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Abstract: This paper considers proportional-integral-plus (PIP) control of non-linear systems
defined by state-dependent parameter models, with particular emphasis on three practical
demonstrators: a microclimate test chamber, a 1/5th-scale laboratory representation of an
intelligent excavator, and a full-scale (commercial) vibrolance system used for ground improve-
ment on a construction site. In each case, the system is represented using a quasi-linear
state-dependent parameter (SDP) model structure, in which the parameters are functionally
dependent on other variables in the system. The approach yields novel SDP–PIP control
algorithms with improved performance and robustness in comparison with conventional linear
PIP control. In particular, the new approach better handles the large disturbances and other
non-linearities typical in the application areas considered.

Keywords: control system design, non-minimal state space, state-dependent parameters,
hydraulic actuators, system identification

1 INTRODUCTION but with additional dynamic feedback and input
compensators introduced automatically when the
process has second-order or higher dynamics, orPrevious papers have considered the proportional-
pure time delays greater than unity. In contrast tointegral-plus (PIP) controller, in which non-minimal
conventional PI/PID control, however, PIP designstate-space (NMSS) models are formulated so that full
exploits state variable feedback (SVF) methods, wherestate variable feedback control can be implemented
the vagaries of manual tuning are replaced by poledirectly from the measured input and output signals
assignment or linear quadratic (LQ) design.of the controlled process, without resort to the

To date, however, inherent non-linearities in the PIPdesign and implementation of a deterministic state
system have been accounted for in a rather ad hocreconstructor (observer) or a stochastic Kalman
manner at the design stage, sometimes leading tofilter [1–3].
reduced control performance. For example, pressureSuch PIP control systems have been successfully
disturbances sometimes take the ventilation rate in aemployed in a range of practical applications, parti-
building sufficiently far from the operating conditioncularly in the areas of microclimate control for
on which the linear controller is based for theagricultural buildings [4, 5], and in the automation
response to such a disturbance to be relatively slow.of construction robots on building sites [6, 7]. In both
Similarly, on a construction site, the behaviour ofthese application areas, the most common types of
hydraulically driven manipulators is dominated bycontroller used previously have been derived from
the highly non-linear, lightly damped dynamics ofthe ubiquitous proportional-integral-derivative (PID)
the actuators [10].approach (see, for example, references [8] and [9]).

To improve PIP control in such cases, therefore,In this regard, PIP control can be interpreted as one
the present paper identifies, and subsequently exploitslogical extension of conventional PI/PID methods,
for control system design, state-dependent para-
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e.g. Young [11]. The linear-like, affine structure of the 2.1 Model structure
SDP model means that, at each sampling instant, it

Consider the deterministic form of the SDP model
can be considered as a ‘frozen’ linear system. This

[11, 16]
formulation may then be used to design an SDP–PIP

y
k
=wT
k

p
k

(1)control law at each sampling instant using linear
methods [12]. where wT

k
is a vector of lagged input and output

The present paper develops this new approach for variables and p
k

is a vector of SDP parameters,
three practical demonstrators, related to both the defined as follows
above application areas: a microclimate test chamber

wT
k
= [−y

k−1
−y
k−2
, −y

k−n
u
k−1
, u

k−m
]representing a section of a livestock building, a 1/5th-

scale laboratory model of an intelligent excavator, p
k
= [a1{xk} a

2
{x
k
} , a

n
{x
k
} b1{xk} , b

m
{x
k
} ]T

and a full-scale (commercial) vibrolance system used
Here, y

k
is the output and u

k
the control input, while

for ground improvement on a construction site. a
i
{x

k
} (i=1, 2, … , n) and b

j
{x

k
} ( j=1, … , m) are

With regard to the first of these examples, the state-dependent parameters. The latter are assumed
paper focuses on the control of ventilation rate using to be functions of a non-minimal state vector
an axial fan. Ventilation is one of the most significant

xT
k
=[wT

k
U

k
] in which U

k
=[U

1,k
, U

2,k
, … , U

r,k
] is a

inputs in the control of the microclimate surrounding vector of other variables, not necessarily y
k

or u
k
.

