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Abstract

Extreme value methods are used in a wide range of applications, for example

they may be used for modelling wave heights and river levels in hydrology, wind

speeds in structural engineering and share price return levels in economics. Many

statistical models and methods of inference exist for the extreme values of univari-

ate sequences of independent and identically distributed (IID) random variables.

However, in most applications, the data sets are not IID and are often multivari-

ate, and yet methods for modelling the extremes of sequences which fail to fulfil

one, or both, of the IID assumptions and (or) are multivariate remain the subject

of ongoing research. The work contained in this thesis is a contribution to this

area.

Most of our work has been motivated by a multivariate air pollution data set,

which shows complex seasonal trends and covariate relationships. We begin with a

model for the extremes of a univariate sequence which displays short-range depen-

dence within the sample extremes. Next we propose a method for modelling the

extremes of a non-stationary univariate process; we then extend this methodol-

ogy to model a multivariate process with non-stationary marginal and dependence

structures. Finally we consider a new estimator for the dependence structure of a

sequence of multivariate extremes which are pairwise dependent.
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Chapter 1

Introduction

This chapter serves to introduce both the basic concepts of extreme value theory

and statistical inference on extremes and also to discuss some of the particular

problems associated with modelling extreme air pollution events. It may also be

seen as a literature review covering some of the main advances in methods for the

analysis of extremes over the last couple of decades.

1.1 Thesis outline

Besides this introduction, the thesis has four chapters. Of these, Chapters 2, 3 and 5

have been submitted individually for publication. Consequently references and ap-

pendices are given at the end of each chapter, rather than at the end of the thesis.

Further, because each chapter is self-contained, the notation is not necessarily con-

sistent between them; this should not however pose a problem since the necessary

notation is defined in the introduction to each chapter. Chapter 4 is an extension

of Chapter 3 and contains ongoing research.

The motivation for the work in Chapters 2, 3 and 4 comes from an attempt to

model the extreme values of a series of surface level air pollution data, consisting

of maximum daily concentrations of nitric oxide (NO), nitrogen dioxide (NO2) and

ozone (O3). These data are discussed in greater detail in Section 1.4, along with a

brief review of other published attempts to model extreme air pollution events. In

1
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the course of analysing the data several results arose which caused us to question

existing modelling methods and to search for possible alternative approaches.

The question of how to analyse the local extremes of a sequence of dependent

events is tackled in Chapter 2. We propose an approach that accounts for the

fact that, in practice, only sub-asymptotic, rather than asymptotic, levels of a

process are observed. This is in contrast to existing methods which are motivated

by an underlying theory which relies on observing asymptotic levels. The method

is illustrated using the ozone data.

In Chapter 3 we develop new methodology for modelling the extremes of a

non-stationary process and compare this to existing methodology. Our proposal

is to pre-process the data using covariates, thus removing non-stationarity from

the whole data-set, and then use existing methodology to model the extremes

of the pre-processed data. Certainly for the data sets we have looked at, this

method has computational advantages. We suggest that it also has a theoretical

advantage when compared to the existing method and that it also simplifies model

interpretation. Ultimately we use our method to estimate extreme levels of ozone

using NO, NO2 and a range of meteorological variables as covariates.

We attempt to extend this work to analyse multivariate extremes in Chapter 4.

We consider a hierarchical approach for estimating extreme levels of ozone given

values of NO, NO2 and the meteorological covariates, by first modelling NO condi-

tional on the covariates, then NO2 conditional on both the covariates and NO and

finally ozone conditional on the covariates, NO and NO2. This has the advantages

that we can account for uncertainty in the NO and NO2 measurements, which we

cannot if we simply treat them as covariates, and that we can extrapolate into the

tails of their distributions.

Finally, in Chapter 5 we present a new non-parametric estimator to measure the

degree of association between dependent extreme random variables. This extends

the work of Heffernan and Tawn (2004), see Section 1.3, in the special case of

asymptotic dependence. We show that, in this special case, their model is at least
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comparable with existing competitors, but has the advantage of extending to cover

a much broader range of dependence structures.

1.2 Extreme value theory

The aim of extreme value theory is to provide probabilistic results which allow

the characterisation of the tail behaviour of any probability distribution without

requiring knowledge of the form of this underlying distribution. This allows us

to develop methods for statistical inference on extreme values which need not use

information from data observed in the body of the distribution. In this section we

state some of the main results from extreme value theory which will be useful in

later chapters. We omit proofs, since these are well documented elsewhere. For fur-

ther details on the univariate case see Leadbetter et al. (1983) and Resnick (1987);

references for the multivariate case are given in Section 1.2.2.

1.2.1 Univariate case

Let us suppose that we have an independent and identically distributed (IID)

sequence of random variables {Yi} with distribution function F . We say that F

is the marginal distribution of the sequence. Let Mr,n denote the rth largest of

the first n of these, so that, for example, the block maxima is given by M1,n =

max{Y1, . . . , Yn}. We begin with a result concerning the asymptotic distribution

of the block maxima which is formally stated as follows.

Theorem 1.2.1 If Y1, . . . , Yn are IID random variables with distribution function

F and {an > 0}, {bn} are sequences of normalising constants such that, as n→ ∞,

Pr

(

M1,n − bn
an

≤ z

)

→ G(z)

where G is a non-degenerate distribution function, then G takes the form of the
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generalised extreme value distribution (GEVD) which is defined by

G(z) = exp

{

−
[

1 + ξ

(

z − µ

σ

)]−1/ξ

+

}

, −∞ < z <∞, σ > 0 (1.2.1)

where a+ = max{a, 0}.

The GEVD parameters (µ, σ, ξ) are referred to as the location, scale and shape

parameters respectively. As ξ → 0 we take limits to obtain the Gumbel distribution

which has the form

G(z) = exp {− exp(−(z − µ)/σ)} , −∞ < z <∞.

We say that F is in the domain of attraction of G and the sign of ξ is determined

by the rate of decay of F . If ξ < 0, the (negative) Weibull case, then F has a

finite upper end point i.e. F is light tailed. If ξ > 0, the Fréchet case, then F

is heavy tailed with infinite upper end point. In the limit as ξ → 0, the Gumbel

case, the tail of F decays exponentially. Examples of distributions lying in each

of the domains of attraction are; for the (negative) Weibull case, the uniform and

beta distributions, for the Fréchet case, the inverse and log gamma distributions

and for the Gumbel case, the normal, gamma, logistic, log normal and exponential

distributions.

The second important result in this section refers to all the extremes of the

sequence {Yi} rather than just the block maxima. It concerns the asymptotic

distribution of the point process Pn, which is defined by

Pn =

{(

i

n + 1
,
Yi − bn
an

)

: i = 1, . . . , n

}

(1.2.2)

and is stated as follows.

Theorem 1.2.2 If Y1, . . . , Yn are IID random variables with distribution F and

{an > 0}, {bn} are sequences of normalising constants such that Theorem 1.2.1

holds then, as n → ∞, the point process Pn → P , where P is a non-homogeneous



CHAPTER 1. INTRODUCTION 5

Poisson process on A = [0, 1] × [v,∞) with intensity measure

λ(t, x) = σ−1

[

1 + ξ

(

x− µ

σ

)]−1/ξ−1

+

. (1.2.3)

Here v > inf{z : G(z) > 0}.

Note that the parameters in the limiting non-homogeneous Poisson process are

exactly the GEVD parameters and so are independent of the level v.

The final result given in this section for univariate IID extremes is a conse-

quence of both the block maxima and Poisson process results; we defer a discus-

sion of the link between the three results until Chapter 2 where it is stated in

the slightly more general case of stationarity. The result concerns the exceedances

made by the normalised sequence {(Yi− bn)/an} of some high level u and is stated

formally as follows.

Theorem 1.2.3 If Y1, . . . , Yn are IID random variables and {an > 0}, {bn} are

sequences of normalising constants such that Theorems 1.2.1 and 1.2.2 hold, then,

as n→ ∞,

Pr

(

Yi − bn
an

> u+ v

∣

∣

∣

∣

Yi − bn
an

> u

)

→
[

1 +
ξv

ψu

]−1/ξ

+

, v > 0 and ψu > 0.

(1.2.4)

This limiting distribution is known as the generalised Pareto distribution (GPD).

The GPD shape parameter ξ is the same as the GEVD shape parameter, and as

such is invariant to selection of the threshold u. However the GPD scale parameter

ψu does depend on the threshold and is related to this and the GEVD parameters

by the expression

ψu = σ + ξ(u− µ).

Note that evaluation of the normalising constants {an > 0} and {bn} used in

Theorems 1.2.1 - 1.2.3 requires knowledge of the exact distributional form of F .
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For example, if {Yi} has unit exponential margins, so that F (y) = 1 − exp{−y}

for y > 0, then we have an = 1 and bn = log n, since, as n→ ∞,

Pr

(

M1,n − bn
an

≤ z

)

= F n(anz + bn)

= (1 − exp {−(anz + bn)})n

∼ 1 − n exp {−(anz + bn)} +
n(n− 1)

2
exp {−2 (anz + bn)} − . . .

∼ exp {− exp(−z)} taking an = 1 and bn = logn.

However, since the whole point of extreme value theory is to develop a method

of inference for the tails that is independent of the underlying distribution, for

purposes of inference, the normalising constants are usually absorbed into the

GEVD location and scale parameters.

Now suppose that the sequence of random variables {Yi} are not IID but

are stationary. We are still concerned with making inference on the tails of the

marginal distribution F of the sequence rather than the joint distribution. De-

pending on the nature of the dependence in the sequence, it is possible that the

extremes of the sequence will occur in clusters, so that seeing one extreme event

makes it more likely that the following event will also be extreme. If such clus-

tering occurs we say that the sequence is asymptotically dependent ; the formal

definition of this states that two random variables X1 and X2 are asymptotically

dependent if, as x → ∞,

Pr(X2 > x|X1 > x) → τ, where τ > 0.

If τ = 0 we say that X1 and X2 are asymptotically independent. This is a concept

that will also be useful when we discuss multivariate extremes. If a sequence is

asymptotically independent it has clusters of size 1 in the limit.

We now relate the behaviour of the extremes of the stationary sequence {Yi}

to that of the associated IID sequence {Ỹi}, which has the same margins as {Yi},

but is independent. To do this we must first impose a mixing condition on the
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sequence {Yi} to restrict long-term dependence. There are many possible such

conditions, one of which is the so-called D(un) condition. This states that the

events that two block maxima exceed some high level un are independent, so long

as the blocks are sufficiently far apart. The formal result for the distribution of

M1,n = max{Y1, . . . , Yn} is then given as follows.

Theorem 1.2.4 Let Y1, . . . , Yn be a stationary sequence of random variables with

marginal distribution F and let Ỹ1, . . . , Ỹn be the associated IID sequence. Suppose

that there exist sequences of normalising constants {an > 0}, {bn} such that The-

orem 1.2.1 is satisfied for {Ỹi} and the condition D(un) holds for un = anz + bn

where z is such that the GEV distribution function in Theorem 1.2.1 is strictly

greater than zero. Then, as n→ ∞,

Pr

(

M1,n − bn
an

≤ z

)

→ Gθ(z) (1.2.5)

where 0 ≤ θ ≤ 1 and G is the GEV distribution function defined in Theorem 1.2.1.

The constant θ is referred to as the extremal index. If the sequence is asymptoti-

cally independent then θ = 1 and if θ < 1 it is asymptotically dependent; the level

of asymptotic dependence strengthens as θ → 0.

