Lancaster EPrints

The aqueous photodegradation of fenitrothion under various agricultural plastics : implications for pesticide longevity in agricultural 'micro-environments'.

Weber, Jan and Halsall, Crispin J. and Wargent, Jason J. and Paul, Nigel D. (2009) The aqueous photodegradation of fenitrothion under various agricultural plastics : implications for pesticide longevity in agricultural 'micro-environments'. Chemosphere, 76 (1). pp. 147-150. ISSN 0045-6535

Full text not available from this repository.

Abstract

Plastic cladding is increasingly used in agriculture to create micro-environments to improve crop yield/growth. Many of these plastics can alter the solar light spectrum by inhibiting or reducing the transmittance of certain parts of the solar spectrum. In this study, we investigated the aqueous photolysis of fenitrothion, under a selection of different plastic films commonly used in agriculture. Three different grades of polyethylene film were used: ‘standard’, ‘transparent’ and ‘opaque’. The transmittance of light wavelengths in the UV region (290–400 nm), measured with a spectroradiometer, was found to decrease in the order of transparent > standard > opaque. Fenitrothion, an organophosphorothioate insecticide possesses molar absorptivity in the solar wavelength range of 290–400 nm. Aqueous first order degradation rate constants for fenitrothion determined over a 12 h period were found to be considerably less for those experiments conducted under the standard and opaque plastic films, compared to the transparent film and no-film control. The experiments were conducted in an Atlas Suntest solar simulator using a UV-filtered Xenon arc lamp to simulate sunlight. The first order half-life for fenitrothion was 100 and 250 h under the standard and opaque films, respectively, compared to 10 h for the transparent film and no-film experiments. Our results suggest that pesticide longevity could be greatly extended within these plastic micro-environments, especially for those chemicals which may degrade/transform via photolytic or photochemical pathways.

Item Type: Article
Journal or Publication Title: Chemosphere
Uncontrolled Keywords: Pesticides ; Greenhouse ; Photodegradation ; Environmental persistence
Subjects: Q Science > QD Chemistry
Departments: Faculty of Science and Technology > Lancaster Environment Centre
Faculty of Science and Technology > Engineering
ID Code: 27042
Deposited By: Jason Wargent
Deposited On: 15 Sep 2009 09:11
Refereed?: Yes
Published?: Published
Last Modified: 26 Feb 2014 14:05
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/27042

Actions (login required)

View Item