plants or animals within the majority of agricultural However, for SDP–PIP control system design, it is
buildings [13]. For example, without adequate fresh usually sufficient to limit model (1) to the case where
air supply within a livestock enclosure, animal com- xT

k
=wT

k
. Any pure time delay t�1 is represented

fort and welfare are drastically reduced, especially by setting the leading b
1
{x

k
} … b

t−1
{x

k
} terms to

during high-density occupation, where excessive levels zero. Finally, n and m are integers representing the
of moisture, heat, and internal gases are generated. maximum lag associated with the output and input

By contrast, in the civil and construction industries, variables respectively.
semi-automatic functions are starting to be adopted Numerous recent publications describe an approach
as a means of improving efficiency, quality, and safety. for the identification and estimation of the SDP model
The control problem is made difficult by a range of defined by equation (1), together with the application
factors that include highly varying loads, speeds, and of such methods to a wide range of environmental,
geometries, as well as the soil–tool interaction in the biological, and engineering systems (see references
case of autonomous excavators [14, 15]. In the pre- [11] and [16] and the references therein). In the
sent paper, inverse kinematics is utilized online to present context, the approach is broadly composed
convert the task into a desired trajectory in the joint of two distinct stages, as discussed below.
space, while a feedback controller regulates the

2.2 Model identificationapplied voltage to the hydraulics, so as to maintain
these joint angles. The underlying model structure and potential state

In each case, the novel SDP–PIP approach is com- variables are first identified by statistical estimation
pared with a benchmark linear PIP design. Sections of discrete-time linear transfer function models. Such
2 and 3 of the paper describe the identification and models take a similar form to equation (1) but with
control methodologies. Sections 4 to 6 introduce time-invariant parameters, i.e. a

i
(i=1, 2, … , n) and

each demonstrator and present the implementation b
j

( j=1, … , m) are constant coefficients, estimated
results. Finally, the conclusions are given in section 7. using the simplified refined instrumental variable

(SRIV) algorithm [17, 18].
Two main statistical measures are utilized to help

identify the most appropriate linear model structure,
2 SYSTEM IDENTIFICATION i.e. the values of n and m and the time delay t. These

are the coefficient of determination R2
T

, based on the
The controllers used in this paper are based on the response error, and Young’s identification criterion,
simplest multiple-loop, single-input, single-output which provides a combined measure of model fit and
models. In the case of the robot arms, there is some parametric efficiency [17, 18].
interaction between the various joint hydraulics, but The second stage of the analysis is based on the
the implementation results considered below suggest estimation of stochastic time-varying parameter (TVP)
that a fully multivariable control approach [4] is not models using recursive Kalman filtering (KF) and

fixed interval smoothing (FIS) algorithms [19, 20].required in practice.
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1021PIP control applications of state-dependent parameter models

However, since the changes in the parameters are initial conditions for the optimization are based on
the SDP estimates obtained from the earlier KF/FISfunctions of the state variables, the system may
stage of the analysis. This helps to avoid the potentialexhibit severe non-linear or even chaotic behaviour.
problem of fminsearch finding a local (rather thanNormally, this cannot be approximated in a simple
global) optimal set of parameters.TVP manner because the parameters can vary at a

very rapid rate. For this reason, recourse is made
to a novel approach that again exploits recursive
KF/FIS estimation but this time within an iterative