Similarly we can obtain analogues to the point process and threshold ex-

ceedance results given in Theorems 1.2.2 and 1.2.3. Rather than reproduce these

here we refer the reader to Chapter 2 where these results are stated as necessary

for our purposes.

1.2.2 Multivariate case

The theory for the multivariate case mirrors that of the univariate case in that

the first result described is an analogue of the block maxima result given in The-

orem 1.2.1, and the second an analogue of the point process approach described

in Theorem 1.2.2. Note that it is standard practise in much of the extremes lit-

erature to assume fixed marginal distributions, thus separating out marginal and
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dependence effects; we follow this procedure. Further, we consider the IID case

only.

For the first result, define a sequence of IID random variables {Yi} where each

random variable is a p-dimensional vector Yi = (Yi1, . . . , Yip) with joint distribu-

tion function F . We assume that the marginal distributions are all unit Fréchet,

i.e. have distribution function Fj(y) = exp{−1/y} for y > 0 and j = 1, . . . , p.

We define the componentwise maxima to be the vector Mn with jth component

Mn,j = max1≤i≤n{Yij} for j = 1, . . . , p. Then we have the following result for the

asymptotic distribution of the normalised componentwise maxima

Theorem 1.2.5 If Y1, . . . ,Yn is a sequence of IID p-dimensional random vari-

ables with joint distribution F , unit Fréchet margins and componentwise maxima

Mn defined above then, as n→ ∞,

Pr

(

Mn

n
≤ z

)

→ G(z)

where G is a non-degenerate distribution with distribution function

G(z) = exp

{

−
∫

Sp

max
1≤j≤p

(

wj
zj
p dH(w)

)

}

(1.2.6)

where Sp =
{

w :
∑p

j=1wj = 1
}

is the unit simplex and H(·) is a distribution

function referred to as the spectral measure on Sp satisfying

∫

Sp

wj dH(w) =
1

p
, j = 1, . . . , p. (1.2.7)

The normalising constant n−1 follows from the fact that the margins are unit

Fréchet, since in this case

Pr(Mn/n ≤ z) = F n(nz) = exp{−n/(nz)} = exp{−1/z}

which is a GEVD with parameters (1,1,1); thus the unit Fréchet distribution is
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in its own domain of attraction. The distribution G defined in equation (1.2.6) is

known as the multivariate extreme value distribution (MVEVD).

Now we consider the point process approach. Consider the point process

P ∗
n =

{

n−1Yi : i = 1, . . . , n
}

.

Now define the pseudo-radial and -angular co-ordinates

R =

p
∑

j=1

Yj, Wj = Yj/R, j = 1, . . . , p. (1.2.8)

Then the asymptotic behaviour of Pn is characterised as follows.

Theorem 1.2.6 If Y1, . . . ,Yn is a sequence of IID p-dimensional random vari-

ables with joint distribution F , unit Fréchet margins and which satisfies Theo-

rem 1.2.5 then, as n → ∞, the point process P ∗
n → P ∗, where P ∗ is a non-

homogeneous Poisson process on R
p
+ \ {0}. The intensity measure for the limiting

Poisson process P ∗ is given in terms of the pseudo-radial and -angular co-ordinates

as

λ(dr × dw) =
dr

r2
p dH(w). (1.2.9)

Both this and the componentwise maxima result are discussed in greater detail in

Chapter 5.

Both Theorems 1.2.5 and 1.2.6 suggest that we can characterise the distribu-

tion of asymptotically dependent multivariate extremes using the spectral measure

H(·). There is an alternative and equivalent characterisation of this, known as the

Pickands dependence function, which, for t ∈ Sp, is defined as

A(t) =

∫

Sp

max{wjtj}p dH(w).

In order for the moment constraint (1.2.7) on H to be satisfied, the Pickands
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dependence function satisfies the constraint that max1≤j≤p{tj} ≤ A(t) ≤ 1.

If all pairs of the vector t are asymptotically independent random variables,

the measure H degenerates to point mass on the end points of its support. In such

cases neither H nor A is of any use in characterising the degree of extremal asso-

ciation. What to do in this case is still very much an active area of research, with

recent work on conditional modelling by Heffernan and Tawn (2004) suggesting a

plausible way forward, further details can be found on this in Section 1.3 below

and in Chapter 5.

1.3 Statistical inference

The results in Section 1.2 have led to a variety of methods for making statistical

inference on extremes. Beirlant et al. (2004) and Coles (2001) both provide de-

tails beyond the outline given here. First, some general points on inference for

extremes; generally we focus on estimation of events even further into the tails of

a distribution than we have already observed; for example from a 50-year series of

data we might wish to estimate the level exceeded only once in the next 100 years.

However, inference on extremes also suffers from a scarcity of data; by definition

extremes are rare events, a fact which we must be aware of if we are to attempt

extrapolation.

In this thesis, we focus on parametric inference, and in particular we shall

mostly use the maximum likelihood approach. Following standard notation we use

θ̂ to denote the maximum likelihood estimate (MLE) of the parameter θ. However

we note that, since the rise in popularity of Markov Chain Monte Carlo (MCMC)

methodology as a tool for sampling from (posterior) distributions, increasing amounts

of research has been conducted into Bayesian inference on extremes, for example

Coles and Powell (1996) and Coles and Tawn (1996). More recent publications have

expanded the use of hierarchical modelling to model spatial extremes, see Cooley et

al. (2006) and Craigmile et al. (2005). We do use some Bayesian methodology in

Chapter 4. Aside from this, other recent research has looked away from para-
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metric inference to non-parametric (Hall and Tajvidi, 2000) and semi-parametric

inference (Davison and Ramesh, 2000, and Pauli and Coles, 2001) for extremes.

1.3.1 Univariate case

There are three main approaches to modelling the extremes of a data set, if the

data are assumed to be IID. In the first instance, if only block maxima (for example

annual maxima) are available, then following Theorem 1.2.1, it is usual to fit the

GEVD defined in equation (1.2.1). If the entire data set is available this block

maxima approach is seen to be wasteful of the data, and since extremes are rare

we wish to include as much data as we can in the analysis. Instead one could either

fit a point process model, following Theorem 1.2.2, or take a threshold exceedances

approach, following Theorem 1.2.3. It is the latter that we focus on here, as it

provides the foundation for both Chapters 2 and 3.

The threshold exceedances approach was popularised by Davison and Smith (1990).

Suppose we have observed data y = (y1, . . . , yn). A threshold u is first selected;

various diagnostics, such as mean residual life plots, are available for doing this

in the IID case, see Coles (2001) for details. Threshold selection amounts to a

bias-variance tradeoff; if u is chosen too low, the parameter estimates are biased

since the asymptotic result of Theorem 1.2.3 fails to hold, but if u is chosen too

high, there are too little data and so there is huge uncertainty in the inference.

The rate and size of the exceedances Eu = {yi : yi > u} of this threshold are

then modelled, using the GPD as a model for the sizes. The rate parameter φu,

interpreted as the probability of an arbitrary observation exceeding the threshold,

i.e. φu = Pr[Y > u], has MLE given by the observed proportion of exceedances,

φ̂u =
|Eu|
n
,

whereas the MLE’s of the GPD parameters have no closed form and numerical
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optimisation is required to maximise the likelihood

L(σu, ξ;y) =
∏

j:yj∈Eu

σ−1
u

[

1 + ξ

(

yj − u

σu

)]−1/ξ−1

+

.

Inference in the IID case is straightforward; what is of more interest is how to

carry out inference when either, or both, of the IID assumptions cannot be satisfied.

A brief review is given here and further details are given in Chapter 2, in the case

of dependent data, and in Chapter 3 in the case of non-identically distributed

data. The threshold exceedances method can be extended to incorporate failures

in either assumption.

Under the assumption that the data are stationary, standard practise is to

model only the local maxima of the threshold exceedances. The initial step is to

select the threshold u; we try to select the lowest possible threshold above which

asymptotic marginal and dependence properties of the data appear stable. To

assess the stability of the asymptotic marginal properties, we consider mean resid-

ual life plots or plots of the GPD parameters across a range of thresholds, for

details see Coles (2001). To assess the stability of asymptotic dependence prop-

erties, we estimate the extremal index θ introduced in Theorem 1.2.4 for a range

of thresholds and search for the lowest threshold above which the estimates for θ

are constant, under the assumption that at this level the estimated extremal index

has attained its asymptotic value. The modelling procedure then has two further

steps; first decluster the exceedances of the threshold u to extract the independent

local (cluster) maxima and then estimate the rate and GPD parameters for these

cluster maxima using the methods described above for IID data.

There are many declustering schemes; for an overview see Chapter 10 in Beir-

lant et al. (2004) and recent proposals can be found in Ferro and Segers (2003)

and Laurini and Tawn (2003). The simplest declustering schemes are the runs and

blocks methods. In the former clusters are defined as being separated by m − 1

consecutive non-exceedances for some pre-determined run length m; Smith (1989)

uses runs declustering to analyse extreme levels of ground-level ozone. In the
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blocks method, the data are split into consecutive blocks of pre-determined length

r and any exceedances in the same block are said to belong to the same cluster.

Under the assumption that the data are non-stationary most work follows Davi-

son and Smith (1990), who propose combining the approach for stationary data

with regression modelling so that functions of the parameters of the extremes

model are modelled as linear functions of covariates x. This approach essentially

comes down to maximising two likelihoods. The first, to estimate the rate param-

eter φu(x), takes the straightforward form of the likelihood for Bernoulli random

variables. Let Cu denote the set of cluster maxima associated with the threshold

u, then the second, to estimate the GPD parameters, is as follows,

L(σu, ξ;y) =
∏

i:yi∈Cu

σu(xi)
−1

[

1 + ξ(xi)

(

yi − u

σu(xi)

)]−1/ξ(xi)−1

+

where the parameter coefficients φu, σu, ξ are such that

log
φu(x)

1 − φu(x)
= φ′

ux, log σu(x) = σ′
ux, ξ(x) = ξ′x.

The logit and log link functions are required to ensure that the rate and scale

parameters lie in the correct parameters spaces; that is 0 < φu(x) < 1 and σu(x) >

0. Recent work by Chavez-Demoulin and Davison (2005) looks at using generalised

additive models rather than generalised linear ones.

1.3.2 Multivariate case

How best to make statistical inference on multivariate extremes remains a subject

very much open to debate, in the IID case as much as when one or both of these

assumptions are violated. Initial work focused on inference for componentwise

maxima; following the asymptotic result from Theorem 1.2.5, one tries to fit the

MVEVD defined in equation (1.2.6) to an observed sequence of componentwise

maxima. However, this requires us to estimate the spectral measure H . Many

suggestions have been made about how to do this, both non-parametric (see the
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review by Abdous and Ghoudi, 2005) and parametric (for example, Coles and

Tawn, 1991); we concentrate on the latter here. Since no finite parametric family

exists for H , we must specify some flexible model for H . The simplest parametric

model is the logistic, which is symmetric, and is defined in the bivariate case as

h(w) =
1 − α

α
[w(1 − w)]1/α−2 [(1 − w)1/α + w1/α

]α−2
, 0 ≤ w ≤ 1, 0 < α ≤ 1,

where h(w) = dH/dw is the density associated with H(w). Asymptotic indepen-

dence occurs when α = 1 and asymptotic dependence increases as α → 0. Further

examples of the spectral measure are given in Chapter 5.

