 47

Model-based techniques for process-quality monitoring [1] of- 48

ten provide a valuable advantage over conventional approaches 49

that rely on manual intervention and laboratory tests. Such 50

models, however, are costly to build and maintain since the 51

environment in which an industrial process takes place is dy- 52

namically changing, the equipment is getting older and conta- 53

minated or being replaced, raw materials usually alter in quality, 54

and the complexity of processes leads to a number of aspects of 55

the process being ignored by the models. A crucial weakness 56

of model-based approaches is that they do not take into account 57

the shift and drift in the data pattern that is related to the fact that 58

these models are developed offline under certain conditions. 59

Even minor process changes outside these conditions may lead 60

to unacceptable performance deterioration that requires manual 61

maintenance and recalibration. 62

The challenge is to develop inferential sensors with flexible 63

yet interpretable structure [6] and adaptive parameters. The 64

gradual evolution of the model structure (fuzzy rules) will 65

mean that a retraining of the sensor when required will only 66

modify (add, remove, or replace) one or few fuzzy rules [7]. 67

Contrast this to a possible option of iteratively retraining an NN, 68

which, in effect, will lead to a completely new NN and a loss of 69

previous information [29]. Ideally, we would require inferential 70

sensors that can automatically recalibrate and detect shifts and 71

drifts in the data stream [4], [8]. One such methodological 72

framework is presented by the evolving Takagi–Sugeno (ETS) 73

fuzzy models [9], [10]. In this paper, we use this framework and 74

build upon it a methodological concept for evolving inferential 75

sensors, namely, eSensors, which is new and original. The 76

main contributions of this paper include the following: 1) the 77

overall concept of eSensors; 2) the new methodology for online 78

automatic selection of input variables that are most relevant for 79

the prediction; 3) the technique to detect automatically a shift in 80

the data pattern using the age of the clusters (and fuzzy rules); 81

4) the online standardization technique used by the learning 82

procedure of the evolving model; and 5) the application of this 83

innovative approach to four real-life industrial processes from 84

the chemical industries. 85

II. ADAPTIVE INFERENTIAL SENSORS BASED ON EFM 86

A. Principles of EFM 87

Evolving fuzzy models (EFMs) were first introduced as a 88

technique for online adaptation of fuzzy-rule-based systems’ 89
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structure (rule-based fuzzy sets), as well as their parameters90

[7], [14]. In that respect, they make a step further by comparing91

the aforementioned technique to the well-established adaptive-92

system theory [15], which is applicable to linear systems only93

and to a small circle of nonlinear systems. EFM systems are94

nonlinear, linguistically interpretable, yet adaptable online in a95

(local) least squares (LS) sense. The approach was further re-96

fined for the specific case of the so-called TS fuzzy models [16]97

by introducing a fully recursive algorithm called ETS [9], [10].98

ETS fuzzy models are particularly suited as a framework for99

addressing the challenges that the process industry faces nowa-100

days. They can provide the algorithmic backbone of systems101

that can be implemented as embedded autonomous intelligent102

sensors with self-calibration and self-maintenance capabilities.103

The basic idea of ETS is to allow the TS fuzzy system struc-104

ture to grow, shrink, adapt, and self-develop in an automatic105

fashion learned online from the data streams in a locally optimal106

way. TS fuzzy systems [16] are very attractive due to their dual107

nature—they combine the fuzzy linguistic antecedent part with108

a linear functional consequent part, thus being locally linear109

but nonlinear overall and being proven universal approximators110

[17]. The antecedent part is a linguistic representation of a111

partition of the measurable-variable space into fuzzily overlap-112

ping regions (see Fig. 14). The linguistic antecedent parts of113

TS fuzzy systems make them attractive for human operators114

(compared to NN, SVM, or polynomial models, for example).115

The architecture of an ETS fuzzy system is based on fuzzily116

weighted local linear models of the following form [9], [10]:117

LM i : yi = xT Θ (1)

where LM i denotes the ith local model, i = 1, 2, . . . , N ; x =118

[1, x1, x2, . . . , xn]T represents the (n + 1) × 1 extended vector119

of measurable variables; yi = [yi
1, y

i
2, . . . , y

i
m]T is the m × 1120

vector of estimated variables; and Θi = [θi
0 θi

1 · · · θi
n]T121

denotes the matrix of consequent parameters.122

All of the N local linear models describe the process in a123

local area defined by fuzzy rules and are blended in a fuzzy124

way to produce the overall output that is nonlinear in terms of125

measurable variables x’s but is linear in terms of parameters Θ’s126

y = ψT Θ (2)

where ψ = [λ1xT , λ2xT , . . . , λNxT ]T is a vector of127

measurable variables that are weighted by the normalized128

activation levels of the rules, λi, i = 1, 2, . . . , N , with λi129

being the normalized firing level of the ith fuzzy rule that is a130

function of x, i.e., λi(x).131

The overall TS fuzzy model can then be described by a set of132

fuzzy rules of the following form:133

Ri : IF (x1 is around xi∗
1 ) AND, . . .

AND
(
xn is around xi∗

n

)
, THEN (yi = LM i) (3)

where Ri denotes the ith fuzzy rule, with i = [1, N ]; N is the134

number of fuzzy rules; (xj is around xi∗
j ) denotes the jth fuzzy135

set of the ith fuzzy rule, with j = 1, 2, . . . , n; and xi∗ is the136

focal point of the ith-rule antecedent part.137

The degree of membership of a certain data point (x) to any 138

of the fuzzy rules can be described by a Gaussian centered at its 139

focal point 140

μi = e
−

∑n

j=1(xj−xi∗
j )2

2(σi
j)

2

(4)

having a spread that is learned based on the data variance [10] 141

(
vi

jk

)2 = ρ
(
vi

j(k−1)

)2

+ (1 − ρ)
1
ni

k

ni
k∑

l=1

‖zi∗ − zl‖2
j ,

vi
j1 = 1, σi

jk ← vi
jk (5)

where vi
jk denotes the variance of the data in the ith cluster 142

in the jth dimension (jth variable) calculated at the kth time 143

instant, σi
jk represents the spread of the Gaussian of the jth 144

fuzzy set of the ith fuzzy rule calculated at the kth time instant, 145

z = [x, y]T depicts the overall data vector, and ni
k denotes the 146

support of the ith cluster/rule—the number of samples that are 147

associated with it based on the distance to the focal point. 148

The firing strength of a fuzzy rule is determined by a t-norm, 149

which can be represented as inner product [18] 150

τ i =
n∏

j=1

μi
j(xj) (6)

and is normalized so that it sums to one 151

λi =
τ i∑N

j=1 τj

. (7)

B. Monitoring the Quality of the Rule Base 152

One can monitor and analyze online the quality of the 153

clusters that are formed and the fuzzy rules, respectively—for 154

example, the number of points that support them or their age 155

[19]. The support of the rules is determined by a simple count- 156

ing of the samples that are associated with the nearest focal 157

point 158

ni
k+1 =ni

k+1, i=arg
N

min
i=1

‖xk−xi∗‖, k=2, 3, . . . . (8)

The support is initiated by one at the moment a rule is created 159

nN+1
k ← 1, k = 2, 3, . . . . (9)

In this paper, we introduce a recursive formula to calculate 160

the age of the ith cluster/rule calculated at the kth moment in 161

time (data sample) 162

Ai
k = k − 1

ni
k

(
k − Ai

k−1 + kni
k

)
(10)

where kl is the time index when the data sample was read. 163

This follows from 164

Ai
k = k − 1

ni
k

ni
k∑

l=1

kl Ai
k−1 = k − 1

ni
k−1

ni
k−1∑
l=1

kl.
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Fig. 1. (a) Top plot—output variable in case study 4—polymerization;
(b) Bottom plot—age of the fuzzy rules describing the propylene-polymerization
process. The two instants when a shift in the data pattern occurs are marked.
This corresponds to a change in the aging rate seen from the bottom plot.

From there, we get165

ni
k−1∑
l=1

kl =
(
k − Ai

k−1

)
Ai

k = k − 1
ni

k

⎛
⎝

ni
k−1∑
l=1

kl + kni
k

⎞
⎠ .

Combining these two expressions, we arrive at (10).166

Each time a new rule is created, its age is initiated by the167

index of the data sample that is used as a focal point of that rule.168

Each time a new data sample is associated to an existing rule169

(the distance from a sample to that focal point is smaller than170

that to any other focal points), the age of that rule gets smaller.171

If no sample is assigned to a rule, it gets older by one. Note that172

the age of a fuzzy rule can take values from the [0; k] range.173

This is shown in Fig. 1 in the case of propylene estimation.174

From the top plot, one can see that there are three different175

stages of that process. The aging of three of the six fuzzy rules176

(rules ## 1, 3, and 4) are depicted in the bottom plot. One can177

see that precisely at the moment of a shift in the data pattern178

(a new phase), the aging of the rules is affected. By monitoring179

the derivative of A (i.e., aging rate), one can automatically180

detect such changes and respond by adapting the learning181

mechanism or rate.182

Note that the age rate of rule #1 becomes negative before it183

increases again. This illustrates the so-called concept shift and184

is an indication of a transition from one operating state (which185

affects the data density in one local region, i.e., around the focal186

point of this rule) to another one (which affects the data density187

in another local region).188

Fig. 2. Evolution of the age and shift in the data pattern, resulting in forming
new clusters/rules for case study 2. The inflex points correspond to a shift of the
data from one cluster to another existing cluster or to a newly formed cluster
(as marked in the figure for each inflex point).