3 CONTROL METHODOLOGY
‘backfitting’ algorithm that involves special reordering
of the time series data [11, 16].

The NMSS representation of system (1) is

x
k+1
=F
k
x
k
+g
k
u
k
+dy

d,k
2.3 Parameter estimation

y
k
=hx

k
Each a

i
{x

k
} and b

j
{x

k
} in model (1) can be considered

(2)as a ‘non-parametric’ estimate because it has a
different value at each sample and can only be where the non-minimal state vector at the kth
viewed in complete form as a graph. However, it is sample is defined as
possible to proceed to a final parametric estimation
stage where the non-parametrically defined non- x

k
= [ y
k
, y
k−n+1

u
k−1
, u
k−m+1

z
k
]T

linearities obtained initially by KF/FIS estimation are
and z

k
=z

k−1
+[ y

d,k
−y

k
] is the integral of errornow parameterized in some manner in terms of their

between the reference or command input y
d,k

andassociated dependent variable.
the sampled output y

k
. As usual for NMSS design,This can be achieved by defining an appropriate

inherent type 1 servomechanism performance isparametric model in some convenient form, such
introduced by means of this integral-of-error state [1].as a trigonometric function, a radial basis function,
The state transition matrix F

k
and input vector g

k
ator a neural network. The parameters of this para-

the kth sample, together with the time-invariantmeterized model can then be estimated directly
command d and observation vectors h, are definedfrom the input–output data using some method of
as followsdynamic model optimization, e.g. deterministic non-

linear least squares or a more statistically efficient
F
k
= [F

1,k
F
2,k

]stochastic method, such as maximum likelihood.
However, for the practical applications considered g

k
= [b
1
{x
k+1

} 0 0 , 0 1 0 , 0 −b1{xk+1}]T
below, polynomial or linear functions of the state
variables are sufficient for control system design. The d= [0 0 0 , 0 1]T
associated coefficients are straightforward to estimate

h= [1 0 0 , 0 0]using standard numerical optimization functions,
such as fminsearch in MATLABA. In this case, the

with the components

F
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Fig. 1 SDP–PIP control implemented in feedback form

A(x
k
, z−1) and B(x

k
, z−1) in Fig. 1 represent the SDP

model (1) in polynomial form, similar to a transfer
function but with state-dependent parameters
[11, 16].

Note that the elements of the (n+1)th row of F
k

are
all zero if m>1. 3.2 Controllability

A prerequisite of global controllability is that the3.1 Control algorithm
system {F

k
, g

k
, h, d} is piecewise controllable at each

The control law takes the usual SVF form sample k, with the standard NMSS controllability
conditions applying over the sampling period. Thisv

k
=−l

k
x
k

(3)
requirement follows from the fact that, if a system

where the control gain vector is globally controllable, it clearly has to be locally
controllable. Although omitted here for brevity,l

k
=[ f
0,k
, f
n−1,k

g
1,k
, g
m−1,k

−kI,k} such NMSS/PIP linear controllability conditions are
derived by Young et al. [1].is obtained at each sampling instant by either pole

assignment or optimization of an LQ cost function. The first condition states that there should be no
pole zero cancellations in the model, while theWith regard to the latter approach, earlier research has

either used a ‘frozen-parameter’ system defined as a second avoids the presence of a zero at unity, which
would cancel with the unity pole associated withsample member of the family of NMSS models

{F
k
, g

k
, d, h} or has solved the discrete-time algebraic the integral action. In the SDP–PIP case, it is straight-

forward to check these conditions at every samplingRiccatti equation at each sampling instant [12]. For
pole assignment, the control gains are similarly deter- instant to ensure local controllability. If they fail to

hold at the kth sample, model (1) is instead evaluatedmined using linear methods. One approach, for
example, involves definition of a generic S matrix [1]. for k−1. Unfortunately, this effectively leaves the

system in linear (fixed-gain) mode for a period ofAlternatively, it is straightforward to derive algebraic
solutions for specific cases, as illustrated in reference time, something that can be undesirable in practice.