However, as in the univariate case, use of the componentwise maxima only is

wasteful if a full data set is available. Further, the analysis of componentwise

maxima does not always make practical sense, since there is no reason that the

maxima of the different components should occur in the same observation. Coles

and Tawn (1994) suggest a method based on the limiting Poisson process charac-

terisation for multivariate extremes given in Theorem 1.2.6. Given observed data

(y1, . . . ,yn), where yi is a p-dimensional vector, first calculate the pseudo-radial

and -angular co-ordinates as defined in equation (1.2.8). Define the extreme points

by all those with large radial co-ordinates i.e. for large r our extremes are the set

Er = {yi : ri > r, i = 1, . . . , n} and then estimate the spectral measure H using

the angular co-ordinates associated with the observations in Er.

Both of the above methods of inference work only for asymptotically depen-

dent data, since, as discussed, the spectral measure degenerates when the data

are asymptotically independent. This raises two questions; first, can we estab-

lish whether the data are asymptotically dependent before going to the effort of

carrying out inference and, if they are not, how can we make inference in the

asymptotically independent case?

The first of these questions, in the case of bivariate random variables, was

tackled by Ledford and Tawn (1997) who propose the following model to charac-

terise the level of asymptotic (in)dependence. Suppose that the random variables
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(Y1, Y2) have unit Fréchet margins, then under the weak assumption that their

joint survivor function is regularly varying, the model states that

Pr(Y1 > y, Y2 > y) ∼ L(y)y−1/η, η ∈ (0, 1]. (1.3.1)

Here the constant η is referred to as the coefficient of tail dependence and has the

interpretation that if (Y1, Y2) are asymptotically dependent then η = 1, otherwise

if (Y1, Y2) are asymptotically independent then, if they are positively associated

η > 0.5, if they are near independent η = 0.5 and if they are negatively associated

η < 0.5. Estimation of η is straightforward. Let T = min{Y1, Y2} then Pr(Y1 >

y, Y2 > y) = Pr(T > y). Now for large u, using the model in equation (1.3.1),

Pr(T > u+ y|T > u) ∼ L(u+ y)(u+ y)−1/η

L(u)u−1/η

∼
(

1 +
y

u

)−1/η

where the second approximation holds by the definition of the slowly varying

function L(·). Thus η is estimated as the shape parameter in the GPD model

for the threshold exceedances of the series Ti = {minYi}. This gives a gauge of

whether the data are asymptotically (in)dependent, and further the strength of

any asymptotic independence; we shall use this in Chapter 2.

As mentioned at the end of Section 1.2, Heffernan and Tawn (2004) propose

a method for modelling any multivariate extremes, whether asymptotically de-

pendent or independent. They also first assume that the margins are fixed, in

this case to a Gumbel distribution. Their idea is then to systematically condition

on each component being extreme and model the distribution of the remaining

components, i.e. for i = 1, . . . , p, they model

Pr(Z|i ≤ z|i|Yi = yi) = G|i(z|i), yi > uYi
(1.3.2)

where, if Y−i denotes the vector Y with the ith component removed, we define
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the residuals Z|i as

Z|i =
Y−i − a|i(yi)

b|i(yi)
(1.3.3)

and a|i(·) and b|i(·) are normalising functions defined by

a|i(y) = a|iy + I[a|i = 0, b|i < 0]{c|i − d|i log(y)}

b|i(y) = yb|i

where the constants satisfy 0 ≤ aj|i ≤ 1, −∞ < bj|i < 1, −∞ < cj|i < ∞ and

0 ≤ dj|i ≤ 1.

For estimation purposes, Heffernan and Tawn (2004) suggest treating the dis-

tribution G|i(·) as having mutually independent and Gaussian components. Esti-

mation then becomes a regression problem. Suppose that the residuals Z|i have

two finite moments, µ|i and σ|i, then the mean µ|i(yi) and standard deviation

σ|i(yi) of Y−i|Yi = yi can be found using equation (1.3.3). The parameters are

estimated by maximising the following objective function, for i = 1, . . . , p,

Q|i(a|i,b|i, c|i,d|i,µ|i,σ|i) = −
∑

j 6=i

nuYi
∑

k=1

[

log{σj|i(yi|i,k)} +
1

2

{

yj|i,k − µj|i(yi|i,k)

σj|i(yi|i,k)

}2
]

where nuYi
is the number of exceedances of the threshold ui by the ith component

and yj|i,k denotes the kth observation associated with an exceedance of the thresh-

old uYi
by the ith component yi of the jth component of the vector y. Making the

further assumption of independence between the conditional distributions allows

simultaneous estimation of all the conditionals.

This approach has the advantage that it can be used regardless of the asymp-

totic dependence structure of the components. Further it does not become difficult

to fit in higher dimensions as many multivariate extremes methods do. We ex-

plore further the performance of this approach under the assumption of asymptotic

dependence in Chapter 5.
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1.4 Air pollution data

The statistical analysis of extreme values is used in numerous applications; exam-

ples include hydrology, meteorology, engineering, finance, economics, reinsurance

and telecommunications. The environmental sciences offer a rich variety of ex-

treme value problems; for example predicting unusually strong winds, high waves

and excessive river levels. In this thesis we focus on the estimation of extremely

high concentrations of certain air pollutants.

Chapters 2, 3 and 4 involve the analysis of the extreme values of a sequence

of surface-level ozone data. There are two data sets involved, both were observed

in urban areas in the UK; the data in Chapter 2 comes from Swansea and that in

Chapter 3 from Reading. The data were produced as part of the UK governments

Air Quality Monitoring Network and can be freely downloaded from the internet,

see Chapter 2. We also have NO (nitric oxide) and NO2 (nitrogen dioxide) data

available at the two sites; collectively these two chemicals are referred to as NOX.

All the data are in the form of daily maxima of hourly readings. Plots of the data

sets are shown in the relevant chapters.

The analysis of extreme air pollution is important for several reasons; primarily

because large concentrations of a contaminant generally have worse effects than

smaller concentrations. In the case of ozone these detrimental effects include caus-

ing damage to human health (Huang et al., 2005) and loss of crops and forests.

Since increased concentrations lead to dire consequences, statistical analysis can

also be used to look for trends and patterns in concentration levels; for example,

are concentration levels increasing and are they particularly high under certain

meteorological conditions, or in the presence of high concentrations of other con-

taminants?

Much work has looked at the statistical analysis of surface-level ozone. An

excellent review paper is by Thompson et al. (2001). In the extremes literature,

Küchenhoff and Thamerus (1996) use GEVD and GPD models to model extreme

ozone and NO2 levels using IID models; they also consider using a logistic re-
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gression model for the rate of threshold exceedances, whereas Smith (1989) uses

a point process model to look for trends. Coles and Pan (1996) use the thresh-

old exceedances method to analyse extreme values of NO2, incorporating as much

structural information through covariates as possible. Heffernan and Tawn (2004)

apply their conditional multivariate model to a data set of five pollutants, includ-

ing ozone and NOX. We offer what we believe to be an improvement over these

methods in Chapters 3 and 4 by using our proposed methodology to better take

into account the structure of the ozone data and its relationships with both NOX

and various meteorological variables.
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Chapter 2

The distribution for the cluster

maxima of exceedances of

sub-asymptotic thresholds.

2.1 Introduction

This paper considers the analysis of the largest daily maxima values of surface-level

ozone (O3) that exceed a high threshold. Due to short-range temporal dependence

between the daily maxima we are actually interested in modelling the local max-

ima of these threshold exceedances, since these can be considered as a sample

of independent random variables with identical distributions. The data are from

an urban station (Swansea, South Wales, UK), part of an air quality automatic

monitoring network, run on behalf of the UK Government’s Department for En-

vironment, Food and Rural Affairs (DEFRA). The data can be downloaded from

the website

http://www.airquality.co.uk/archive/data_and_statistics.php

The motivation for modelling large values of air pollution data sets is that these

levels cause most concern when considering the various impacts of anthropogenic

air pollution on human and animal health, materials, crops and forests and bio-

21
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logical diversity. Further, air pollution control standards are mostly specified in

terms of exceedances of high thresholds (Colls, 2002).
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Figure 2.1: Daily maxima data of O3 shown on (a) the original non-stationary
scale and (b) after local, nonparametric transformation to a stationary scale. The
marginal distribution for the transformed data is standard exponential.

The study of extreme values in air pollution time series raises interesting mod-

elling issues, since both the original series and the extremes show short-range

temporal dependence and non-stationarity. This paper focuses on dealing with

the extremal short-range dependence, which results in clustering of the extreme

values. However, we must first deal with the non-stationarity in the extremes.

Several ways to do this have been considered, for example by Smith (1989),

Küchenhoff and Thamerus (1996), Hall and Tajvidi (2000), Ramesh and Davi-

son (2002) and in Chapter 3 of this thesis. We remove the nonstationarity, using a

local nonparametric transformation (see Section 2.6), the result of which is shown

in Figure 2.1 for the ozone data which is presented on the original scale and again

following transformation to a stationary series with standard exponential margins.

The reason for this marginal choice is explained later in this section.

We assume that {Xi} is a stationary series with marginal distribution function

F , having upper endpoint x+ (so that F (x) → 1 as x → x+). Under station-

arity, a standard approach to modelling the extremes of this series is the peaks

over threshold (POT) method (Davison and Smith, 1990), an approach previ-

ously used on air pollution data by, for example, Smith (1989) and Küchenhoff
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and Thamerus (1996). This method defines the extremes to be all exceedances

of a high threshold. The method then has three steps. First an appropriate high

threshold u is selected. The threshold exceedances are then declustered to identify

independent clusters of exceedances. Finally, a generalised Pareto (GP) distribu-

tion is fitted to the cluster maxima data, where if Y is a GP(σu, ξ) random variable

then, for v > 0, it has the conditional survivor function

W̄u(v) = Pr [Y > u+ v|Y > u] =

[

1 +
ξv

σu

]−1/ξ

+

(2.1.1)

where z+ = max(0, z), σu (σu > 0) is a scale parameter and ξ is a shape parameter.

An alternative, but more complicated modelling approach, is to model both the

distribution of all the exceedances and the dependence structure of the clusters;

however we do not discuss this approach further here.

The justification for the GP distribution to model cluster maxima relies on

asymptotic approximations concerning both the marginal tail behaviour and the

dependence structure of exceedances of u by the series {Xi} as u → x+. For inde-

pendent and identically distributed (IID) random variables the cluster maxima are

simply arbitrary exceedances of u so the POT method is strongly supported by the

asymptotic theory of Pickands (1971, 1975) concerning the marginal tail behaviour.