The age of the fuzzy rules (and the derivative of their age in 189

terms of the sampling period (k), which represents the aging 190

rate) can be very useful for online analysis of the concept 191

shift in the data stream [12]. An eSensor can detect a concept 192

shift [20] online by the rate of aging and the instances when 193

it changes [the inflex points on the age evolution diagram that 194

corresponds to the change of the sign of the aging rate indicate 195

a shift (see Fig. 2)]. The aging corresponds to the first derivative 196

of the age and is graphically represented by the slope of the age 197

evolution lines in terms of the horizontal axis [see Fig. 1(b)]. 198

In this paper, we use the following principle for the update 199

of the rule base by removing the older rules (rules whose age 200

exceeds the mean age for that rule by more than the standard- 201

deviation [2] value calculated recursively up to that moment/ 202

sample): 203

IF
(
Ai >Ai+std(Ai)

)
, THEN(remove Ri;N ←N−1) (11)

where Ai denotes the mean age (it is also denoted in Fig. 1(b) 204

by a dash-dotted line) and std(Ai) represents the standard 205

deviation of the age of the ith rule. 206

C. Evolving the Structure of the Sensor From the Data Stream 207

The online design and learning of the eSensor are outlined 208

here. Learning is based on decomposition of the identification 209

problem into the following [7], [9], [10]: 1) fuzzy-rule-based 210

structure design and 2) parameter identification. Both of these 211

subproblems can be performed in online mode during one time 212

step (per sample). The first subproblem, i.e., structure identifi- 213

cation, can be approached using evolving clustering in the data 214

space [9], [10], [12]. This partitioning leads to forming infor- 215

mation granules, described linguistically by fuzzy sets. Thus, 216

it serves the transformation of the data into primitive forms 217

of knowledge. The basic notion of the partitioning algorithm 218

is that of the data density [26], which is defined as a Cauchy 219

function over the sum of distances d’s between a certain data 220

sample zi and all other data samples in the feature space [10] 221

Dk(zk) =
1

1 + v2
k

(12)
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where v2
k = (1/k − 1)

∑k−1
i=1 d2(zk, zi) is the variance of the222

data [2].223

Data-space partitioning is based on the following principle:224

The point with the highest density in the data space is chosen225

to be the focal point, and the antecedent of the first fuzzy226

rule is formed around it. In this way, fuzzy rules with high227

descriptive power and generalization capabilities are generated.228

The density can be recursively calculated using the current data229

point (zj
k) and (n + 1) memorized quantities only (βk and χj

k,230

j = [1, n]) [10]231

Dk(zk) = (k − 1) (αk(k − 1) + βk − 2γk + (k − 1))−1 ,

k = 2, 3, . . . (13)

where αk =
∑n+1

j=1 (zj
k)2; βk = βk−1 + αk−1, with β1 = 0;232

and γk =
∑n+1

j=1 zj
kχj

k, with χj
k = χj

k−1 + zj
k−1 and χj

1 = 0.233

Each time a new data sample is read, it affects the data234

density of the existing focal points and can be updated by [10]235

Dk(zi∗) =
(k − 1)Dk−1(zi∗)

k − 2 + Dk−1(zi∗) + Dk−1(zi∗)d(zi∗, zk)
,

k = 2, 3, . . . (14)

where d(zi∗, zk) denotes the distance between the ith focal236

point and the current point.237

Once the densities of the new coming data sample and of238

each of the previously existing focal points are recursively239

updated, they are compared. If the new coming data sample240

has a higher density than any of the previously existing focal241

points, then this means that it is a good candidate to become a242

focal point of a new rule (a new local linear model) because it243

has high descriptive power and generalization potential244

Dk(zk) > Dk(zi∗) ∀ i∗ ∈ N. (15a)

If the new coming data sample has a lower density than any245

of the previously existing focal points, then this means that it246

is also a good candidate to become a focal point of a new rule247

(a new local linear model) because it improves the coverage of248

the whole data space [12]249

Dk(zk) < Dk(zi∗) ∀ i∗ ∈ N. (15b)

Forming a new fuzzy rule around a newly added prototype250

leads to a gradual increase of the size of the rule base, which is251

why this approach is called “evolving”252

z(N+1)∗ ← zk. (16)

The density of the newly generated rule is set to one [10]253

temporarily (it will be updated to take into account later the254

influence of each new coming data sample on the generalization255

potential of this particular focal point)256

Dk

(
z(N+1)∗

)
← 1. (17)

To increase the interpretability and update of the rule base,257

one needs also to remove the previously existing rules that258

become ambiguous after insertion of the new rule. Therefore, 259

each time a new fuzzy rule is added, it is also checked whether 260

any of the already existing prototypes in the rule base are 261

described by this rule to a degree that is higher than 50% 262

∃i, i=[1, N ]; μj
i (z

N+1) > 0.5 ∀ j, j =[1, n]. (18)

If any of the previously existing focal points satisfy this con- 263

dition, the rules that correspond to them are being removed 264

(replaced by the newly formed rule) [9], [19]. The spreads of 265

the membership functions are also recursively updated by (5). 266

D. Self-Learning the eSensor 267

Once the antecedent part of the TS fuzzy model is formed, 268

the consequent-parameter estimation (the second subproblem 269

of the learning) is addressed as a fuzzily weighted recursive LS 270

(RLS) estimation problem per rule [15] 271

Θi
k = Θi

k−1 + Ci
kλixk

(
yk − xT

k Θi
k−1

)
, Θi

1 = 0 (19)

Ci
k =Ci

k−1−
λiCi

k−1xkxT
k Ci

k−1

1 + λixT
k Ci

k−1xk

, Ci
1 = ΩI, k = 2, 3, . . .

(20)

where C ∈ RN(n+L)xN(n+L) denotes the covariance matrix, Ω 272

is a large positive number, and I is the identity matrix. 273

As a result, the eSensor blends in a fuzzy way local linear 274

predictors. Moreover, it is optimally (in an LS sense) [15] 275

tuned in terms of consequent parameters Θ’s. In terms of its 276

antecedents and rule-based structure, it is based on the robust 277

online partitioning approach. The procedure of the eSensor self- 278

development and self-calibration is represented as a pseudo- 279

code in the Appendix. 280

E. Online Normalization and Standardization of the 281

Data in the eSensor 282

One specific issue related to this online algorithm is the 283

normalization or standardization of the data. Both normaliza- 284

tion and standardization are well-established techniques for the 285

offline case when all the data are available [2]. An approach 286

to update the normalization ranges of the data in a recursive 287

manner is presented in [25], but in this paper, we use the 288

recursive version of the standardization technique that can 289

easily be inferred from the offline version [2] because it depends 290

on the mean and variance of the data only. Let us remember that 291

(offline) standardization is given by [2] 292

Zjk =
zjk − zjk

ζjk
, j = [1, n], k = 2, 3, . . . (21)

where Zjk denotes the standardized value of zjk; zjk = 293

(1/k)
∑k

l=1 zjl, j = [1, n], k = 2, 3, . . . , represents the mean 294

value of zjk; and vjk is the standard deviation of the jth input 295

calculated based on k data samples. 296
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Both the mean and standard deviation can be updated297

recursively298

zjk =
k − 1

k
zj(k−1) +

1
k

zj(k−1),

zj1 = 0, j = [1, n + m], k = 2, 3, . . . (22a)

v2
jk =

k − 1
k

v2
j(k−1) +

1
k − 1

(
zjk − zj(k−1)

)
,

vj1 = 0, j = [1, n + m], k = 2, 3, . . . . (22b)

In order to return to the original scale, one should apply299

destandardization by300

zjk = Zjkνjk + zjk, j = [1, n + m], k = 2, 3, . . . . (23)

III. ONLINE INPUT-VARIABLE SELECTION IN THE ESENSOR301

Inferential sensors, as well as other online models, tradi-302

tionally assume the number of input variables to be known303

beforehand or to be preselected. In what follows, we propose an304

original1 method to online “on-fly” ranking and selection of in-305

put variables, which was successfully approbated on the indus-306

trial case studies reported in this paper, as well as on other real307

applications [30]. The importance of this technique should not308

be underestimated because, very often in practice, there are309

large sets of candidate variables that may influence the moni-310

tored or measured output, but often, it is not clear how much.311

The idea is based on online ranking of the accumulated values312

formed by the consequent parameters Θi
jk, j =[1,N ],i=[1,R].313

The accumulated values π’s indicate that the weight of a par-314

ticular consequent parameter is determined by simply adding315

the absolute values (because the consequent parameters are316

unrestricted in sign and value, and their contribution is judged317

by the modulus)318

πi
jk =

k∑
l=1

∣∣Θi
jl

∣∣ , j = [1, n], i = [1, R]. (24)