For this reason, the present research first identifies[21].
Note that the expected design response in the pole any problem regions of the parameter space by off-

line simulation. This is feasible because, in practice,assignment case, such as dead-beat or a specified
degree of overshoot, is only obtained when the most the system variables will always be constrained to lie

within a certain range. For example, the boom anglerecent SDP estimates are utilized, i.e. F
k

and g
k

are
defined in terms of x

k+1
rather than x

k
in equations of the vibrolance system is limited by hardware to

0� 60°, while the input is a voltage signal scaled(2). This result mirrors that found for PIP control of
bilinear systems, a special case of the SDP model con- within ±1000 (section 6). The trajectory of the

command input is subsequently chosen to avoidsidered here [22]. In a similar manner to the present
example, reference [23] demonstrates that the bilinear local controllability problems, if any arise. Of course,

such an approach is necessarily based on a case-parameter utilized in the control law should be based
on k+1 rather than k. by-case empirical study and, as the order of the

system increases (for example with multiple stateFigure 1 illustrates the SDP–PIP controller in block
diagram form, where the control polynomials are dependencies), requires an increasing computational

burden to evaluate [24].given by F
1,k

(z−1)= f
1,k
+,+ f

n−1,k
and G

k
(z−1)=

1+g
1,k
+,+g

m−1,k
, while f

0,k
and k

I,k
are the pro- Although derivation of global controllability results

for the non-linear SDP–PIP system is the subjectportional and integral gains respectively. Finally,
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1023PIP control applications of state-dependent parameter models

of ongoing research by the authors, the pragmatic
approach described above appears satisfactory for all
three applications considered in the present paper,
as shown below.

4 VENTILATION CHAMBER

Taylor [25] describes the utility of a 2 m2 by
1 m forced-ventilation test chamber at Lancaster
University. A computer-controlled axial fan is
positioned at the outlet in order to draw air
through the chamber, while an air velocity transducer
measures the associated ventilation. The inlet airflow
is independently regulated by a second fan, utilized
to represent realistic pressure disturbances and

Fig. 2 Ventilation rate SDP model. Upper graph: a
1
{x

k
}

external wind conditions. estimates (dots) and least-squares fitted straight
line (solid trace) plotted against air velocity

4.1 SDP model for ventilation rate (m/s). Lower graph: power curve represented
by equation (5), showing the steady-state airAnalysis of experimental data from the chamber
velocity (m/s) plotted against the scaled voltageyields the following SDP model for ventilation rate, input (%)

with t=2 sample time delays [21]

y
k
=−a1{xk}y

k−1
+b2{xk}u

k−2
For comparison, a fixed-gain PIP controller is alsoa1{xk}=a1+a2yk−1 developed for an operating level of 4–5 m/s. As would
be expected, the performance of the SDP–PIP andb2{xk}=

w{u
k−2

}(1+a1{y
k−1

})

u
k−2

linear PIP designs are very similar for ventilation
rates close to this operating level.

(4)
By contrast, Fig. 3 shows the advantage of the

where a
1

and a
2

are constant coefficients, w{u
k−2

} is non-linear approach when low airflow rates are
the non-linear relationship discussed below, y

k
is the encountered (similar results emerge for high airflows).

outlet air velocity (m/s), and u
k

is the voltage applied
to the fan, expressed as a percentage of the maximum
voltage. Equation (4) is based on a sampling rate of
2 s, which yields a good compromise between a fast
response and a desirable low-order model.

At high applied voltages, the steady state airflow
rate converges asymptotically to a maximum value
determined by the characteristics of the fan, defined
by the following relationship based on a logistic
growth function

y
2
=w{u

2
}=G ymax

1+e−h(u
2
−x
0
)1/cH (5)

where y
2

is the steady-state air velocity, u
2

is a
constant applied voltage, and y

max
, h, x

0
, and c are

coefficients. Figure 2 illustrates the estimated linear
state dependency for a

1
{x

k
} and the power curve

equation (5).
Fig. 3 Ventilation chamber implementation experiment

showing the air velocity plotted against time (s):4.2 Implementation
command input (step changes), SDP–PIP (thick