Here we assess only the validity of the POT method asymptotic approximations

for the dependence structure and so remove issues about the marginal convergence

by selecting the marginal distribution of {Xi} so that the arbitrary exceedances

of any threshold follow a GP distribution exactly. Specifically, we take {Xi} to

have a GP(σu1 , ξ) distribution above threshold u1, so from the GP distribution

threshold stability property, the arbitrary exceedances of u2 > u1 have GP(σu2 , ξ)

distribution, where σu2 = σu1 + ξ(u2 − u1), see Davison and Smith (1990). This

strategy explains our choice to transform the data example to have a standard ex-

ponential marginal distribution, since this is equivalent to a GP(1, ξ) distribution,

with ξ → 0.
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The second step in the POT method is to decluster the threshold exceedances

into independent clusters. One way to define these clusters is the runs method

in which a run length m is defined so that any exceedances of the threshold u

separated by at least m− 1 consecutive non-exceedances are considered indepen-

dent (Smith and Weissman, 1994). Thus clusters are groups of extreme values

in which any two consecutive cluster members are separated by, at most, m − 2

non-exceedances and separate clusters are independent. The extremal index, θ,

(Leadbetter et al., 1983) is an asymptotic parameter measuring the strength of

clustering of extreme values in the series. It is interpreted as the reciprocal of

the mean limiting cluster size, as u → x+ and m → ∞, hence 0 ≤ θ ≤ 1, where

θ = 1 if the extremes are independent. From the definitions of an extreme value

and a cluster we estimate the extremal index as a function of both threshold u

and run length m, thus θ̂ = θ̂(u,m). If Mk,j = maxk≤i≤j{Xi} then, following

O’Brien (1987), we define

θ(u,m) = Pr(M2,m < u|X1 > u), (2.1.2)

which we call the threshold-based (or sub-asymptotic) extremal index (Bortot and

Tawn, 1998 and Ledford and Tawn, 2003).

Asymptotic theory also justifies the choice of the GP distribution for cluster

maxima, see, for example, Smith (1989), Leadbetter (1991) and Smith, Tawn and

Coles (1997). A critical feature of this derivation is that the asymptotic parameter

θ is independent of the level at which the extremes are defined. We will show that

the GP distribution model is the appropriate model choice for cluster maxima

above a sub-asymptotic threshold u if and only if θ(x,m) exhibits stability over u,

i.e. θ(x,m) = θ(u,m) for all x > u. As Ledford and Tawn (2003) have identified

broad classes of processes which have unstable θ(x,m) for any x < x+ our findings

suggest that there may be a better distribution than the GP for modelling cluster

maxima. Specifically, we consider the case of a series with independent extremes,

i.e. θ = 1, but, for which, the sub-asymptotic extremal index is significantly less
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than one, i.e. θ(x,m) < 1 for x < x+ and is increasing with x. Any Gaussian

process with correlation strictly less than 1 is an example of such a process.

F (u)

θ̂
(u
,m

)

0
.0
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.2

0
.4

0
.6

0
.8

1
.0

0.80 0.85 0.90 0.95

Figure 2.2: Estimate of the sub-asymptotic extremal index θ(u,m) for the ozone
data (shown in Figure 2.1) using the runs estimator (full line), over a range of
thresholds (80- to 99% quantiles) and with run length m = 3. Also shown are
empirical (dash-dot line) and model-based (dashed line) estimates of θ(u,m), using
the approximation of Ledford and Tawn (2003) given in equation (2.2.11). A 99%
threshold was used to estimate the parameters in the model-based approach.

For the ozone data in Figure 2.1 we assess the need for an alternative distribu-

tion to the GP distribution for modelling cluster maxima by looking for stability

in θ(x,m). The estimated sub-asymptotic extremal index for the ozone data is

displayed in Figure 2.2 for a range of thresholds and a run length m = 3. The runs

estimator for the extremal index (Smith and Weissman, 1994) used in this plot

requires choice of both threshold and run length. More sophisticated techniques

such as the intervals estimator (Ferro and Segers, 2003) incorporate automatic

choice of one of these parameters into the estimation procedure. However all the

available estimators give similar results. For our data, a run length of m = 3

gave most consistency between the runs estimator and the intervals estimator (not

shown).

Figure 2.2 shows that as the threshold increases the estimate of the sub-

asymptotic extremal index gets closer to 1. This suggests that although the

threshold exceedances are clustered at sub-asymptotic levels, they are indepen-



CHAPTER 2. SUB-ASYMPTOTIC THRESHOLD CLUSTER MAXIMA 26

dent in the limit with clusters of size 1 (Ledford and Tawn, 2003). This lack of

stability in the estimates of θ(u,m) across u within the range of the data, sug-

gests that the GP distribution may not be appropriate to model cluster maxima.

In this paper we will propose an alternative distribution for the cluster maxima

of sub-asymptotic thresholds and consider when the GP distribution is a good

approximate distribution for the cluster maxima of such thresholds.

In Section 2.2 we review extreme value theory for univariate stationary pro-

cesses. The asymptotic theory discussed in Section 2.2 motivates our derivation,

in Section 2.3, of the distribution for the cluster maxima of threshold exceedances

when the sub-asymptotic extremal index does not stabilise and the process is

asymptotically independent. In Section 2.4 we discuss how to make inference

using the distribution derived in Section 2.3. We present a simulation study to

compare our distribution and the usual asymptotically motivated GP distribution

in Section 2.5. Section 2.6 compares the two models for the case of the Swansea

air pollution data.

2.2 Background Results

In this section we introduce the block maxima and point process methods as al-

ternative approaches for modelling extremes of a stationary series. We show how

these methods are related, to each other and to the POT method introduced in

Section 2.1. This is key to the model derived in Section 2.3.

Before considering the distribution of the maxima of the stationary series {Xi},

it is helpful to first look at the case of the associated independent series {X̃i}. The

independent series {X̃i} is chosen to have the same univariate marginal distribution

F as the original series {Xi}. Let {an > 0} and {bn} be sequences of constants

and denote M̃k,j = maxk≤i≤j{X̃i} to be the analogue of Mj,k for the associated

independent series. Then there is well established asymptotic theory (Leadbetter et

al., 1983) for the limiting distributions of the normalised maxima, a−1
n (M1,n − bn)

and a−1
n (M̃1,n − bn), of both series, as n→ ∞.
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In the IID case the asymptotic theory states that, if the limiting distribution

of the (normalised) maxima is non-degenerate, then it belongs to the generalised

extreme value (GEV) class of distributions. That is, as n→ ∞,

Pr

(

M̃1,n − bn
an

≤ z

)

→ G(z) (2.2.1)

with the limiting distribution function G being

G(z) = exp

{

−
[

1 + ξ

(

z − µ

ψ

)]−1/ξ

+

}

, (2.2.2)

where [y]+ = max(y, 0) and the three parameters are location (µ), scale (ψ > 0)

and shape (ξ). The shape parameter is negative if the underlying distribution has

finite upper endpoint (x+ < ∞), is zero if the tail of the underlying distribution

decreases exponentially and is positive if the tail decreases polynomially. The

result holds under a necessary and sufficient condition on the distribution function

F (eg. Leadbetter et al., 1983), which is satisfied for most distributions of interest.

We return to the original stationary series {Xi}, with maxima M1,n. To obtain

a result for the distribution of the M1,n, in addition to the limit (2.2.1) holding,

a weak mixing condition that limits the amount of long-range dependence in the

extremes, denoted D(un) by Leadbetter et al (1983), is assumed to hold. Under

these assumptions then, as n→ ∞,

Pr

(

M1,n − bn
an

≤ z

)

→ Gθ(z) (2.2.3)

where θ is the extremal index of the stationary series {Xi}, see Leadbetter et

al. (1983). When the series is independent θ = 1, however it is also the case that

θ = 1 for a broad class of dependent processes, see Leadbetter et al. (1983) and

Ledford and Tawn (2003).

Before giving the point process characterisation for extremes we need to identify

clusters. We additionally assume that the short-range dependence structure of the
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series {Xi} satisfies the D(m)(un) condition of Chernick et al. (1991), i.e. for the

sequence un = anu+ bn and fixed m, as n→ ∞,

Pr (M2,m < un,Mm+1,sn > un|X1 > un) → 0

where sn = o(n). Under this condition the cluster ends once there have been m−1

consecutive non-exceedances. It does not however place any limit on cluster size.

Let {tk : Xtk ≥ un} be the exceedance times of the threshold un. Given n, un and

m, suppose that the series has rn clusters identified under the D(m)(un) condition,

then we define the sequence {qj : tqj+1 − tqj ≥ m, j = 1, ..., rn} to be the cluster

end point times so that we can partition the exceedance times {tk} into rn clusters

where the jth cluster consists of exceedance times Cj = {tqj−1+1, tqj−1+2, ..., tqj}.

Using this definition of the clusters, the 2-dimensional point process Pn consisting

of the times (Tj) and sizes (Yj) of the cluster maxima is defined to be

Pn =

{(

Tj
n+ 1

,
Yj − bn
an

)

: Yj = max(Xi : i ∈ Cj), Tj = (i ∈ Cj : Xi = Yj), 1 ≤ j ≤ rn

}

(2.2.4)

Note that the time index (Tj) has been transformed to the unit interval and the

threshold exceedances (Yj) have been normalised using the same constants {an}

and {bn} as in equation (2.2.1).

Assuming that the D(un) and D(m)(un) conditions hold and that the distri-

bution of the maxima of the associated independent series {X̃i} converges to the

non-degenerate distribution G of equation (2.2.1) then the point process Pn con-

verges in distribution to a non-homogeneous Poisson process P on the region

A = (0, 1] × [v,∞], as n → ∞, see Smith (1989), where v > u. The intensity

density for P is then

λ(t, x) = θψ−1

[

1 + ξ

(

x− µ

ψ

)]−1/ξ−1

+

(2.2.5)

where (µ, ψ, ξ) are the parameters of the limiting distribution of a−1
n (M̃1,n − bn)
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and θ is the extremal index. The integrated intensity for the limiting process, on

the region A, is

Λ(A) =

∫ ∞

v

∫ 1

0

λ(t, x) dt dx

= θ

[

1 + ξ

(

v − µ

ψ

)]−1/ξ

+

. (2.2.6)

The maxima result (2.2.3) may be derived from the point process convergence

result. Let Nn(A) be the number of points of the process Pn on the region A

and let N(A) be the equivalent number for the limiting Poisson process P . Then,

taking limits as n→ ∞,

Pr

(

M1,n − bn
an

≤ v

)

= Pr(Nn(A) = 0)

→ Pr(N(A) = 0) = exp{−Λ(A)}

= exp

{

−θ
[

1 + ξ

(

v − µ

ψ

)]−1/ξ

+

}

, (2.2.7)

which recovers the block maxima results of equation (2.2.3).

We can also use the point process result to derive the limiting conditional

distribution of the cluster maxima of the threshold exceedances. We shall drop

the index notation and denote a generic cluster maxima by Y . Observe that as

n→ ∞, for v > 0,

Pr

(

Y − bn
an

> u+ v

∣

∣

∣

∣

Y − bn
an

> u

)

→
∫∞

u+v

∫ 1

0
λ(t, x)dt dx

∫∞

u

∫ 1

0
λ(x)dt dx

=
θ
[

1 + ξ
(

u+v−µ
ψ

)]−1/ξ

+

θ
[

1 + ξ
(

u−µ
ψ

)]−1/ξ

+

=

[

1 +
ξv

σu

]−1/ξ

+

(2.2.8)

where σu = ψ + ξ(u − µ). Note that the extremal index cancels. Result (2.2.8)

shows that the limiting distribution for the cluster maxima is the GP distribution
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of equation (2.1.1). This derivation also relates the GEV and GP parameters. If

the block maxima converge to a GEV(µ, ψ, ξ) distribution and the cluster max-

ima of the threshold exceedances converge to a GP(σu, ξ) distribution, the shape

parameters (ξ) are identical and the scale parameters are linked by the above ex-

pression. Thus, the GP scale parameter is threshold dependent, but the shape is

threshold invariant. The asymptotic result of equation (2.2.8) gives us the limiting

conditional distribution of the cluster maxima of threshold exceedances, which mo-

tivates the POT method introduced in Section 2.1. The justification is that for a

high enough threshold the distribution of the cluster maxima above this threshold

is approximately the limiting distribution of equation (2.2.8).