One can also form a weight of a particular feature by the ratio319

of π values320

ωi
jk =

πi
jk∑n

r=1 πi
jk

, i = [1, R], j = [1, n]. (25)

It is important to note that (24) and (25) represent sums only321

and are thus easily performed online. The values of the weights322

ω’s indicate the contribution of a particular input to the overall323

output and are thus a measure of the sensitivity of the outputs.324

Therefore, an intuitive technique to simplify the inferential325

sensor structure in terms of inputs can be proposed, which326

gradually removes the input variables for which the weight ω is327

negligibly small across the rules (i.e., the inputs that contribute328

little to the overall output)329

IF

(
∃j∗

∣∣∣ωi
j∗k < ε

n
max
j=1

πi
jk

)
, THEN (remove j∗) (26)

1This technique is part of a pending patent: P. Angelov, Machine Learning
(Collaborative Systems), WO2008053161, priority date: November 1, 2006;
intern. filing date: October 23, 2007; http://v3.espacenet.com/textdoc?DB=
EPODOC&IDX=WO2008053161&F=0&QPN=WO2008053161

Fig. 3. Overall schematic representation of the eSensor.

where ε denotes a coefficient (the suggested values are 330

[0.03; 0.1], which means that this input variable contributes 331

3%–10% to the overall output on average. 332

The rationale for the simplicity of this technique stems from 333

the fact that the consequents represent locally linear combina- 334

tions and can thus be analyzed. It should be noted that, when 335

an input is removed (which does not usually occur very often), 336

however, the dimension is reduced by one, which is reflected 337

in the covariance matrices (a line and a column are removed), 338

and the dimensions of the focal points are also updated, as well 339

as the recursive variables in (13), i.e., α, β, γ, and χ. 340

The main advantages of the proposed eSensor approach that 341

makes it suitable for implementation in the process industry are 342

as follows. 343

1) It self-develops, evolves, and thus reduces the develop- 344

ment and maintenance costs significantly. 345

2) It can provide high prediction rates. 346

3) It is one-pass and recursive and has low computational 347

requirements; thus, it is suitable for hardware “on-chip” 348

implementations [24]. 349

4) It is useful for online analysis and monitoring of the 350

concept shift using fuzzy-rule aging [see Figs. 1(b) and 2] 351

and thus makes useful conclusions for possible faults and 352

the quality of the process. 353

5) It can automatically select online a small subset of relevant 354

inputs, thus fully automating the development process. 355

6) It can have a multiple-input–multiple-output structure and 356

thus build a separate regression model for each output 357

variable. 358

The procedure for adaptive and evolving inferential self- 359

calibrating sensors, which we call eSensor, is presented by the 360

pseudocode provided in the Appendix (see also Fig. 3). 361

IV. CASE STUDY: INFERENTIAL SENSORS FOR 362

CHEMICAL-PROPERTY ESTIMATION 363

The capabilities of the proposed evolving inferential sensor 364

are explored on four different industrial data sets for chemical- 365

property estimation. All four cases include operating-regime 366

changes with different impacts on specific chemical properties 367

due to different levels of process change, various measurement 368

methods with different accuracies, and a different number of 369

potential process variables, related to the inferred chemical 370

properties. However, all the changes create a challenge to 371

http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2008053161&F=0&QPN=WO2008053161
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2008053161&F=0&QPN=WO2008053161
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Fig. 4. Case study 1: Composition 1. Top plot—output variable (composition 1).
Middle plot—input variable (x1). Bottom plot—input variable (x2).

existing inferential sensors with a fixed structure. As a basis372

for comparison, inferential sensors based on the most widely373

used methods in commercial soft-sensor products, such as the374

feedforward NN of multilayer perceptron (MLP) type [3] and375

PLS [1], were used, as well as a recently introduced algorithm376

for adaptive online NN, namely, DENFIS [31].377

In the chemical industry, inferential sensors are mostly used378

to estimate chemical properties, measured by two techniques:379

1) offline laboratory analysis of grab samples of the proper-380

ties and 2) pseudo real-time analysis with low frequencies by381

gas chromatographs. The sampling period for the properties,382

measured by laboratory analysis, is several hours, and accu-383

racy depends on different measurement methods and varies384

substantially. The sampling period of gas-chromatograph-based385

properties is much shorter (usually 15–30 min), and accuracy is,386

on average, an order of magnitude higher than that from offline387

laboratory measurements. Three of the selected cases are based388

on offline laboratory measurements, and one is based on gas389

chromatographs. In the cases with laboratory measurements,390

two different levels of accuracies have been selected. The level391

of operating-condition change (which could be quantified by392

the percentage increase from the average level for 50 samples393

before the process change to the average level for 50 samples394

after the change), as well as the number of process inputs, is395

also different.396

The first case, called Composition 1, is based on product-397

composition estimation in a distillation tower. The measure-398

ments are based on laboratory analysis, taken every 8 h, and399

the method accuracy is low (2.2% measurement error), which,400

by itself, introduced a measurement noise. Process data are401

the hourly averaged values around the time when the sample402

for the laboratory measurement has been taken. The output403

composition and the two-input data (Fig. 4) include 309 records404

(samples). As it is seen in the middle plot in Fig. 4, a signifi-405

cant change in operating conditions has been introduced after406

sample 127 by input 1. It is interesting to note that the two407

input variables that were selected online using the eSensor are408

Fig. 5. Input and output variables for case study 2. Top plot—output variable
(composition 2). Middle plot—input variable (x1). Bottom plot—input
variable (x2).

Fig. 6. Output variable for case study 3 (composition 3). There are seven
selected inputs, and they are not shown for clarity purposes.

the most statistically significant process variables related to this 409

composition. 410

The second case, called Composition 2, is based on product- 411

composition estimation in the bottom of a distillation tower, 412

which is different from the tower in Composition 1. The com- 413

position measurements are based on laboratory analysis, taken 414

every 8 h with a more accurate method of 1.3% measurement 415

error, and are less noisy. Process data are the hourly averaged 416

values for the time when the sample for the laboratory measure- 417

ment has been taken. The output composition and the two-input 418

data (Fig. 5) include 308 records (samples), where a signifi- 419

cant change in operating conditions has been introduced after 420

sample 113 by input 2. Forty-seven different input variables 421

were measured using “hard” (conventional) sensors. 422

The third case, called Composition 3, is based on product- 423

composition estimation in the top of the same distillation tower 424

as that in Composition 2. The output composition is shown in 425

Fig. 6, and it also includes 308 data samples with a significant 426

change in operating conditions (catalyzing agent replacement) 427

introduced after sample 113. The key differences of Case 3 428

relative to the other laboratory-measurement-based cases are as 429

follows: 1) higher level of operating-condition changes (275% 430

increase versus 220% increase for Case 1 and 232% increase 431
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Fig. 7. Flowchart of the eSensor from the real-time software-realization point of view. Sleep mode means a default state expecting an external request. Note that
all the stages of eSensor self-calibration are combined in one block on the right bottom part of the flowchart. This includes learning, the online input selection, as
well as cluster/rule removal based on their age. The details of this procedure are provided in the Appendix.

for Case 2) and 2) larger number of process inputs (seven inputs432

versus two inputs for both Cases 1 and 2).433

The fourth case is based on propylene estimation in the top434

of a distillation tower, which is different from the distillation435

towers in the previous cases. In this case 2, process variables436

that are related to propylene are used as inputs in the model437

development. The propylene measurements are based on gas-438

chromatograph analysis, taken every 15 min. Process data are439

the snapshot minute values for the time when the measurement440

has been taken. The data [Fig. 1(a)] include 3000 records441

(samples) with very broad range of operating conditions.442

These four test cases (provided and used by The Dow Chem-443

ical Company, Freeport, TX) cover most of the real issues in444

applying inferential sensors in the advanced process industry,445

such as noisy data, changing operating conditions, a large446

number of correlated inputs, etc.447

V. EXPERIMENTAL RESULTS AND ANALYSIS448

The main aim of the experimental study was to generate449

interpretable simple-to-understand models that are flexible and450

adaptive (evolving with time and following the dynamics of the 451

data pattern) and are robust to noise and imprecise measurement 452

data using the proposed technique eSensor and to compare 453

these results with the available alternatives based on MLP-type 454

NN, PLS, and a recently introduced evolving NN, i.e., DENFIS 455

[31]. Precision was measured using root mean square errors 456

(RMSE), as well as correlation [2]. The data in all experiments 457

were standardized. The eSensor starts with an empty fuzzy- 458

rule base (no iniSensor) and generates its rule-base “on fly” 459

based on the data that are provided sample by sample and 460

disregarded from the memory once processed. It also optimizes 461

the parameters during retraining periods (it self-calibrates). The 462

output prediction is calculated for every data sample and can be 463

used at any time instant. Samples for recalibration are provided 464

when they are available (see Fig. 7). DENFIS was also applied 465

in an online mode. 466

The conventional inferential sensors (PLS and NN) that are 467

not adaptive were trained initially using the first quarter of the 468

available data samples, and afterward, they were retrained using 469

samples from the third quarter of the available data stream. The 470

error was only calculated on the second and fourth quarters of 471
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Fig. 8. Evolution of the rule base of the eSensor (number of rules vary
starting from one—the first sample—finishing with six, and reaching at some
stage 10).