For the present example, SDP–PIP design is based trace), fixed-gain PIP (thin), and simulated
design response (dashed)on pole positions of 0.7 on the complex z plane.
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Figure 3 shows that the SDP–PIP-controlled output 5 LABORATORY EXCAVATOR
approximates the desired speed of response specified
by the pole positions, determined by simulating the The laboratory robot arm is a 1/5th-scale represent-

ation of the more widely known Lancaster Universitydesign polynomial in open loop. By contrast, the
inherent model mismatch of the linear controller computerized intelligent excavator (LUCIE), which

has been developed to dig trenches on a constructionyields a significantly slower response.
In the context of agricultural buildings, the site [6, 9]. It provides a valuable test bed for the

safe development of new control strategies beforedisturbance response illustrated by Fig. 4 is of parti-
cular significance. Here, the secondary fan at the implementation on full-scale systems.

As illustrated in Fig. 5, the arm consists of fourchamber inlet is employed to simulate large pressure
disturbances. These disturbances temporarily take hydraulically actuated joints. The joint angles are

measured directly by mounting rotary potentiometersthe ventilation rate away from the operating level of
the fixed-gain controller, and hence the SDP–PIP concentrically with each joint pivot. These signals are

routed to high-linearity instrumentation amplifiersdesign reacts fastest to the problem.
within the card rack for conditioning before forward-
ing to the A/D converter. The rig is supported
by multiple I/O asynchronous real-time control
systems, which allow for multitasking processes via
modularization of code written in Turbo C++A.

Valve calibration is based on normalizing the
input voltage of each joint into input demands,
which range from −1000 for the highest possible
downward velocity to+1000 for the highest possible
upward velocity. Here, an input demand of zero
corresponds to no movement. Note that, without
such valve calibration, the arm will gradually slack
down because of the payload carried by each joint
(see reference [24] for details).

In open-loop mode, the arm is manually driven to
dig a trench in the sandpit, with the operator using
two analogue joysticks, each with two degrees of
freedom. The first joystick is used to drive the boom

Fig. 4 Ventilation chamber disturbance experiment. and slew joints, while the other is used to move the
Upper graph: air velocity with the operating dipper and bucket joints. In this manner, a skilful
level removed, plotted against time (s): com-

operator moves the four joints simultaneously tomand input (constant), SDP–PIP (thick trace),
perform the task. By contrast, the objective here is toand fixed-gain PIP (thin). Lower graph: SDP–PIP
design a computer-controlled system for automaticcontrol input (thick) and disturbance fan input

(thin), both scaled voltages (%) digging without human intervention.

Fig. 5 Schematic diagram of the laboratory excavator, showing the link lengths and coordinate
definitions for each controlled joint
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1025PIP control applications of state-dependent parameter models

5.1 Kinematics invariant parameters. Note that the arm essentially
acts as an integrator, since the normalized voltage

The kinematic equations below allow the tool tip to
has been calibrated so that there is no movement

be programmed to follow the planned trajectory, while
when u

k
=0. In fact, a

1
=−1 is fixed a priori in the

the bucket angle is separately adjusted to collect or
final model, so that only the numerator parameter

release sand. In this regard, Fig. 5 shows the laboratory
b
t

is estimated in practice for linear PIP design.
excavator and its dimensions, i.e. h

i
(joint angles) and

However, further analysis of open-loop data reveals
l

i
(link lengths), where i=1, 2, 3, and 4 for the boom,

limitations in the linear model. In particular, the
dipper, bucket, and slew respectively.

value of b
t

changes by a factor of ten or more,
Given {X, Y, Z} from the trajectory planning routine,

depending on the applied voltage used in the step
i.e. the position of the end-effector using a coordi-

experiments. In fact, SDP analysis suggests that a
nate system originating at the workbench, together

more appropriate model for the boom takes the form
with the orientation of the bucket H=h

1
+h

2
+h

3
,

of equation (4) with
the following inverse kinematic algorithm is derived
by Shaban [24] using the well-known Denavit– a1{xk}=0.28×10−6u2

k−2
−1

Hartenberg convention. Here, C
i

and S
i

denote cos(h
i
)

b2{xk}=−5.8×10−6u
k−2
+0.0194and sin(h

i
) respectively, while C

123
=cos(h

1
+h

2
+h

3
)

(12)
h4=−arctanCZXD (6)

In this regard, Fig. 6 shows the SDP model response
compared with typical open-loop data for the boom.