Finally we define asymptotic (in)dependence and introduce the characterisation

of the sub-asymptotic extremal index given by Ledford and Tawn (2003). The

extremal dependence structure of the random variables (X0, Xω), at lag ω, assumed

to have identical margins, is defined as follows. Taking x→ x+ the probability of

one variable being extreme conditional on the other also being extreme is

Pr(Xω > x|X0 > x) →











0 if asymptotically independent

tω > 0 if asymptotically dependent.
(2.2.9)

If the series is independent for lags of at least m and the series is asymptotically

independent for all lags ω up to m− 1, then the extremal index is 1. If the series

is asymptotically dependent for any lag up to m − 1 then the extremal index is

less than 1, see Ledford and Tawn (2003).

The model for the sub-asymptotic threshold-based extremal index given by

Ledford and Tawn (2003) follows from work by Ledford and Tawn (1996) and

Coles et al. (1999). Under this model the joint survivor function at lag ω is

Pr(X0 > x,Xω > x) = Lω
(

1

F̄ (x)

)

F̄ (x)2/(1+χ̄ω) (2.2.10)

where F̄ is the marginal survivor function, Lω(·) is a slowly varying function
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at infinity and χ̄ω (−1 < χ̄ω ≤ 1) is a measure of tail dependence (Coles et

al., 1999). If the variables are asymptotically dependent then χ̄ω = 1 else they

are asymptotically independent. If the variables are positively associated in the

extremes then 0 < χ̄ω < 1, if they are independent χ̄ω = 0 and if they are

negatively associated in the extremes −1 < χ̄ω < 0. Note that this is a minor

adaptation from that given by Ledford and Tawn (2003) to allow for a general

marginal distribution.

Ledford and Tawn (2003) use the tail dependence structure of equation (2.2.10)

to examine short-range sub-asymptotic tail dependence (clustering) in asymptoti-

cally independent time series, giving a model for the sub-asymptotic extremal in-

dex, θ(u,m). They model the tail dependence structure of the time series at a range

of lags using the distribution given in equation (2.2.10). Since the aim is to model

clustering the only informative lags are ω = 1, . . . , (m− 1), as consecutive thresh-

old exceedances separated by at least lag m are assumed to belong to separate

clusters, and therefore are independent. Let χ̄(m) = max{χ̄ω : ω = 1, ..., m − 1},

then there are two cases of interest, χ̄(m) < 1 and χ̄(m) = 1, which we will consider

in turn.

When χ̄(m) < 1 the process is asymptotically independent at all lags so θ = 1

and Ledford and Tawn (2003) use the definition of the extremal index given in

equation (2.1.2), to give the asymptotic form of the sub-asymptotic extremal index

as u → x+,

1 − θ(u,m) = 1 − Pr[M1,m−1 < u|X0 > u]

∼ L(m)

(

1

F̄ (u)

)

F̄ (u)ζ
(m)

(2.2.11)

where ζ (m) = (1− χ̄(m))/(1+ χ̄(m)), L(m)(x) is a slowly varying function defined by

L(m)(x) =
∑

ω∈ω(m) Lω(x) and ω(m) = {ω ∈ (1, . . . , m− 1) : χ̄ω = χ̄(m)}. Note that

ω(m) is the set of lags at which the strongest form of extremal dependence occurs.

If ω(m) consists of one element only, or all m − 1 elements, then the asymptotic

approximation (2.2.11) provides an upper bound, lower bound respectively, on the
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estimate of θ(u,m) for all u.

As expression (2.2.11) involves both marginal and dependence features it is

helpful to gain some understanding of how θ(u,m) → 1 as u → x+. Consider the

ratio {1 − θ(u+ v,m)}/{1 − θ(u,m)} as u → x+. Since u → x+, we cannot keep

v > 0 constant and so scale the excess v accordingly. Specifically let u = bn and

v = anx, where an > 0 and bn are the normalising constants defined in the limiting

relationship (2.2.1), then as n→ ∞,

1 − θ(anx+ bn, m)

1 − θ(bn, m)
∼

L(m)
(

1
F̄ (anx+bn)

)

F̄ (anx+ bn)
ζ(m)

L(m)
(

1
F̄ (bn)

)

F̄ (bn)ζ
(m)

.

Now, since bn must be taken as the (1− 1/n)th quantile of F , as n→ ∞, we have

both

F̄ (anx+ bn)

F̄ (bn)
∼ n[F̄ (anx+ bn)] → − logG(x)

where G is the GEV distribution function (2.2.2), and

L(m)
(

1
F̄ (anx+bn)

)

L(m)
(

1
F̄ (bn)

) ∼ L(m)(−n/ logG(x))

L(m)(n)
→ 1,

so that

1 − θ(anx+ bn, m)

1 − θ(bn, m)
→ {− logG(x)}ζ(m)

This ratio is a decreasing function in the unscaled excesses x. As x → 0 the ratio

tends to
[

1 − ξµ
ψ

]−ζ(m)/ξ

+
and as x → x+ it tends to zero. If χ̄(m) = 0 the ratio

decreases at the same rate as − logG(x).

When χ̄(m) = 1 the process is asymptotically dependent at some lag so θ < 1

and although we do not have an asymptotic expansion for θ(u,m) in this case the

asymptotic bounds for θ(u,m) as u→ x+ discussed above still hold, i.e.

1 −
∑

ω∈ω(m)

Lω
(

1

F̄ (u)

)

< θ(u,m) < 1 − max
ω∈ω(m)

Lω
(

1

F̄ (u)

)

.
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So for χ̄(m) = 1 we are only able to bound the sub-asymptotic extremal index using

the pairwise dependence structure models of Ledford and Tawn (2003). If we were

willing to make assumptions about higher order dependence then like Latham

(2006) we could determine θ(u,m) more precisely as the higher order conditional

probabilities in the expression for 1 − θ(u,m) might be at least as big as the first

order conditional probabilities used here.

In Figure 2.2 we show two estimates of the sub-asymptotic extremal index

θ(u,m) made using the asymptotic characterisation (2.2.11). One estimate is made

using empirical estimation of the relevant probabilities Pr(Xω > u|X0 > u) and the

other by estimating the parameters χ̄(m) and L(m)(·) at a 99% threshold and then

‘plugging these estimates in’ to equation (2.2.11) to obtain θ(u,m) as a function

of the threshold u. Note that, following Ledford and Tawn (2003), the slowly

varying function L(m)(·) is assumed to be constant in this estimate. The plot

shows that, within the range of the data, the model and empirical estimates are

very close. Both estimates coming from the asymptotic approximation are seen to

be upper bounds for θ(u,m), as estimated using the runs method, with the bound

being reasonably tight over all the values of u that are considered, and the bound

getting closer to θ(u,m) for large u.

2.3 Derivation of the sub-asymptotic distribu-

tion

In this section we derive the distribution for the cluster maxima of threshold ex-

ceedances for an asymptotically independent series with θ(x,m) 6= 1 for thresholds

x within the range of the data. In what follows, motivated by the asymptotic con-

ditions D(un) and D(m)(un), we assume that above some (pre-selected) threshold

level u exceedances separated by at least m−1 consecutive non-exceedance values

are independent. Choice of threshold u and run length m will depend on the par-

ticular process; in this section we assume these are known and address their choice
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in Section 2.5 and 2.6. Following the assumption that arbitrary exceedances of u

follow a GP distribution, a model for the distribution of the sub-asymptotic block

maxima is given by Hsing et al. (1996), Kratz and Rootzén (1997) and Bortot and

Tawn (1998) to be

Pr(M1,n < z) = {G(z)}θ(z,m) = exp

{

−θ(z,m)

[

1 + ξ

(

z − µ

ψ

)]−1/ξ
}

(2.3.1)

where G is the GEV(µ, ψ, ξ) distribution function. This form of distribution is

appropriate due to the fast convergence of the maxima of independent GP variables

to the GEV form relative to the convergence of the dependence structure, hence the

extremal index in equation (2.2.3) is replaced by the sub-asymptotic extremal index

in equation (2.3.1). Since we are no longer dealing with the limit distribution the

normalising constants an and bn of equation (2.2.3) are absorbed into the location

(µ) and scale (ψ) parameters, therefore these parameters do not take the same

values as their equivalents in equation (2.2.3). The shape parameter does remain

the same.

By the assumption of distribution (2.3.1) for the unnormalised block maxima,

it follows that we must also alter the point process Pn given in equation (2.2.4).

Motivated by the asymptotic case described in Section 2.2, we assume that, given

n, u and m, the series {Xi} has rn independent clusters separated by at least m−1

consecutive non-exceedances. The definitions of clusters (Cj) and the times (Tj)

and sizes (Yj) of cluster maxima therefore follow from Section 2.2. We denote by

P ∗
n the process Pn in which the sizes of the cluster maxima are not normalised so

that

P ∗
n =

{(

Tj
n+ 1

, Yj

)

: Yj = max(Xi : i ∈ Cj), Tj = (i ∈ Cj : Xi = Yj), 1 ≤ j ≤ rn

}

.

(2.3.2)

Following the limit result of equation (2.2.5), we assume that, as u approaches x+,

the point process P ∗
n is well-approximated by a Poisson process on A = [0, 1] ×
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[u,∞), with intensity function given by

λ∗(t, x) = θ(x,m)g(x), for 0 < t < 1 and x > u (2.3.3)

where g is a function we derive subsequently. This intensity function is indepen-

dent of time since the series {Xi} is stationary and cluster maxima are assumed

independent. The intensity function (2.3.3) is assumed to factorise in a similar

way to the limiting form (2.2.5), i.e. with the first term relating to the short-

range dependence structure and the second term to marginal features, but here

the extremal index is replaced by the sub-asymptotic extremal index.

We can now obtain the function g. First we follow the steps taken in re-

sult (2.2.7) and link the block maxima and point process approaches to give, for

v > u,

Pr (M1,n ≤ v) = exp{−Λ∗(A)} = exp

{

−
∫ ∞

v

θ(x,m)g(x) dx

}

(2.3.4)

where Λ∗(·) is the integrated intensity of P ∗
n . Combining this with the assumed

distribution of the block maxima (2.3.1) and taking the logarithm of both sides,

we obtain that for all v

∫ ∞

v

θ(x,m)g(x) dx = θ(v,m)

[

1 + ξ

(

v − µ

ψ

)]−1/ξ

+

. (2.3.5)

Then on differentiating equation (2.3.5) with respect to v we obtain the following

expression for the function g in terms of the extreme value parameters (µ, ψ, ξ)

and the sub-asymptotic extremal index,

g(v) =
1

ψ

[

1 + ξ

(

v − µ

ψ

)]−1/ξ−1

+

− θ′(v,m)

θ(v,m)

[

1 + ξ

(

v − µ

ψ

)]−1/ξ

+

, for v > u

(2.3.6)

where θ′(v,m) = ∂θ(v,m)/∂v.