TABLE I
VALIDATION RESULT USING ESENSOR AND REFERENCE APPROACHES

the data stream in all cases (PLS, NN, and eSensor) to allow472

compatibility of the results. Note that the eSensor can also473

be retrained anytime when a training sample is available, and474

moreover, its structure (rule based) will be preserved and only475

gradually adapted/evolved.476

The evolution of the fuzzy rule base is shown in Fig. 8, where477

the number of fuzzy rules generated is shown for the fourth case478

study (propylene). In retraining the NN and PLS, the parameters479

(weights) change completely and are not interpretable. Note480

that both PLS and NN require a separate training phase to build481

the model and, during this phase, use all training data, while482

the eSensor starts “from scratch” and uses each time the current483

data sample only plus the accumulated parameters β and χj484

[see (13)]. DENFIS also needs initialization and cannot start485

“from scratch” [31]. In addition, it is also noniterative. The486

fuzzy models that have automatically been extracted by the487

eSensor from the data streams are transparent and understand-488

able by the operator of the process, yet they are robust and flex-489

ible. That means that the fuzzy-rule base that is extracted can be490

stored or directly presented to the operators without post-491

processing.492

Fig. 9. Case study 1. (a) Top plot—prediction of composition 1 by the
eSensor compared to the real data taken by laboratory samples every hour.
(b) Bottom plot—selected input variables by the eSensor.

As seen from Table I, the eSensor significantly outperforms 493

conventional inferential sensors, such as feedforward MLP and 494

PLS-based approaches, as well as the adaptive DENFIS ones, 495

in terms of precision. It also has significantly smaller number 496

of rules as compared to DENFIS. The predicted versus the 497

real (laboratory or chromatography) data are shown for all case 498

studies in Figs. 9–12 in the top plots, together with input- 499

variable selection in the bottom plots in Figs. 9–12. 500

One can see in Fig. 14 the local regions generated in another 501

experiment (Composition 1), which are represented by dashed 502

lines. 503

Additionally, the eSensor builds its entire structure, includ- 504

ing input-variable online ranking and selection, fuzzy-rule 505

generation, and self-recalibration, and is easily interpretable 506

(linguistic). One example of the fuzzy-rule base generated 507

automatically at the end of the training phase is given in the 508

following for Case 2: 509

Final Rule Base for Composition 2: 510

R1: IF (x1 is around 183.85) AND (x2 is around 170.31), 511

THEN (y = 0.84 − 0.96x1 + 0.61x2). 512

R2: IF (x1 is around 178.09) AND (x2 is around 166.84), 513

THEN (y = 0.87 − 0.98x1 + 0.54x2). 514

R3: IF (x1 is around 172.70) AND (x2 is around 166.01), 515

THEN (y = 0.87 − 1.02x1 + 0.64x2). 516
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Fig. 10. Case study 2. (a) Top plot—prediction of composition 2 by the
eSensor compared to the real data taken by laboratory samples every 8 h.
(b) Bottom plot—selected input variables by the eSensor.

The interpretability of the fuzzy rules can be seen in Fig. 13,517

where the membership functions of the fuzzy sets that describe518

propylene polymerization are depicted. This illustrates for the519

input variable x1 for the constant second input x2 the rate with520

which the particular input (feature) affects the output in each521

of the local regions. Linear dependences are understandable for522

the human operators, and it is obvious from Fig. 13 that there523

are several linear dependences that are active for the values of524

x1 (for example) around 25 and 40.525

During the evolution of the rule base, the age of the clusters/526

rules is being monitored. Fig. 1(b) shows the age evolution of527

three rules from the rule base for propylene. Rule 1 is used528

extensively around sample 1400, and its age drops significantly529

around the same sample. At the same time, the age rate (first530

derivative of the age) for rule 4 is positive and increasing,531

which means that this particular fuzzy rule is getting older532

(aging). Such changes indicate that there is a drift in the data533

pattern, and age rate provides a mathematical tool to detect this534

automatically. A similar case occurs at around sample 2650,535

when a second significant drift is observed. Rule 3 is rarely used536

after its generation since its age rate is close to one during the537

whole process. This rule has been later removed automatically538

from the rule base.539

VI. CONCLUSION540

A new type of adaptive, self-calibrating, and self-developing541

inferential sensor that is based on the EFM of Takagi–Sugeno542

Fig. 11. Case study 3. (a) Top plot—prediction of composition 3 by the
eSensor compared to the real data taken by laboratory samples every 8 h.
(b) Bottom plot—selected input variables by the eSensor.

type (ETS) has been introduced in this paper and investigated 543

on a range of case studies from the chemical and process in- 544

dustries. The proposed eSensors can be trained “on fly” starting 545

either “from scratch” or being primed with an initial rule base. 546

The results with data from real chemical processes demonstrate 547

that the proposed adaptive and evolving inferential sensor is 548

very flexible (it develops its model structure and adapts to 549

sudden changes automatically, such as the introduced change 550

of operating condition after sample 127 for Composition 1 551

and after sample 113 for Composition 2). It does not need 552

any pretraining and specific maintenance and thus reduces the 553

life-cycle costs significantly. The structure of the proposed 554

eSensor is transparent because it is composed of linguistic 555

fuzzy rules that can be understood by an operator. The proposed 556

evolving inferential sensor is also very robust. An illustration of 557

this for the example of Composition 3 was provided. Finally, 558

due to the recursive calculations, the proposed technique is 559

computationally very light (the computational complexity is 560

on the order of O(n × R), where n is the number of inputs 561

(in studied cases 2 or 7) and R is the number of fuzzy rules 562

generated (usually a small number due to the very conservative 563

requirement for generating new rules based on the data density 564

(15); in the studied cases, the number of fuzzy rules generated 565

was between two and six). It is important to note that the 566

proposed eSensor is suitable for a range of process indus- 567

tries, including, but not limited to, chemical, biotechnology, 568

oil refining, etc. 569
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Fig. 12. Case study 4. (a) Top plot—prediction of propylene by the eSensor
compared to the real data taken by the gas-chromatography test every 15 min.
(b) Bottom plot—selected input variables by the eSensor.

APPENDIX570

Algorithm: eSensor571

Begin eSensor572

Initialize eSensor by the first data sample, z1 = [x1, y1];573

(D1)1 ← 1574

(or by iniSensor if it exists)575

DO for each data sample WHILE data are acquired576

Read the measurable (by hard sensors) variables, xk;577

Calculate the membership to each of the fuzzy sets by (4);578

Calculate the rule firing strength by (6) and (7);579

Estimate the outputs, ŷk by (1);580

At the next time step (k ← k + 1)581

IF (mode = ‘self-calibration’)582

Get the real value of the estimated variables, yk;583

Calculate the density of the data sample, Dk(zk) by (13);584

Update the density of the existing focal points, Dk(zi∗),585

by (14);586

IF (15) holds THEN587

Add a new focal point based on the new data point, (16);588

Initiate its density to one, (17);589

Update spreads of membership functions by (5);590

IF (18) holds THEN Remove the rules for which it holds;591

ELSE (IF (15) holds)592

Ignore (do not change the cluster structure);593

Update spreads of membership functions by (5);594

Update the age of the clusters by (10);595

Fig. 13. (a) Membership functions of two of the fuzzy sets that form the
antecedent part of the fuzzy rules of the eSensor at the end of the training for
case study 4 (propylene). (b) Local linear models that form the consequent part
of the fuzzy rules of the eSensor at the end of the training.

Fig. 14. Clusters that form the antecedent part of the fuzzy rules and illustrate
the local areas of validity of the rules.

Update the input weights by (25) 596

Remove the old rules (rules for which (11) holds); 597

Remove the inputs with low weight (26). 598

END (IF THEN ELSE) 599

Update the consequent parameters by (19) and (20). 600

END (self-calibration) 601

END (DO . . . WHILE) 602

END (eSensor) 603
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Abstract—A new technique to the design and use of inferential4
sensors in the process industry is proposed in this paper, which5
is based on the recently introduced concept of evolving fuzzy6
models (EFMs). They address the challenge that the modern7
process industry faces today, namely, to develop such adaptive and8
self-calibrating online inferential sensors that reduce the mainte-9
nance costs while keeping the high precision and interpretability/10
transparency. The proposed new methodology makes possible11
inferential sensors to recalibrate automatically, which reduces12
significantly the life-cycle efforts for their maintenance. This is13
achieved by the adaptive and flexible open-structure EFM used.14
The novelty of this paper lies in the following: 1) the overall15
concept of inferential sensors with evolving and self-developing16
structure from the data streams); 2) the new methodology for17
online automatic selection of input variables that are most relevant18
for the prediction; 3) the technique to detect automatically a shift19
in the data pattern using the age of the clusters (and fuzzy rules);20
4) the online standardization technique used by the learning pro-21
cedure of the evolving model; and 5) the application of this inno-22
vative approach to several real-life industrial processes from the23
chemical industry (evolving inferential sensors, namely, eSensors,24
were used for predicting the chemical properties of different25
products in The Dow Chemical Company, Freeport, TX). It should26
be noted, however, that the methodology and conclusions of this27
paper are valid for the broader area of chemical and process indus-28
tries in general. The results demonstrate that well-interpretable29
and with-simple-structure inferential sensors can automatically be30
designed from the data stream in real time, which predict various31
process variables of interest. The proposed approach can be used32
as a basis for the development of a new generation of adaptive and33
evolving inferential sensors that can address the challenges of the34
modern advanced process industry.35