X9=
X− l4C4

C4
− l3C123 (7) Here, the input sequence consists of a random series

of step inputs at random levels, so as to fully excite
Y9=Y− l3S123 (8) the non-linearities in the system. For this reason,

only the SDP model captures the dynamic behaviour
of the system (R2

T
=0.9), while the SRIV estimatedh1=arctanC(l1+ l2C2)Y9− l2S2X9

(l1+ l2C2)X9− l2S2Y9 D (9)
linear model fails to converge to a useful solution
(R2

T
<0).

h2=±arccosCX9 2+Y9 2− l2
1
− l2
2

2l1 l2 D (10) Finally, Fig. 7 illustrates the parameter estimates
associated with equation (12). The unsorted time

h3=H−h1−h2 (11) histories of each SDP are shown on the left-hand
subplots, while the right-hand subplots illustrate theDuring the excavation of a trench, each cycle can
more meaningful state dependencies. For brevity,be divided into four distinct stages: positioning the
similar SDP models for the dipper, slew, and bucketbucket to penetrate the soil; the digging process in
angles are omitted here. However, full details of thesea horizontal straight line along the specified void
models and associated SDP–PIP control algorithmslength; picking up the collected sand from the void to
are reported by Shaban [24]. In this case, the controlthe discharge side; and discharging the sand. For the
algorithms are updated at each sampling instantpresent example, the speed profile typically ramps
using linear LQ methods.up at a constant acceleration before proceeding at a

constant speed and finally ramping down to zero at
5.3 Implementationa constant deceleration [24].

Typical implementation results for the boom arm
5.2 SDP models for joint angle

are illustrated in Fig. 8, where it is clear that the
SDP–PIP algorithm is more robust than the linearFor linear PIP design, open-loop step experiments

are first conducted for a range of applied voltages PIP algorithm to large steps in the command level.
In fact, the linear design yields unwelcome high-and initial conditions, all based on a sampling rate

of 0.11 s. In this case, the SRIV algorithm suggests frequency oscillations in the control input signal.
Note that the two controllers are designed to yield athat a first-order linear model with t samples time

delay, i.e. y
k
=a

1
y

k−1
+b
t
u

k−t
provides an approxi- similar speed of response to the theoretical case,

shown as the dashed trace, and hence the differencesmate representation of each joint, with t=1 for the
dipper and bucket joints and t=2 for the boom seen in Fig. 8 are entirely due to the inherent non-

linearities in the system. The time-varying SDP–PIPand slew.
Here, y

k
is the joint angle and u

k
is the scaled control gains for this experiment are compared with

the linear gains in Fig. 9.voltage in the range ±1000, while {a
1
, b
t
} are time-
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1026 C J Taylor, E M Shaban, M A Stables, and S Ako

Fig. 6 Open-loop data for the laboratory excavator boom arm. Upper graph: boom angle
(deg, dots) and SDP model response (solid) plotted against time (s). Lower graph: scaled
input voltage

Fig. 7 Parameter estimates for the laboratory excavator boom arm. Left-hand graphs: SDP
estimates plotted against time (s). Right-hand graphs: SDP estimates plotted against state
variable, showing a typical realization from one experiment (dots) and the optimized fit
from four datasets (solid)

It should be pointed out that the response time in this case, even small variations in the response
time are multiplied up when the bucket position isfor this example has been deliberately increased to

the practical limit of stable linear PIP control in order finally resolved in the sandpit.
In the latter regard, Table 1 compares the responseto emphasize these differences. By contrast, Fig. 10

illustrates control of the dipper arm using slower time of the PIP and SDP–PIP approaches, represented
by the number of seconds taken to complete threeLQ weightings. Here, the SDP–PIP response closely

follows the theoretical design response, while the complete trenches, each consisting of nine digging
cycles. Here, the improved joint angle control allowslinear controller is rather slower. Although the

differences between the two approaches are reduced for a faster SDP–PIP design, typically yielding a 10
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1027PIP control applications of state-dependent parameter models