Now, by comparison with relationship (2.2.8) which links the limiting point
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process and POT approaches, the conditional distribution for the cluster maxima

is, for v > 0,

Pr(Y > u+ v|Y > u) =

∫ x+

u+v
θ(x,m)g(x) dx

∫ x+

u
θ(x,m)g(x) dx

. (2.3.7)

From (2.3.5) we find that the conditional distribution for cluster maxima, in terms

of the sub-asymptotic extremal index and the GP distribution parameters, is

Pr(Y > u+ v|Y > u) =
θ(u+ v,m)

[

1 + ξ
(

u+v−µ
ψ

)]−1/ξ

+

θ(u,m)
[

1 + ξ
(

u−µ
ψ

)]−1/ξ

+

=
θ(u+ v,m)

θ(u,m)

[

1 +
ξv

σu

]−1/ξ

+

(2.3.8)

where σu = ψ + ξ(u− µ).

Next we use the sub-asymptotic extremal index model (2.2.11) of Ledford and

Tawn (2003) to approximate the terms θ(x,m) and θ′(x,m) that are needed for

evaluating expressions (2.3.6) and (2.3.8). Let κu = Pr(X > u) be the probability

of a threshold exceedance and assume that the arbitrary threshold exceedances

follow a GP(σu, ξ) distribution. The marginal probability that an arbitrary random

variable from the original series exceeds x > u is then

F̄ (x) = Pr(X > x|X > u) Pr(X > u) = κuW̄u(x− u) (2.3.9)

where W̄u is the survivor function for the GP distribution with parameters (σu, ξ).

Finally, we follow Ledford and Tawn (2003) in modelling the slowly varying func-

tion Lω(·) as a constant, so that Lω(x) = cω for all x. Then combining re-

sults (2.2.11) and (2.3.9), we have

θ(u+ v,m)

θ(u,m)
≈ 1 − c(m)κζ

(m)

u W̄u(v)
ζ(m)

1 − c(m)κζ
(m)

u

(2.3.10)

where c(m) = L(m)(x) =
∑

ω∈ω(m) cω. Combining this with equation (2.3.8) there-

fore gives an expression for the conditional distribution of the cluster maxima.
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An interesting special case is that of an IID process. In this case, as u → ∞,

χ̄ω = 0 and cω = 1 for all lags ω = 1, . . . , (m− 1), so that c(m) = m − 1. In fact,

any method for selecting m should give m = 1, but we suppose that this is not

the case and for some reason we are using m > 1. We show that we still get a

correct approximation up to first order. Using result (2.3.10) in this case we can

approximate the ratio of extremal indices θ(u+ v,m) and θ(u,m) by

θ(u+ v,m)

θ(u,m)
≈ 1 − (m− 1)κuW̄u(v)

1 − (m− 1)κu

=
[

1 − (m− 1)κuW̄u(v)
]

[1 + (m− 1)κu] + o(κu)

since κu → 0 as u → ∞, allowing us to use a binomial series expansion on the

denominator. Finally, combining this with equation (2.3.8) we get the following

approximation for the distribution of the cluster maxima; for v > 0,

Pr(Y > u+ v|Y > u) = W̄u(v)
[

1 + (m− 1)κu
(

1 − W̄u(v)
)]

+ o(κu).

We shall now look in more generality at the distribution attained for the cluster

maxima using expressions (2.3.8) and (2.3.10). Under asymptotic independence,

by taking a binomial series expansion of the denominator in equation (2.3.10) we

can further approximate the ratio of the extremal indices θ(u+ v,m) and θ(u,m)

as follows;

θ(u+ v,m)

θ(u,m)
=

[

1 − c(m)κζ
(m)

u W̄u(v)
ζ(m)
] [

1 + c(m)κζ
(m)

u

]

+ o(κζ
(m)

u )

= 1 + c(m)κζ
(m)

u

[

1 − W̄u(v)
ζ(m)
]

+ o(κζ
(m)

u ) (2.3.11)

where the approximations hold since the higher order terms are of order o(κζ
(m)

u )

if χ̄(m) < 1. Similarly, for x > u,

θ′(x,m) =
c(m)κζ

(m)

u ζ (m)

σu
{W̄u(x− u)}ζ(m)+ξ.
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Notice that when χ̄(m) = 1, i.e. asymptotic dependence at some lag, then ζ (m) =

0 and hence θ′(x,m) = 0, so we have stability of the sub-asymptotic extremal

index. In this case the function g simplifies to a single term and intensity (2.3.3)

is identical to the limiting intensity (2.2.6).

In theory the modelling of the cluster maxima can proceed using the point pro-

cess approach with intensity function (2.3.3) or modelling the excesses over thresh-

old through distribution (2.3.8). We focus on the latter to enable comparisons with

the peaks over thresholds method. Combining equations (2.3.8) and (2.3.11), the

survivor function for the cluster maxima above a threshold u takes the form, for

v > 0,

W̄ ∗
u (v) = Pr(Y > u+ v|Y > u) ≈

W̄u(v)
{

1 + c(m)κ(1−χ̄(m))/(1+χ̄(m))
u

(

1 − W̄u(v)
(1−χ̄(m))/(1+χ̄(m))

)}

.(2.3.12)

Distribution (2.3.12) consists of two terms: the first term, W̄u(v), is the generalised

Pareto distribution of the peaks over thresholds method, and the second term

accounts for instability of θ(x,m) for x > u. Specifically, observe that in the case

of asymptotic dependence, where χ̄(m) = 1, the distribution (2.3.12) immediately

collapses to the GP distribution for all thresholds (u).

Distribution (2.3.12) offers an extension to the generalised Pareto distribution

for modelling the cluster maxima of sub-asymptotic threshold exceedances. To

understand how this distribution differs from the generalised Pareto distribution,

consider how its second term depends on the threshold u through the marginal

probability κu of exceeding u and also through W̄u(v). As u → x+, κu → 0 so it

appears that the second term disappears as u gets larger. However we need to be

careful as we cannot increase u and keep v constant, so we must scale the excess

v accordingly. Specifically if χ̄(m) < 1, as u→ x+

W̄ ∗
u (σuv) = W̄u(σuv)

{

1 + c(m)κ(1−χ̄(m))/(1+χ̄(m))
u

(

1 − W̄u(σuv)
(1−χ̄(m))/(1+χ̄(m))

)}

= (1 + ξv)
−1/ξ
+ +O(κ(1−χ̄(m))/(1+χ̄(m))

u ) (2.3.13)
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which shows that the second term acts as a bias correction term for the GP dis-

tribution and it disappears as the threshold is increased to the upper endpoint.

Finally we need to ensure that distribution (2.3.12) is a proper by forcing

the density to be non-negative, which places an upper bound on the choice of

threshold for some combinations of the dependence parameters (c(m), χ̄(m)). This

bound takes the form

0 < κu <

(

1 + χ̄(m)

c(m)(1 − χ̄(m))

)(1+χ̄(m))/(1−χ̄(m))

≤ 1. (2.3.14)

Note that in practise it might not be appropriate to take the first order term

in the binomial series expansion of the expression for the ratio of θ(u+ v,m) and

θ(u,m) as described in equation (2.3.11). This will be the case if, for instance, we

believe that c(m)κζ
(m)

u is not converging to zero sufficiently quickly. In this case,

in an analogue to equation (2.3.12), we can approximate the distribution of the

cluster maxima as follows; for v > 0,

W̄ 1
u (v) ≈ W̄u(v)

[

1 − c(m)κ
(1−χ̄(m))/(1+χ̄(m))
u W̄u(v)

(1−χ̄(m))/(1+χ̄(m))

1 − c(m)κ
(1−χ̄(m))/(1+χ̄(m))
u

]

. (2.3.15)

2.4 Inference for the sub-asymptotic model

We now describe how to fit either form of our proposed distribution to a data set

by using likelihood inference to estimate the parameters (c(m), χ̄(m), σu, ξ). Since

the overlap between the information used to estimate the dependence parame-

ters (c(m), χ̄(m)) and that used to estimate the GP parameters (σu, ξ) is small, we

suggest a two stage fitting procedure for parameter estimation.

First a lag m is selected so that all threshold exceedances that are separated by

at least m − 1 consecutive non-exceedances are assumed to be independent. One

diagnostic for this selection is to plot the graph of χ̄τ against τ for a much larger

range of τ than that at which you would expect to see extremal dependence. The

lag m is then selected so that χ̄τ is approximately zero for τ ≥ m and is greater
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than zero for τ < m (see Figure 2.7).

Given the lag m, the first step then comprises of estimating the dependence

parameters (c(m), χ̄(m)), using the full data set and the censored pseudolikelihood

approach of Ledford and Tawn (2003) as follows. First transform the observations

to unit Fréchet margins using the empirical distribution function and probability

integral transform. We denote this transformed series by X∗
1 , . . . , X

∗
n and the series

of the minima of all pairs of the transformed variables at lag τ = 1, ..., m − 1 by

Tτ = {min(X∗
i , X

∗
i+τ) : i = 1, ..., n − τ}. For each lag τ , this series has survivor

function given in equation (2.2.10) and the maximum likelihood estimates (MLEs)

of the dependence parameters (ĉτ , ˆ̄χτ ) are obtained from the pseudolikelihood

PL(cτ , χ̄τ) =
∏

i:T τ
i <uτ

[

1 − cτu
−2/(1+χ̄τ )
τ

]

∏

i:T τ
i ≥uτ

[

−
(

2cτ
1 + χ̄τ

)

T
τ(−2/(1+χ̄τ )−1)
i

]

(2.4.1)

where uτ is a threshold selected for the series Tτ , which need not correspond to

the original modelling threshold u. By the invariance property of the maximum

likelihood we have ˆ̄χ(m) = max1≤τ≤m−1( ˆ̄χτ ) and ĉ(m) = {ĉτ : ˆ̄χτ = ˆ̄χ}.

The second step of the inference procedure then uses the excesses over the

modelling threshold (u) of the cluster maxima, denoted {Yj − u|Yj > u : j =

1, ..., rn}, where the cluster maxima Yj are defined in Section 2.3. The dependence

parameters are fixed at the best estimates obtained in the first step and κu (the

marginal probability of observing an exceedance in the original data) is estimated

by the empirical probability of the original series {Xi} exceeding the threshold.

The likelihood used to obtain the MLE’s of the parameters (σ̂u, ξ̂) is the product

of either the densities w∗
u(v) = d/dv

{

1 − W̄ ∗
u (v)

}

or w1
u(v) = d/dv

{

1 − W̄ 1
u (v)

}

,

depending on which approximation seems appropriate for the data set in question,

taken over the series {Yj − u|Yj > u}.

It remains to be shown when either form of our proposed distribution should

be used in preference to the GP distribution as a model for the cluster maxima. In

an extreme value analysis we are most interested in extreme quantile estimation
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and so one assessment of which distribution to use would look at which one best

estimates the underlying quantiles of the cluster maxima, see Section 2.5. However

the underlying quantiles are unknown and so a simpler measure to calculate is the

expected error in using the GP distribution to model the cluster maxima, under the

assumption that the true distribution is in fact one of our proposed distributions.