Index Terms—Concept shift in data streams, evolving fuzzy36
systems, fuzzy-rule aging, inferential sensors, learning and adap-37
tation, Takagi–Sugeno (TS) fuzzy models.38

I. INTRODUCTION39

INFERENTIAL sensors [1], [21], [23], [27], [28] are able to40

provide accurate real-time estimates of difficult-to-measure41

parameters or expensive measurements (like emissions, bio-42

mass, melt index, etc.) from the available cheap sensors43

(like temperatures, pressures, and flows). Different empirical44
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methods have been used to develop inferential sensors, such 45

as statistical models [2], neural networks (NNs) [3], support- 46

vector machines [4], [22], and genetic programming [5], [13]. 47

Model-based techniques for process-quality monitoring [1] of- 48

ten provide a valuable advantage over conventional approaches 49

that rely on manual intervention and laboratory tests. Such 50

models, however, are costly to build and maintain since the 51

environment in which an industrial process takes place is dy- 52

namically changing, the equipment is getting older and conta- 53

minated or being replaced, raw materials usually alter in quality, 54

and the complexity of processes leads to a number of aspects of 55

the process being ignored by the models. A crucial weakness 56

of model-based approaches is that they do not take into account 57

the shift and drift in the data pattern that is related to the fact that 58

these models are developed offline under certain conditions. 59

Even minor process changes outside these conditions may lead 60

to unacceptable performance deterioration that requires manual 61

maintenance and recalibration. 62

The challenge is to develop inferential sensors with flexible 63

yet interpretable structure [6] and adaptive parameters. The 64

gradual evolution of the model structure (fuzzy rules) will 65

mean that a retraining of the sensor when required will only 66

modify (add, remove, or replace) one or few fuzzy rules [7]. 67

Contrast this to a possible option of iteratively retraining an NN, 68

which, in effect, will lead to a completely new NN and a loss of 69

previous information [29]. Ideally, we would require inferential 70

sensors that can automatically recalibrate and detect shifts and 71

drifts in the data stream [4], [8]. One such methodological 72

framework is presented by the evolving Takagi–Sugeno (ETS) 73

fuzzy models [9], [10]. In this paper, we use this framework and 74

build upon it a methodological concept for evolving inferential 75

sensors, namely, eSensors, which is new and original. The 76

main contributions of this paper include the following: 1) the 77

overall concept of eSensors; 2) the new methodology for online 78

automatic selection of input variables that are most relevant for 79

the prediction; 3) the technique to detect automatically a shift in 80

the data pattern using the age of the clusters (and fuzzy rules); 81

4) the online standardization technique used by the learning 82

procedure of the evolving model; and 5) the application of this 83

innovative approach to four real-life industrial processes from 84

the chemical industries. 85

II. ADAPTIVE INFERENTIAL SENSORS BASED ON EFM 86

A. Principles of EFM 87

Evolving fuzzy models (EFMs) were first introduced as a 88

technique for online adaptation of fuzzy-rule-based systems’ 89

1083-4419/$26.00 © 2009 IEEE



2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

structure (rule-based fuzzy sets), as well as their parameters90

[7], [14]. In that respect, they make a step further by comparing91

the aforementioned technique to the well-established adaptive-92

system theory [15], which is applicable to linear systems only93

and to a small circle of nonlinear systems. EFM systems are94

nonlinear, linguistically interpretable, yet adaptable online in a95

(local) least squares (LS) sense. The approach was further re-96

fined for the specific case of the so-called TS fuzzy models [16]97

by introducing a fully recursive algorithm called ETS [9], [10].98

ETS fuzzy models are particularly suited as a framework for99

addressing the challenges that the process industry faces nowa-100

days. They can provide the algorithmic backbone of systems101

that can be implemented as embedded autonomous intelligent102

sensors with self-calibration and self-maintenance capabilities.103

The basic idea of ETS is to allow the TS fuzzy system struc-104

ture to grow, shrink, adapt, and self-develop in an automatic105

fashion learned online from the data streams in a locally optimal106

way. TS fuzzy systems [16] are very attractive due to their dual107

nature—they combine the fuzzy linguistic antecedent part with108

a linear functional consequent part, thus being locally linear109

but nonlinear overall and being proven universal approximators110

[17]. The antecedent part is a linguistic representation of a111

partition of the measurable-variable space into fuzzily overlap-112

ping regions (see Fig. 14). The linguistic antecedent parts of113

TS fuzzy systems make them attractive for human operators114

(compared to NN, SVM, or polynomial models, for example).115

The architecture of an ETS fuzzy system is based on fuzzily116

weighted local linear models of the following form [9], [10]:117

LM i : yi = xT Θ (1)

where LM i denotes the ith local model, i = 1, 2, . . . , N ; x =118

[1, x1, x2, . . . , xn]T represents the (n + 1) × 1 extended vector119

of measurable variables; yi = [yi
1, y

i
2, . . . , y

i
m]T is the m × 1120

vector of estimated variables; and Θi = [θi
0 θi

1 · · · θi
n]T121

denotes the matrix of consequent parameters.122

All of the N local linear models describe the process in a123

local area defined by fuzzy rules and are blended in a fuzzy124

way to produce the overall output that is nonlinear in terms of125

measurable variables x’s but is linear in terms of parameters Θ’s126

y = ψT Θ (2)

where ψ = [λ1xT , λ2xT , . . . , λNxT ]T is a vector of127

measurable variables that are weighted by the normalized128

activation levels of the rules, λi, i = 1, 2, . . . , N , with λi129

being the normalized firing level of the ith fuzzy rule that is a130

function of x, i.e., λi(x).131

The overall TS fuzzy model can then be described by a set of132

fuzzy rules of the following form:133

Ri : IF (x1 is around xi∗
1 ) AND, . . .

AND
(
xn is around xi∗

n

)
, THEN (yi = LM i) (3)

where Ri denotes the ith fuzzy rule, with i = [1, N ]; N is the134

number of fuzzy rules; (xj is around xi∗
j ) denotes the jth fuzzy135

set of the ith fuzzy rule, with j = 1, 2, . . . , n; and xi∗ is the136

focal point of the ith-rule antecedent part.137

The degree of membership of a certain data point (x) to any 138

of the fuzzy rules can be described by a Gaussian centered at its 139

focal point 140

μi = e
−

∑n

j=1(xj−xi∗
j )2

2(σi
j)

2

(4)

having a spread that is learned based on the data variance [10] 141

(
vi

jk

)2 = ρ
(
vi

j(k−1)

)2

+ (1 − ρ)
1
ni

k

ni
k∑

l=1

‖zi∗ − zl‖2
j ,

vi
j1 = 1, σi

jk ← vi
jk (5)

where vi
jk denotes the variance of the data in the ith cluster 142

in the jth dimension (jth variable) calculated at the kth time 143

instant, σi
jk represents the spread of the Gaussian of the jth 144

fuzzy set of the ith fuzzy rule calculated at the kth time instant, 145

z = [x, y]T depicts the overall data vector, and ni
k denotes the 146

support of the ith cluster/rule—the number of samples that are 147

associated with it based on the distance to the focal point. 148

The firing strength of a fuzzy rule is determined by a t-norm, 149

which can be represented as inner product [18] 150

τ i =
n∏

j=1

μi
j(xj) (6)

and is normalized so that it sums to one 151

λi =
τ i∑N

j=1 τj

. (7)

B. Monitoring the Quality of the Rule Base 152

One can monitor and analyze online the quality of the 153

clusters that are formed and the fuzzy rules, respectively—for 154

example, the number of points that support them or their age 155

[19]. The support of the rules is determined by a simple count- 156

ing of the samples that are associated with the nearest focal 157

point 158

ni
k+1 =ni

k+1, i=arg
N

min
i=1

‖xk−xi∗‖, k=2, 3, . . . . (8)

The support is initiated by one at the moment a rule is created 159

nN+1
k ← 1, k = 2, 3, . . . . (9)

In this paper, we introduce a recursive formula to calculate 160

the age of the ith cluster/rule calculated at the kth moment in 161

time (data sample) 162

Ai
k = k − 1

ni
k

(
k − Ai

k−1 + kni
k

)
(10)

where kl is the time index when the data sample was read. 163

This follows from 164

Ai
k = k − 1

ni
k

ni
k∑

l=1

kl Ai
k−1 = k − 1

ni
k−1

ni
k−1∑
l=1

kl.
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Fig. 1. (a) Top plot—output variable in case study 4—polymerization;
(b) Bottom plot—age of the fuzzy rules describing the propylene-polymerization
process. The two instants when a shift in the data pattern occurs are marked.
This corresponds to a change in the aging rate seen from the bottom plot.