Fig. 8 Isolated control of the laboratory excavator boom arm, using relatively ‘fast’ control
weights. Upper graph: command input (deg, sequence of step changes), theoretical
response (dashed), non-linear SDP–PIP (thick), and linear PIP (thin), plotted against
time (s). Lower graph: scaled input voltages

Fig. 9 Non-linear SDP–PIP (thick) and linear PIP (thin) control gains for the experiment shown
in Fig. 8, plotted against time (s). Upper graph: proportional gain. Lower graph: input gain

per cent reduction in the digging time. Finally, Fig. 11Table 1 Time (s) taken to complete
illustrates typical SDP–PIP implementation results forone trench
one cycle of the bucket, showing a three-dimensional

Trench SDP–PIP Linear PIP coordinate plot of the end-effector. This graph
shows the bucket being first lowered into and sub-1 339 369

2 334 370 sequently being dragged through the sand, followed
3 336 373

by extraction, displacement, and release.
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1028 C J Taylor, E M Shaban, M A Stables, and S Ako

Fig. 10 Isolated control of the laboratory excavator dipper arm. Upper graph: command input
(deg, sequence of step changes), theoretical response (dashed), non-linear SDP–PIP
(thick), and linear PIP (thin), plotted against time (s). Lower graph: scaled input voltages

Fig. 11 Resolved position of the laboratory excavator end-effector for one digging cycle in sand
using SDP–PIP control, showing the planar horizontal and vertical displacements
(X and Z), together with the slew Y, with the setpoint shown as straight lines (mm)

6 GROUND COMPACTION lowered into the ground, penetrating downwards by
regulating the boom (joint 2) and dipper (joint 3).

Here, the objective is to keep the arm tip movingWith regard to the full-scale commercial system, the
field tests utilized a KOMATSU-PC-240-LC-7 hydraulic in a vertical straight-line path. In this manner, the

surrounding soil is compacted up to a distance ofexcavator, as illustrated in Fig. 12. The vibrolance is
connected to the excavator arm and hangs freely like about 5 m from the probe; for granular soils, the

cavity produced is subsequently filled with gravel.a pendulum (joint 4). The operator first positions the
vehicle by manually adjusting the slew (joint 1) and Automatic control of joints 2 and 3 would provide a

number of benefits, such as a reduced dependenceexcavator tracks. The vibrating probe is subsequently
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1029PIP control applications of state-dependent parameter models

follows

bb{xk}=1.5×10−11u3
k−2
+1.3×10−9u2

k−2
−1.88×10−5u

k−2
+0.007 (13)

The equivalent model for the dipper has

bd{xk}=−1.078×10−5 |u
k−2
|+0.015 (14)

where |u
k−2
| represents the absolute value of the

lagged input signal. In a similar manner to the
laboratory excavator, u

k
is scaled in the range±1000.

6.2 Implementation

Solution of the discrete-time algebraic Riccatti
equation for {F

k
, g

k
, d, h}, yields the following

SDP–PIP gain vector for the boom angle [24]

lT
k
=C 22.1

22.1×bb{xk}

−1.46 D (15)

Fig. 12 Schematic diagram of the two-arm manipulator
with vibrolance The equivalent gain vector for the dipper angle is as

follows

on operator skills and a lower work load, both of
which might be expected to contribute to improve-

lT
k
=C 25.8

25.8×bd{xk}

−3.15 D (16)ments in quality and productivity, and an increase
in tool life.