For the distribution W̄ ∗
u given by equation (2.3.12) we denote this measure by D,

so that

D =

∫ ∞

0

(

W̄ ∗
u (v) − W̄u(v)

)2
w∗
u(v)dv. (2.4.2)

The closed form of the measure D is given by

D =
[

K(m)
]2
[

1

3
− C(m) +K(m)

2 + χ̄(m)
+
C(m) + 4K(m)

5 + χ̄(m)

]

(2.4.3)

where K(m) = c(m)κζ
(m)

u and C(m) = (1+K(m))(1+ χ̄(m)). To evaluate this statistic

it is only necessary to estimate the dependence parameters (c(m), χ̄(m)). For fixed

χ̄(m), D increases with c(m). For fixed c(m), D is biggest when χ̄(m) is small and

positive, i.e. when the series is nearly independent or displays some positive

dependence. The measure D decreases as χ̄(m) → ±1 i.e. as the dependence,

which may be either positive or negative association, becomes stronger. We have

an equivalent distance measure for the distribution W̄ 1
u given in equation (2.3.15),

which we denote by D1 and which takes the form

D1 =
(K(m))2

(1 −K(m))3

[

1 −K(m)

3
− 1 + χ̄(m) +K(m)

2 + χ̄(m)
+

1 + χ̄(m) + 4K(m)

5 + χ̄(m)

]

. (2.4.4)

Choice of the critical D (D1) value, used to decide whether or not the GP distribu-

tion is a sufficiently close fit to model the data will depend on the context, although

the simulation results of the following section may provide some guidance.
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2.5 Simulation study

The simulation study detailed below compares the goodness-of-fit of the GP and

both forms of our distribution, W̄ ∗
u and W̄ 1

u , to the true distribution of the cluster

maxima of an asymptotically independent, first-order Markov process, at two dif-

ferent thresholds. Since the process exhibits non-negative dependence and is first-

order the dependence between the variables (Xi, Xi+τ ) for τ ≥ 2 will be weaker

than that for the variables at lag 1, hence we only need consider the dependence

structure obtained from the distribution of (Xi, Xi+1) and so drop references to

lags in the subsequent discussion. In what follows we fit the GP distribution W̄u

and compare this to the two forms of our proposed distribution, W ∗
u given in

equation (2.3.12) and W 1
u given in equation (2.3.15).
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Figure 2.3: Simulated runs, length 10000, of the (a) AR(0.1), (b) AR(0.5) and (c)
AR(0.9) processes, each with standard exponential margins.

The process that we shall consider is the Gaussian autoregressive (AR) process

with parameter ρ, which has standard normal margins and dependence structure
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given by (Xi, Xi+1) ∼ BVN(0,Σ), where Σ is a 2 × 2 matrix with 1’s on the

diagonal and the correlation coefficient ρ on the off-diagonal. We consider various

parameterisations of this process given by three values of the dependence param-

eter, ρ = 0.1, 0.5 and 0.9. The series is transformed to exact standard exponential

margins using the empirical distribution function before modelling, for the reason

given in Section 2.1. A single simulation of each parameterisation of the process

is given in Figure 2.3.

For each parameterisation of the process, 500 data sets of length 10000 were

simulated. Each data set was declustered at the 90% and 99% quantile thresh-

olds and the GP and our distribution were fitted to the cluster maxima of both

thresholds, using, respectively, the POT method and the two step fitting procedure

described in Section 2.4. A 90% threshold was used to estimate the dependence

parameters (c, χ̄), regardless of the declustering threshold used.

Figure 2.4, which shows estimates of the parameter χ̄ for each parameterisation

of the process, as well as histograms of the estimated extremal indices θ(u) when

κu = 0.1. As the correlation coefficient ρ increases so does the strength of the

sub-asymptotic dependence. The estimated GP parameters (σu, ξ) were almost

identical under both distributions for each parameterisation, but this does not

necessarily mean that the two distributions model the underlying distribution of

the cluster maxima equally well. To investigate this we compare estimates of the

quantiles of the cluster maxima made using fits of the different distributions.

To judge how well the estimated distributions fit the cluster maxima, simula-

tions are used to approximate the true distribution, since this distribution cannot

be obtained analytically. For each process, a run of length one million was simu-

lated and declustered above the 90% and 99% quantile thresholds. Since the run

length is so long, we considered the empirical distributions of these cluster maxima

to be the true distribution. We compare the quantiles of these true distributions

with those of the estimated distributions. The pth quantile of the GP distribution

is the solution of W̄u(vp) = 1 − p which has closed form vp = σu

ξ

[

(1 − vp)
−ξ − 1

]

.
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Figure 2.4: Estimates made using a 90% threshold, of the dependence parameter
χ̄ (top) and the extremal index θ(u) where κu = 0.1 for each of the 500 simulations
of the AR(0.1) (left), AR(0.5) (centre) and AR(0.9) (right) processes.

For both forms of our proposed distribution numerical methods are needed to solve

the equations W̄ ∗
u (vp) = 1 − p and W̄ 1

u (vp) = 1 − p, which have no closed form.

For each data set and each threshold we estimated a range of quantiles of the

cluster maxima using both of the fitted distributions. We assess the goodness

of fit of the two distributions by comparing the bias and root mean square error

(RMSE) of each estimated quantile. Suppose that a given quantile q of the cluster

maxima has true value qT . The bias, b, and the RMSE, r, of the quantile estimates

{q̂j : j = 1, . . . , n} obtained from n simulations are then given by

b =
1

n

n
∑

j=1

(q̂j − qT ) and r =

[

1

n

n
∑

j=1

(q̂j − qT )2

]1/2

.

We estimated 1000 quantiles between 0.001 and 0.999. Figure 2.5 shows the bias

and RMSE of the estimated quantiles under all three distributions and both thresh-

old choices for the AR(0.1) process. For the higher quantiles, which we are likely to

be most interested in for an extreme value analysis, the estimates of the quantiles

from our distribution W̄ 1
u show the smallest bias, regardless of the threshold used,

although the difference is much less at the higher threshold. Similarly, the RMSE

is lower for the distribution W̄ 1
u than for either the distribution W̄ ∗

u or the GP
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distribution, but again the differences are markedly reduced at the higher thresh-

old. This decrease in differences as the threshold is increased is unsurprising, since

both of our distributions tend to the GP as the threshold approaches its upper

limit, see equation (2.3.13).
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Figure 2.5: Results for the AR(0.1) process. Bias (b), left, and RMSE (r), right,
for estimated quantiles q. Estimates were made using the GP (full line) and our
model (dashed line - W̄ ∗

u and dotted line - W̄ 1
u ) fits to the cluster maxima of both

the 90%, top, and 99%, bottom, thresholds.

Overall though the AR process study showed no great improvements in using

either form of our distribution instead of the GP distribution. Figure 2.6 shows the

bias and RMSE for the 90% threshold models of the AR process with parameter

values ρ = 0.5 and ρ = 0.9. When ρ = 0.5 both forms of our distribution have

smaller bias and RMSE in the upper tail of the distribution, but there is a trade-

off as they both have larger bias and RMSE in the body and lower tail of the

distribution. For ρ = 0.9, both forms of our distribution show greater bias and

RMSE throughout the distribution. Note that the plots emphasise the difference,

both in bias and in RMSE, between the full form of our distribution W̄ 1
u and

the approximated form W̄ ∗
u ; these differences are considerably larger than the

equivalent one between the asymptotic GPD and the approximation W̄ ∗
u . This

suggests that taking the full form of our distribution may be more appropriate

here.
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Figure 2.6: Results for AR(0.5), top, and AR(0.9), bottom, processes. Bias (b),
left, and RMSE (r), right, for quantiles (q) estimated from both the GP (full line)
and our model (dashed line - W̄ ∗

u and dotted line - W̄ 1
u ) fits to the cluster maxima

of 90% thresholds.

The distance measures D (D1) are also fairly non-informative in this case. At

the 90% threshold the median values of D (D1) across the 500 simulated data

sets are, for ρ = 0.1, 0.000279 (0.000366), for ρ = 0.5, 0.000519 (0.00106) and for

ρ = 0.9, 0.000162 (0.00218). At the 99% threshold the equivalent values are, for

increasing ρ, 0.0000138 (0.0000145), 0.000116 (0.000157) and 0.000114 (0.000541).

We see that as the threshold increases the distance between the GP and the two

forms of our distribution decreases and that there is a bigger distance between

the GP and the full form of our distribution W̄ 1
u than between the GP and the

approximate form of our distribution W̄ ∗
u . Note that all the distances are very

small, but that they increase as the strength of the sub-asymptotic dependence

increases, i.e. as ρ→ 1.

This simulation study shows that for the Gaussian first-order AR process there

is little to be gained from using either form of our distribution over the asymp-

totically motivated GP distribution as a model for the distribution of the cluster

maxima of exceedances of sub-asymptotic thresholds. This is especially evident as

the threshold increases, in which case the gain from using our proposed distribu-

tion over the GP distribution becomes much less. Further, examination of various
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other dependence structures given, for example, by the BB6 and Morgernstern

copulas (Joe, 1997), and the lower tail of the bivariate extreme value distribution,

none of which are shown, suggests that this is the case for a wide range of asymp-

totically independent dependence structures. However because there are some

evident differences in fit between the GP distribution and the two forms of our

model shown in Figures 2.5 and 2.6 we suggest that it is still worth investigating

the fit of all three distributions for any particular example, especially in the case

of large sample size where bias is more important than variance.

2.6 Ozone Analysis

We now return to the initial problem of the most suitable model for the cluster

maxima of the ozone data set, introduced in Section 2.1, by comparing the dif-

ferences in fit between the GP and our distributions. The ozone data is shown

on both the original and transformed scales in Figure 2.1. The transformation

removes the non-stationarity before modelling the cluster maxima. In order to

make the minimum number of modelling assumptions in doing this we follow a

local, nonparametric approach, the two stages of which are as follows.

The daily data are first standardised within years, to remove annual linear

trends in mean or variance. Let Xki be the observation made on the ith day

(i = 1, . . . , 365) of the kth year (k = 1, . . . , Y ) where Y is the total number of

years. Then we calculate the standardised series Zki = (Xki −mk)/sk, where mk

and sk are, respectively, the sample mean and standard deviation of the data in

year k. For each day of the year i, the standardised data are then pooled across

years k. We assume that this standardised pooled series is stationary within a

window over any short time interval [i − h, i + h] for some h. By moving this

window across days i and using the empirical distribution of the within window

data, we can transform the data observed on the central day i in the window to

standard uniform margins. The inverse probability integral transform is then used

to transform to any desired margins. The size of the window (equivalently the
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value of h) depends entirely on the structure of the non-stationarity in the data

set. After an exploratory investigation, we found that for the ozone data, a window

of two months (h = 30 days) produced satisfactory results.
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Figure 2.7: Estimates of χ̄τ (top) and cτ (bottom) using the lags τ = 1, ..., 30. The
left hand plots use the 90% quantile for the threshold and the right hand plots the
99% quantile.

We declustered the transformed data above fifteen declustering thresholds, uni-

formly spread between the 70- and 95% quantiles, using the runs estimator with a

run length of 3. For each threshold, we compared the fit of the three distributions

W̄u, W̄
∗
u and W̄ 1

u to the cluster maxima by calculating the two distance measures

D and D1 given in equations (2.4.3) and (2.4.4). For each declustering threshold,

we also considered both 90- and 99% quantiles as thresholds for estimating the

parameters (χ̄, c). Figure 2.7 shows estimates of (χ̄τ , cτ ) obtained using the lags

τ = 1, . . . , 30 and both 90- and 99% thresholds. These plots show the data getting

closer to independence for any lag greater than two or three days, since then χ̄

is getting close to zero, with near independence achieved from a lag of about 10

days. For smaller lags there is weak positive association. These conclusions hold

regardless of the threshold chosen. Further, by combining these results with plots

showing the stability of the behaviour of the extremal index across various run

lengths (not shown) and the fact that the persistence of high levels of ozone is

due to the persistence of external conditions, such as the weather (which in the
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UK may last for several days) rather than the lifetime of the individual ozone

molecules (which is a number of hours) we believe that the use of a run length of

3 may be justified.
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Figure 2.8: Fitted parameters σu (left) and ξ (right) for the distribution of the
cluster maxima over a range of declustering thresholds (70-95% quantiles) using
the GP (circles) and our distribution W̄ 1

u (crosses). Also shown are estimated 95%
confidence intervals; full lines for the GP and dashed lines for our distribution.
Two thresholds, 90% (top) and 99% (bottom) quantiles were used to estimate the
parameters (χ̄, c).