From there, we get165

ni
k−1∑
l=1

kl =
(
k − Ai

k−1

)
Ai

k = k − 1
ni

k

⎛
⎝

ni
k−1∑
l=1

kl + kni
k

⎞
⎠ .

Combining these two expressions, we arrive at (10).166

Each time a new rule is created, its age is initiated by the167

index of the data sample that is used as a focal point of that rule.168

Each time a new data sample is associated to an existing rule169

(the distance from a sample to that focal point is smaller than170

that to any other focal points), the age of that rule gets smaller.171

If no sample is assigned to a rule, it gets older by one. Note that172

the age of a fuzzy rule can take values from the [0; k] range.173

This is shown in Fig. 1 in the case of propylene estimation.174

From the top plot, one can see that there are three different175

stages of that process. The aging of three of the six fuzzy rules176

(rules ## 1, 3, and 4) are depicted in the bottom plot. One can177

see that precisely at the moment of a shift in the data pattern178

(a new phase), the aging of the rules is affected. By monitoring179

the derivative of A (i.e., aging rate), one can automatically180

detect such changes and respond by adapting the learning181

mechanism or rate.182

Note that the age rate of rule #1 becomes negative before it183

increases again. This illustrates the so-called concept shift and184

is an indication of a transition from one operating state (which185

affects the data density in one local region, i.e., around the focal186

point of this rule) to another one (which affects the data density187

in another local region).188

Fig. 2. Evolution of the age and shift in the data pattern, resulting in forming
new clusters/rules for case study 2. The inflex points correspond to a shift of the
data from one cluster to another existing cluster or to a newly formed cluster
(as marked in the figure for each inflex point).

The age of the fuzzy rules (and the derivative of their age in 189

terms of the sampling period (k), which represents the aging 190

rate) can be very useful for online analysis of the concept 191

shift in the data stream [12]. An eSensor can detect a concept 192

shift [20] online by the rate of aging and the instances when 193

it changes [the inflex points on the age evolution diagram that 194

corresponds to the change of the sign of the aging rate indicate 195

a shift (see Fig. 2)]. The aging corresponds to the first derivative 196

of the age and is graphically represented by the slope of the age 197

evolution lines in terms of the horizontal axis [see Fig. 1(b)]. 198

In this paper, we use the following principle for the update 199

of the rule base by removing the older rules (rules whose age 200

exceeds the mean age for that rule by more than the standard- 201

deviation [2] value calculated recursively up to that moment/ 202

sample): 203

IF
(
Ai >Ai+std(Ai)

)
, THEN(remove Ri;N ←N−1) (11)

where Ai denotes the mean age (it is also denoted in Fig. 1(b) 204

by a dash-dotted line) and std(Ai) represents the standard 205

deviation of the age of the ith rule. 206

C. Evolving the Structure of the Sensor From the Data Stream 207

The online design and learning of the eSensor are outlined 208

here. Learning is based on decomposition of the identification 209

problem into the following [7], [9], [10]: 1) fuzzy-rule-based 210

structure design and 2) parameter identification. Both of these 211

subproblems can be performed in online mode during one time 212

step (per sample). The first subproblem, i.e., structure identifi- 213

cation, can be approached using evolving clustering in the data 214

space [9], [10], [12]. This partitioning leads to forming infor- 215

mation granules, described linguistically by fuzzy sets. Thus, 216

it serves the transformation of the data into primitive forms 217

of knowledge. The basic notion of the partitioning algorithm 218

is that of the data density [26], which is defined as a Cauchy 219

function over the sum of distances d’s between a certain data 220

sample zi and all other data samples in the feature space [10] 221

Dk(zk) =
1

1 + v2
k

(12)
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where v2
k = (1/k − 1)

∑k−1
i=1 d2(zk, zi) is the variance of the222

data [2].223

Data-space partitioning is based on the following principle:224

The point with the highest density in the data space is chosen225

to be the focal point, and the antecedent of the first fuzzy226

rule is formed around it. In this way, fuzzy rules with high227

descriptive power and generalization capabilities are generated.228

The density can be recursively calculated using the current data229

point (zj
k) and (n + 1) memorized quantities only (βk and χj

k,230

j = [1, n]) [10]231

Dk(zk) = (k − 1) (αk(k − 1) + βk − 2γk + (k − 1))−1 ,

k = 2, 3, . . . (13)

where αk =
∑n+1

j=1 (zj
k)2; βk = βk−1 + αk−1, with β1 = 0;232

and γk =
∑n+1

j=1 zj
kχj

k, with χj
k = χj

k−1 + zj
k−1 and χj

1 = 0.233

Each time a new data sample is read, it affects the data234

density of the existing focal points and can be updated by [10]235

Dk(zi∗) =
(k − 1)Dk−1(zi∗)

k − 2 + Dk−1(zi∗) + Dk−1(zi∗)d(zi∗, zk)
,

k = 2, 3, . . . (14)

where d(zi∗, zk) denotes the distance between the ith focal236

point and the current point.237

Once the densities of the new coming data sample and of238

each of the previously existing focal points are recursively239

updated, they are compared. If the new coming data sample240

has a higher density than any of the previously existing focal241

points, then this means that it is a good candidate to become a242

focal point of a new rule (a new local linear model) because it243

has high descriptive power and generalization potential244

Dk(zk) > Dk(zi∗) ∀ i∗ ∈ N. (15a)

If the new coming data sample has a lower density than any245

of the previously existing focal points, then this means that it246

is also a good candidate to become a focal point of a new rule247

(a new local linear model) because it improves the coverage of248

the whole data space [12]249

Dk(zk) < Dk(zi∗) ∀ i∗ ∈ N. (15b)

Forming a new fuzzy rule around a newly added prototype250

leads to a gradual increase of the size of the rule base, which is251

why this approach is called “evolving”252

z(N+1)∗ ← zk. (16)

The density of the newly generated rule is set to one [10]253

temporarily (it will be updated to take into account later the254

influence of each new coming data sample on the generalization255

potential of this particular focal point)256

Dk

(
z(N+1)∗

)
← 1. (17)

To increase the interpretability and update of the rule base,257

one needs also to remove the previously existing rules that258

become ambiguous after insertion of the new rule. Therefore, 259

each time a new fuzzy rule is added, it is also checked whether 260

any of the already existing prototypes in the rule base are 261

described by this rule to a degree that is higher than 50% 262

∃i, i=[1, N ]; μj
i (z

N+1) > 0.5 ∀ j, j =[1, n]. (18)

If any of the previously existing focal points satisfy this con- 263

dition, the rules that correspond to them are being removed 264

(replaced by the newly formed rule) [9], [19]. The spreads of 265

the membership functions are also recursively updated by (5). 266

D. Self-Learning the eSensor 267

Once the antecedent part of the TS fuzzy model is formed, 268

the consequent-parameter estimation (the second subproblem 269

of the learning) is addressed as a fuzzily weighted recursive LS 270

(RLS) estimation problem per rule [15] 271

Θi
k = Θi

k−1 + Ci
kλixk

(
yk − xT

k Θi
k−1

)
, Θi

1 = 0 (19)

Ci
k =Ci

k−1−
λiCi

k−1xkxT
k Ci

k−1

1 + λixT
k Ci

k−1xk

, Ci
1 = ΩI, k = 2, 3, . . .

(20)

where C ∈ RN(n+L)xN(n+L) denotes the covariance matrix, Ω 272

is a large positive number, and I is the identity matrix. 273

As a result, the eSensor blends in a fuzzy way local linear 274

predictors. Moreover, it is optimally (in an LS sense) [15] 275

tuned in terms of consequent parameters Θ’s. In terms of its 276

antecedents and rule-based structure, it is based on the robust 277

online partitioning approach. The procedure of the eSensor self- 278

development and self-calibration is represented as a pseudo- 279

code in the Appendix. 280

E. Online Normalization and Standardization of the 281

Data in the eSensor 282

One specific issue related to this online algorithm is the 283

normalization or standardization of the data. Both normaliza- 284

tion and standardization are well-established techniques for the 285

offline case when all the data are available [2]. An approach 286

to update the normalization ranges of the data in a recursive 287

manner is presented in [25], but in this paper, we use the 288

recursive version of the standardization technique that can 289

easily be inferred from the offline version [2] because it depends 290

on the mean and variance of the data only. Let us remember that 291

(offline) standardization is given by [2] 292

Zjk =
zjk − zjk

ζjk
, j = [1, n], k = 2, 3, . . . (21)

where Zjk denotes the standardized value of zjk; zjk = 293

(1/k)
∑k

l=1 zjl, j = [1, n], k = 2, 3, . . . , represents the mean 294

value of zjk; and vjk is the standard deviation of the jth input 295

calculated based on k data samples. 296
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Both the mean and standard deviation can be updated297

recursively298

zjk =
k − 1

k
zj(k−1) +

1
k

zj(k−1),

zj1 = 0, j = [1, n + m], k = 2, 3, . . . (22a)

v2
jk =

k − 1
k

v2
j(k−1) +

1
k − 1

(
zjk − zj(k−1)

)
,

vj1 = 0, j = [1, n + m], k = 2, 3, . . . . (22b)