In fact, verticality errors in the uncontrolled system,
Typical closed-loop results for lowering the probe in

particularly when the probe is raised from the soil,
the air are illustrated in Fig. 13. Here, it is clear that

have previously led to probe repair costs of over
the SDP–PIP approach yields more accurate control

£8000 on each occasion. In this regard, the present
than the linear PIP algorithm, particularly in the

authors have recently developed a semi-automatic
initial positioning of the arm. In general, SDP–PIP

system, whereby the operator only moves a joystick
control appears to offer smoother, more accurate

either forwards or backwards in order to raise or
movement of the excavator tool and hence potentially

lower the probe [24, 26]. For brevity, the necessary
allows for faster response times. Note that the slew

kinematic equations and rule-based algorithms for
is fixed once the probe starts to be lowered, and

determining the appropriate tool-tip trajectory are
hence Fig. 13 shows only the {X, Z} coordinates, while

omitted here. However, in both instances, a similar
Y remains constant during probe operations.

approach to that of the laboratory excavator is
On-site implementation experiments for lowering

followed (see reference [24] for details).
the probe into soil using the linear PIP controller are
very promising, as reported in reference [26]. Here,

6.1 SDP models for the vibrolance
the error between the measured tool-tip trajectory
and the horizontal setpoint is typically less thanFor this application, experimentation suggests that

a sampling rate of 0.44 s provides a good com- 10 cm for over 90 per cent of the time. To the authors’
knowledge, this level of performance is not normallypromise between a fast response and a desirable

low-order model. In this case, the linear model achieved by a skilled human operator. Furthermore,
the automatic system completes an entire cycle aty

k
=a

1
y

k−1
+b

2
u

k−2
again provides a reasonable

explanation of the data for a wide range of operating least as fast as a skilled human operator.
However, relatively large transient deviations fromconditions. In fact, this model has been successfully

used in the design of a preliminary linear PIP control the setpoint do occasionally occur using linear PIP
methods. Although these are often associated withsystem [26]. For non-linear design, the SDP model

of the boom takes the form of equation (4) with difficult obstructions in the soil, they provide the
motivation for the present research using SDP–PIPtime-invariant a

1
{x

k
}=a

1
=−1 and b

2
{x

k
} defined as
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1030 C J Taylor, E M Shaban, M A Stables, and S Ako

Fig. 13 Implementation experiment for the vibrolance, showing the resolved position of the
end-effector, represented by the horizontal and vertical displacements (mm). Non-linear
SDP–PIP control (crosses) is compared with linear PIP (circles) and the horizontal
setpoint (solid)

methods. In this regard, Fig. 13 presages potential to the disturbance response. In the case of the
laboratory excavator, the new approach yieldsimprovements, and it is clear that the next step of

the research is to evaluate the on-site performance improved control of the joint angles and hence
a reduced time to complete a trench. Finally, theof the new approach. Although the commercial system

used above is presently unavailable for research, the vibrolance experiments similarly suggest improved
performance and robustness in comparison with theauthors hope that the present paper will stimulate

further interest in this area. linear PIP methods previously developed.
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h non-minimal state-space observation y
d,k

command input at the kth sample
vector y

k
control output at the kth sample

k
I,k

integral gain at the kth sample y
2

steady-state output
l

i
laboratory excavator link lengths z−i backward shift operator, z−iy

k
=y

k−i(i=1, 2, 3, 4) z
k

integral-of-error state variable at the
l

k
state variable feedback gain vector at kth sample
the kth sample

p
k

vector of state-dependent parameters a
1

level coefficient for state-dependent
R2

T
simulation fit (coefficient of parameter
determination) a

2
slope coefficient for state-dependent

S
i

sin(h
i
) parameter

T transpose operator h logistic growth function coefficient
u

k
control input at the kth sample h

i
laboratory excavator joint angle (i=

u
2

steady-state control input 1, 2, 3, 4)
U

k
vector of exogenous variables at the H laboratory excavator bucket
kth sample orientation

w
k

vector of regression variables at the t samples time delay
kth sample w{·} flexible logistic growth equation

x
0

logistic growth function coefficient x
k

state-dependent parameter system
x

k
non-minimal state vector at the kth variables at the kth sample
sample
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