In order to return to the original scale, one should apply299

destandardization by300

zjk = Zjkνjk + zjk, j = [1, n + m], k = 2, 3, . . . . (23)

III. ONLINE INPUT-VARIABLE SELECTION IN THE ESENSOR301

Inferential sensors, as well as other online models, tradi-302

tionally assume the number of input variables to be known303

beforehand or to be preselected. In what follows, we propose an304

original1 method to online “on-fly” ranking and selection of in-305

put variables, which was successfully approbated on the indus-306

trial case studies reported in this paper, as well as on other real307

applications [30]. The importance of this technique should not308

be underestimated because, very often in practice, there are309

large sets of candidate variables that may influence the moni-310

tored or measured output, but often, it is not clear how much.311

The idea is based on online ranking of the accumulated values312

formed by the consequent parameters Θi
jk, j =[1,N ],i=[1,R].313

The accumulated values π’s indicate that the weight of a par-314

ticular consequent parameter is determined by simply adding315

the absolute values (because the consequent parameters are316

unrestricted in sign and value, and their contribution is judged317

by the modulus)318

πi
jk =

k∑
l=1

∣∣Θi
jl

∣∣ , j = [1, n], i = [1, R]. (24)

One can also form a weight of a particular feature by the ratio319

of π values320

ωi
jk =

πi
jk∑n

r=1 πi
jk

, i = [1, R], j = [1, n]. (25)

It is important to note that (24) and (25) represent sums only321

and are thus easily performed online. The values of the weights322

ω’s indicate the contribution of a particular input to the overall323

output and are thus a measure of the sensitivity of the outputs.324

Therefore, an intuitive technique to simplify the inferential325

sensor structure in terms of inputs can be proposed, which326

gradually removes the input variables for which the weight ω is327

negligibly small across the rules (i.e., the inputs that contribute328

little to the overall output)329

IF

(
∃j∗

∣∣∣ωi
j∗k < ε

n
max
j=1

πi
jk

)
, THEN (remove j∗) (26)

1This technique is part of a pending patent: P. Angelov, Machine Learning
(Collaborative Systems), WO2008053161, priority date: November 1, 2006;
intern. filing date: October 23, 2007; http://v3.espacenet.com/textdoc?DB=
EPODOC&IDX=WO2008053161&F=0&QPN=WO2008053161

Fig. 3. Overall schematic representation of the eSensor.

where ε denotes a coefficient (the suggested values are 330

[0.03; 0.1], which means that this input variable contributes 331

3%–10% to the overall output on average. 332

The rationale for the simplicity of this technique stems from 333

the fact that the consequents represent locally linear combina- 334

tions and can thus be analyzed. It should be noted that, when 335

an input is removed (which does not usually occur very often), 336

however, the dimension is reduced by one, which is reflected 337

in the covariance matrices (a line and a column are removed), 338

and the dimensions of the focal points are also updated, as well 339

as the recursive variables in (13), i.e., α, β, γ, and χ. 340

The main advantages of the proposed eSensor approach that 341

makes it suitable for implementation in the process industry are 342

as follows. 343

1) It self-develops, evolves, and thus reduces the develop- 344

ment and maintenance costs significantly. 345

2) It can provide high prediction rates. 346

3) It is one-pass and recursive and has low computational 347

requirements; thus, it is suitable for hardware “on-chip” 348

implementations [24]. 349

4) It is useful for online analysis and monitoring of the 350

concept shift using fuzzy-rule aging [see Figs. 1(b) and 2] 351

and thus makes useful conclusions for possible faults and 352

the quality of the process. 353

5) It can automatically select online a small subset of relevant 354

inputs, thus fully automating the development process. 355

6) It can have a multiple-input–multiple-output structure and 356

thus build a separate regression model for each output 357

variable. 358

The procedure for adaptive and evolving inferential self- 359

calibrating sensors, which we call eSensor, is presented by the 360

pseudocode provided in the Appendix (see also Fig. 3). 361

IV. CASE STUDY: INFERENTIAL SENSORS FOR 362

CHEMICAL-PROPERTY ESTIMATION 363

The capabilities of the proposed evolving inferential sensor 364

are explored on four different industrial data sets for chemical- 365

property estimation. All four cases include operating-regime 366

changes with different impacts on specific chemical properties 367

due to different levels of process change, various measurement 368

methods with different accuracies, and a different number of 369

potential process variables, related to the inferred chemical 370

properties. However, all the changes create a challenge to 371
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Fig. 4. Case study 1: Composition 1. Top plot—output variable (composition 1).
Middle plot—input variable (x1). Bottom plot—input variable (x2).

existing inferential sensors with a fixed structure. As a basis372

for comparison, inferential sensors based on the most widely373

used methods in commercial soft-sensor products, such as the374

feedforward NN of multilayer perceptron (MLP) type [3] and375

PLS [1], were used, as well as a recently introduced algorithm376

for adaptive online NN, namely, DENFIS [31].377

In the chemical industry, inferential sensors are mostly used378

to estimate chemical properties, measured by two techniques:379

1) offline laboratory analysis of grab samples of the proper-380

ties and 2) pseudo real-time analysis with low frequencies by381

gas chromatographs. The sampling period for the properties,382

measured by laboratory analysis, is several hours, and accu-383

racy depends on different measurement methods and varies384

substantially. The sampling period of gas-chromatograph-based385

properties is much shorter (usually 15–30 min), and accuracy is,386

on average, an order of magnitude higher than that from offline387

laboratory measurements. Three of the selected cases are based388

on offline laboratory measurements, and one is based on gas389

chromatographs. In the cases with laboratory measurements,390

two different levels of accuracies have been selected. The level391

of operating-condition change (which could be quantified by392

the percentage increase from the average level for 50 samples393

before the process change to the average level for 50 samples394

after the change), as well as the number of process inputs, is395

also different.396

The first case, called Composition 1, is based on product-397

composition estimation in a distillation tower. The measure-398

ments are based on laboratory analysis, taken every 8 h, and399

the method accuracy is low (2.2% measurement error), which,400

by itself, introduced a measurement noise. Process data are401

the hourly averaged values around the time when the sample402

for the laboratory measurement has been taken. The output403

composition and the two-input data (Fig. 4) include 309 records404

(samples). As it is seen in the middle plot in Fig. 4, a signifi-405

cant change in operating conditions has been introduced after406

sample 127 by input 1. It is interesting to note that the two407

input variables that were selected online using the eSensor are408

Fig. 5. Input and output variables for case study 2. Top plot—output variable
(composition 2). Middle plot—input variable (x1). Bottom plot—input
variable (x2).

Fig. 6. Output variable for case study 3 (composition 3). There are seven
selected inputs, and they are not shown for clarity purposes.

the most statistically significant process variables related to this 409

composition. 410

The second case, called Composition 2, is based on product- 411

composition estimation in the bottom of a distillation tower, 412

which is different from the tower in Composition 1. The com- 413

position measurements are based on laboratory analysis, taken 414

every 8 h with a more accurate method of 1.3% measurement 415

error, and are less noisy. Process data are the hourly averaged 416

values for the time when the sample for the laboratory measure- 417

ment has been taken. The output composition and the two-input 418

data (Fig. 5) include 308 records (samples), where a signifi- 419

cant change in operating conditions has been introduced after 420

sample 113 by input 2. Forty-seven different input variables 421

were measured using “hard” (conventional) sensors. 422

The third case, called Composition 3, is based on product- 423

composition estimation in the top of the same distillation tower 424

as that in Composition 2. The output composition is shown in 425

Fig. 6, and it also includes 308 data samples with a significant 426

change in operating conditions (catalyzing agent replacement) 427

introduced after sample 113. The key differences of Case 3 428

relative to the other laboratory-measurement-based cases are as 429

follows: 1) higher level of operating-condition changes (275% 430

increase versus 220% increase for Case 1 and 232% increase 431
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Fig. 7. Flowchart of the eSensor from the real-time software-realization point of view. Sleep mode means a default state expecting an external request. Note that
all the stages of eSensor self-calibration are combined in one block on the right bottom part of the flowchart. This includes learning, the online input selection, as
well as cluster/rule removal based on their age. The details of this procedure are provided in the Appendix.

for Case 2) and 2) larger number of process inputs (seven inputs432

versus two inputs for both Cases 1 and 2).433

The fourth case is based on propylene estimation in the top434

of a distillation tower, which is different from the distillation435

towers in the previous cases. In this case 2, process variables436

that are related to propylene are used as inputs in the model437

development. The propylene measurements are based on gas-438

chromatograph analysis, taken every 15 min. Process data are439

the snapshot minute values for the time when the measurement440

has been taken. The data [Fig. 1(a)] include 3000 records441

(samples) with very broad range of operating conditions.442

These four test cases (provided and used by The Dow Chem-443

ical Company, Freeport, TX) cover most of the real issues in444

applying inferential sensors in the advanced process industry,445

such as noisy data, changing operating conditions, a large446

number of correlated inputs, etc.447

V. EXPERIMENTAL RESULTS AND ANALYSIS448

The main aim of the experimental study was to generate449

interpretable simple-to-understand models that are flexible and450

adaptive (evolving with time and following the dynamics of the 451

data pattern) and are robust to noise and imprecise measurement 452

data using the proposed technique eSensor and to compare 453

these results with the available alternatives based on MLP-type 454

NN, PLS, and a recently introduced evolving NN, i.e., DENFIS 455

[31]. Precision was measured using root mean square errors 456

(RMSE), as well as correlation [2]. The data in all experiments 457

were standardized. The eSensor starts with an empty fuzzy- 458

rule base (no iniSensor) and generates its rule-base “on fly” 459

based on the data that are provided sample by sample and 460

disregarded from the memory once processed. It also optimizes 461

the parameters during retraining periods (it self-calibrates). The 462

output prediction is calculated for every data sample and can be 463

used at any time instant. Samples for recalibration are provided 464

when they are available (see Fig. 7). DENFIS was also applied 465

in an online mode. 466

The conventional inferential sensors (PLS and NN) that are 467

not adaptive were trained initially using the first quarter of the 468

available data samples, and afterward, they were retrained using 469

samples from the third quarter of the available data stream. The 470

error was only calculated on the second and fourth quarters of 471
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Fig. 8. Evolution of the rule base of the eSensor (number of rules vary
starting from one—the first sample—finishing with six, and reaching at some
stage 10).

TABLE I
VALIDATION RESULT USING ESENSOR AND REFERENCE APPROACHES

the data stream in all cases (PLS, NN, and eSensor) to allow472

compatibility of the results. Note that the eSensor can also473

be retrained anytime when a training sample is available, and474

moreover, its structure (rule based) will be preserved and only475

gradually adapted/evolved.476

The evolution of the fuzzy rule base is shown in Fig. 8, where477

the number of fuzzy rules generated is shown for the fourth case478

study (propylene). In retraining the NN and PLS, the parameters479

(weights) change completely and are not interpretable. Note480

that both PLS and NN require a separate training phase to build481

the model and, during this phase, use all training data, while482

the eSensor starts “from scratch” and uses each time the current483

data sample only plus the accumulated parameters β and χj484

[see (13)]. DENFIS also needs initialization and cannot start485

“from scratch” [31]. In addition, it is also noniterative. The486

fuzzy models that have automatically been extracted by the487

eSensor from the data streams are transparent and understand-488

able by the operator of the process, yet they are robust and flex-489

ible. That means that the fuzzy-rule base that is extracted can be490

stored or directly presented to the operators without post-491

processing.492

Fig. 9. Case study 1. (a) Top plot—prediction of composition 1 by the
eSensor compared to the real data taken by laboratory samples every hour.
(b) Bottom plot—selected input variables by the eSensor.

As seen from Table I, the eSensor significantly outperforms 493

conventional inferential sensors, such as feedforward MLP and 494

PLS-based approaches, as well as the adaptive DENFIS ones, 495

in terms of precision. It also has significantly smaller number 496

of rules as compared to DENFIS. The predicted versus the 497

real (laboratory or chromatography) data are shown for all case 498

studies in Figs. 9–12 in the top plots, together with input- 499

variable selection in the bottom plots in Figs. 9–12. 500

One can see in Fig. 14 the local regions generated in another 501

experiment (Composition 1), which are represented by dashed 502

lines. 503

Additionally, the eSensor builds its entire structure, includ- 504

ing input-variable online ranking and selection, fuzzy-rule 505

generation, and self-recalibration, and is easily interpretable 506

(linguistic). One example of the fuzzy-rule base generated 507

automatically at the end of the training phase is given in the 508

following for Case 2: 509

Final Rule Base for Composition 2: 510

R1: IF (x1 is around 183.85) AND (x2 is around 170.31), 511

THEN (y = 0.84 − 0.96x1 + 0.61x2). 512

R2: IF (x1 is around 178.09) AND (x2 is around 166.84), 513

THEN (y = 0.87 − 0.98x1 + 0.54x2). 514

R3: IF (x1 is around 172.70) AND (x2 is around 166.01), 515

THEN (y = 0.87 − 1.02x1 + 0.64x2). 516
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Fig. 10. Case study 2. (a) Top plot—prediction of composition 2 by the
eSensor compared to the real data taken by laboratory samples every 8 h.
(b) Bottom plot—selected input variables by the eSensor.

The interpretability of the fuzzy rules can be seen in Fig. 13,517

where the membership functions of the fuzzy sets that describe518

propylene polymerization are depicted. This illustrates for the519

input variable x1 for the constant second input x2 the rate with520

which the particular input (feature) affects the output in each521

of the local regions. Linear dependences are understandable for522

the human operators, and it is obvious from Fig. 13 that there523

are several linear dependences that are active for the values of524

x1 (for example) around 25 and 40.525

During the evolution of the rule base, the age of the clusters/526

rules is being monitored. Fig. 1(b) shows the age evolution of527

three rules from the rule base for propylene. Rule 1 is used528

extensively around sample 1400, and its age drops significantly529

around the same sample. At the same time, the age rate (first530

derivative of the age) for rule 4 is positive and increasing,531

which means that this particular fuzzy rule is getting older532

(aging). Such changes indicate that there is a drift in the data533

pattern, and age rate provides a mathematical tool to detect this534

automatically. A similar case occurs at around sample 2650,535

when a second significant drift is observed. Rule 3 is rarely used536

after its generation since its age rate is close to one during the537

whole process. This rule has been later removed automatically538

from the rule base.539

VI. CONCLUSION540

A new type of adaptive, self-calibrating, and self-developing541

inferential sensor that is based on the EFM of Takagi–Sugeno542

Fig. 11. Case study 3. (a) Top plot—prediction of composition 3 by the
eSensor compared to the real data taken by laboratory samples every 8 h.
(b) Bottom plot—selected input variables by the eSensor.

type (ETS) has been introduced in this paper and investigated 543

on a range of case studies from the chemical and process in- 544

dustries. The proposed eSensors can be trained “on fly” starting 545

either “from scratch” or being primed with an initial rule base. 546

The results with data from real chemical processes demonstrate 547

that the proposed adaptive and evolving inferential sensor is 548

very flexible (it develops its model structure and adapts to 549

sudden changes automatically, such as the introduced change 550

of operating condition after sample 127 for Composition 1 551

and after sample 113 for Composition 2). It does not need 552

any pretraining and specific maintenance and thus reduces the 553

life-cycle costs significantly. The structure of the proposed 554

eSensor is transparent because it is composed of linguistic 555

fuzzy rules that can be understood by an operator. The proposed 556

evolving inferential sensor is also very robust. An illustration of 557

this for the example of Composition 3 was provided. Finally, 558

due to the recursive calculations, the proposed technique is 559

computationally very light (the computational complexity is 560

on the order of O(n × R), where n is the number of inputs 561

(in studied cases 2 or 7) and R is the number of fuzzy rules 562

generated (usually a small number due to the very conservative 563

requirement for generating new rules based on the data density 564

(15); in the studied cases, the number of fuzzy rules generated 565

was between two and six). It is important to note that the 566

proposed eSensor is suitable for a range of process indus- 567

tries, including, but not limited to, chemical, biotechnology, 568

oil refining, etc. 569
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Fig. 12. Case study 4. (a) Top plot—prediction of propylene by the eSensor
compared to the real data taken by the gas-chromatography test every 15 min.
(b) Bottom plot—selected input variables by the eSensor.

APPENDIX570

Algorithm: eSensor571

Begin eSensor572

Initialize eSensor by the first data sample, z1 = [x1, y1];573

(D1)1 ← 1574

(or by iniSensor if it exists)575

DO for each data sample WHILE data are acquired576

Read the measurable (by hard sensors) variables, xk;577

Calculate the membership to each of the fuzzy sets by (4);578

Calculate the rule firing strength by (6) and (7);579

Estimate the outputs, ŷk by (1);580

At the next time step (k ← k + 1)581

IF (mode = ‘self-calibration’)582

Get the real value of the estimated variables, yk;583

Calculate the density of the data sample, Dk(zk) by (13);584

Update the density of the existing focal points, Dk(zi∗),585

by (14);586

IF (15) holds THEN587

Add a new focal point based on the new data point, (16);588

Initiate its density to one, (17);589

Update spreads of membership functions by (5);590

IF (18) holds THEN Remove the rules for which it holds;591

ELSE (IF (15) holds)592

Ignore (do not change the cluster structure);593

Update spreads of membership functions by (5);594

Update the age of the clusters by (10);595

Fig. 13. (a) Membership functions of two of the fuzzy sets that form the
antecedent part of the fuzzy rules of the eSensor at the end of the training for
case study 4 (propylene). (b) Local linear models that form the consequent part
of the fuzzy rules of the eSensor at the end of the training.

Fig. 14. Clusters that form the antecedent part of the fuzzy rules and illustrate
the local areas of validity of the rules.

Update the input weights by (25) 596

Remove the old rules (rules for which (11) holds); 597

Remove the inputs with low weight (26). 598

END (IF THEN ELSE) 599

Update the consequent parameters by (19) and (20). 600

END (self-calibration) 601

END (DO . . . WHILE) 602

END (eSensor) 603
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