Figure 2.8 shows estimates of the parameters (σu, ξ) obtained by fitting the

distributions W̄u and W̄ 1
u . Parameter estimates obtained from fitting the distri-

bution W̄ ∗
u (not shown) lie somewhere in-between the estimates from the other

two models; this is to be expected given that this distribution is an asymptotic

approximation to W̄ 1
u , as discussed in Section 2.3. The 95% confidence intervals

show that, although the point estimates of the parameters are quite different under

the two models, these differences are small compared to the uncertainty, especially

at the higher thresholds. For both thresholds the D- and D1-statistics are very

small; the D-statistic is less than 7× 10−4 for the 90% threshold and 0.004 for the

99% threshold. Further, as the declustering threshold increases, so D decreases

and, as we expect, the difference between the fitted distributions diminishes.

Finally we consider what happens if we try to extrapolate the fit of either one of

our distributions to higher thresholds. Specifically, we fit all three of the distribu-
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tions to the cluster maxima at the 80% threshold, also using an 80% threshold level

to estimate the dependence parameters (χ̄, c). We then use the threshold stability

property of the GP distribution outlined in Sections 2.1 to look at the goodness

of fit of these fitted models to the cluster maxima of the 90- and 99% thresholds.

To demonstrate this we use quantile-quantile (QQ) plots; for the distributions W̄u

and W̄ 1
u these are shown in Figure 2.9, plots for W̄ ∗

u (not shown) lie somewhere in

between the two. We see that the models fitted under both distributions appear

to fit well and as we increase the threshold the difference in fit is negligible, as our

distribution approaches the GP distribution.

For this data set the difference between the two distributions at all thresholds

is so small that it seems unnecessary to use the distribution introduced in this

paper despite the instability of θ(u,m) found in Figure 2.2. On the evidence

given in Figures 2.7 and 2.8 we believe that the GP distribution is an adequate

approximation for the distribution of the cluster maxima of the transformed ozone

data set.
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Figure 2.9: QQ plots for GP W̄u (top) and our W̄ 1
u (bottom) distributions fitted to

the cluster maxima of the 80% threshold (left). An 80% threshold was also used
to estimate the parameters (χ̄, c). Plots in the centre and right show, respectively,
goodness of fit of the distributions fitted at the 80% threshold to the cluster max-
ima of the 90- and 99% thresholds. 95% confidence intervals are given by dashed
lines, with the 45◦ line giving exact agreement between the model and the data.
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Chapter 3

Modelling non-stationary

extremes

3.1 Introduction

Statistical methods for modelling extremes of stationary sequences have received

much attention and though different methods for inference do exist the modelling

strategies are basically identical (Coles, 2001; Bierlant et al., 2004; and de Haan

and Ferreira, 2006). Specifically local maxima which exceed a high threshold are

modelled by a parametric model which is motivated by the asymptotic theory of

extreme values of independent and identically distributed random variables.

In many cases however an analysis of the extremes of a series is required where

there is clear non-stationarity in the series. This is especially common in environ-

mental data sets. The focus of this paper is the analysis of the ozone (O3) data set

shown in Figure 3.1, which consists of the daily maxima of hourly concentrations

of surface-level ozone. These data were measured at a monitoring site in central

Reading, UK, which is part of an automatic air quality monitoring network run

on behalf of the UK government.

Features of the apparent non-stationarity of the ozone data can be explained by

accounting for the underlying mechanisms driving the ozone generation process.

53
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Figure 3.1: Daily maxima of hourly ozone (O3) concentrations observed in central
Reading from 13/09/97 until 01/06/01. Measurements of O3 are in µmg−3.

Surface-level ozone is a secondary pollutant, meaning that it is formed in the

atmosphere, and its level depends on the concentrations of precursors, principally

nitric oxide (NO) and nitrogen dioxide (NO2), and various hydrocarbons. Various

human activities cause increases beyond ambient levels in these precursors. This

is primarily due to the combustion of fossil fuels and consequently the precursors

show seasonal trends (combustion tends to increase in colder weather). Further,

the chemical reactions involved in the synthesis of ozone depend on meteorological

conditions. The key reactions are photochemical and so sunlight is an important

factor, as are temperature, wind speed and wind direction. Thus it is natural to

incorporate such covariates into an analysis of the ozone data in order to attempt

to explain the non-stationarity.

The statistical analysis of ozone data has been much investigated in recent

years (Thompson et al., 2001). They suggest four potential motivations for the

statistical study of ozone data sets which are: forecasting high levels in order

to give out public health warnings; identifying trends in high ozone levels, pos-

sibly in response to legislation regulating pollution emissions; understanding the

underlying mechanisms of the process; and recognising health impacts. We also

suggest that, given the current scientific, political and economic interest in ascer-

taining the impact of human activities on the environment, a further motivation
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is to assess changes in ozone levels due to such activities, either directly, through

changing emission patterns, or indirectly, through climate change. Extreme value

methods are particularly suited to analyses concerned with questions relating to

the first two and the last of these factors. Specifically we are interested in ex-

plaining the changes in extreme ozone levels conditional on the covariates relating

to the precursor concentrations and meteorological conditions and in summarising

the marginal distribution of extreme ozone levels under current conditions and for

scenarios corresponding to future changes in emission patterns and climate change.

Let {Yt} be a process with associated covariates {Xt}. The simplest ap-

proach to predict future extreme levels of the marginal distribution of {Yt} is

to model the extremes using methods for stationary sequences. We can then es-

timate 100(1 − p)% quantile (termed the marginal return level), denoted by yp

such that Pr(Yt > yp) = p, for p close to zero; under stationarity this is exceeded

on average approximately once every 1/p observations. However, if {Yt} is non-

stationary such a direct approach is subject to unbounded and unquantifiable bias.

Furthermore, it does not allow the identification of trends or covariate relation-

ships which are required for deriving the distribution of future extreme ozone levels

under scenarios of change.

An alternative approach is to model the extremes conditional on the covariates.

We focus on modelling the non-stationarity in the marginal distribution of {Yt}

through the conditional distribution of Yt|Xt = xt. The return level is then most

naturally defined as a quantile of Yt conditionally on the vector of covariates Xt.

These 100(1 − p)% conditional return levels, denoted yp,t, satisfy

Pr(Yt > yp,t|Xt = xt) = p. (3.1.1)

However, if interest is in the behaviour of Yt alone then we can integrate out the

covariates as follows

Pr(Yt > y) =

∫

xt

Pr(Yt > y|Xt = xt)fXt(xt)dxt, (3.1.2)
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where fXt(·) is a model for the joint density of the covariates Xt at time t, and

obtain the (marginal) return level yp given by Pr(Yt > yp) = p. Under the as-

sumption that the observed covariates form a representative sample from the joint

distribution in some specified period of interest then, in the absence of any prior

information, the joint distribution can be estimated empirically then the marginal

return level is the solution to the equation

p =
1

n

n
∑

t=1

Pr(Yt > yp|Xt = xt), (3.1.3)

where n is the size of the sample of covariates. Different models for fXt(·) can

be proposed to account for future emission and climate change scenarios. The

resulting change in the marginal return level under a change scenario from that

given by the use of equation (3.1.3) gives a single measure of how a particular

scenario might affect extreme ozone concentration levels.

The standard method (Davison and Smith, 1990) of analysis for modelling the

extremes of a non-stationary process retains the use of a constant high threshold

and introduces covariates into the threshold exceedance rate and the parameters of

the extreme value model for the threshold exceedances. In this paper, we present

a case against such a modelling approach and introduce an alternative strategy.

The novel step in the alternative strategy is first to attempt to model the non-

stationarity in the whole data set. This non-stationarity is then removed from

the data, a technique referred to as pre-processing, and the extremes of the pre-

processed data are modelled using the standard approach. Critical to our approach

is that if pre-processing is successful the extremes of the preprocessed series will

have had most, if not all, of the non-stationarity of {Yt} removed and thus a simple

extreme value analysis of the preprocessed series can be conducted.

Using the entire data set to model the extremes seems a departure from the

usual extreme value techniques, which capitalise on the general theory of extreme

values of stationary sequences that allows inference on the tails of a distribution

to be made independently of the main distribution body. However such theory
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does not directly extend to the extremes of sequences whose underlying distri-

bution is conditional on covariates. Provided that a reasonable model for the

non-stationarity in the entire data set is used at the pre-processing step, we be-

lieve that our proposed strategy often will provide a better description of the non-

stationarity of the extremes, a clearer scientific interpretation, a more appropriate

identification of the extreme values, easier threshold selection, reduced threshold

sensitivity, and improved covariate model selection and efficiency of inference for

covariate effects and extremal properties.

In Section 3.2 we review existing methods for modelling the extremes of both

stationary and non-stationary processes. We then introduce our proposed ap-

proach in Section 3.3, as well as an ‘in-between’ approach, termed the varying

threshold method. Results from a simulation study are shown in Section 3.4, in

which the efficiency and ability to select the correct covariate models of the stan-

dard and pre-processing methods are compared. We show results of an analysis

of the ozone data in Section 3.5 comparing the various methods and assessing the

impact of mis-specification of the covariate model in the pre-processing step. Our

reasons for such a study are motivated by the fact that we do not have available

all the precursor and meteorological covariates necessary to account fully for the

known mechanisms behind ozone generation; so we assess the impact of using a

scientific and data-based rationale for model building. We conclude with a compar-

ison of the standard, pre-processing and varying threshold methods in Section 3.6

which summarises the findings in the paper and justifies our claimed benefits for

the pre-processing approach.

Throughout the paper we assume that the extreme events of either {Yt} or

{Yt|Xt = xt} are temporally independent. However when evaluating confidence

intervals of estimates in the ozone application we use a block bootstrap to account

for any temporal dependence.



CHAPTER 3. NON-STATIONARY EXTREMES 58

3.2 The standard approach

3.2.1 Stationary processes

Suppose that the process of interest {Yt} is stationary with univariate marginal

distribution F which has upper endpoint xF . We define the extremes of {Yt} to be

the exceedances of a high threshold u, u < xF . As u tends to xF , Pickands (1975)

showed that, if the distribution of the excesses, Yt−u, of u, scaled as a function of

u, converges to a non-degenerate limiting distribution, that distribution must be

the generalised Pareto distribution (GPD). This motivates the use of the GPD as

a statistical model for the excesses of a high, fixed threshold u. The conditional

survivor function for the exceedances of u under the assumption that excesses

follow a GPD(ψu, ξ) model is, for y > 0

Pr(Y > y + u | Y > u) =

[

1 +
ξy

ψu

]−1/ξ

+

(3.2.1)

where a+ = max{0, a} and ψu > 0 and ξ are scale and shape parameters re-

spectively. An additional parameter of the tail model is φu = Pr(Y > u) which

determines the rate of exceedance of the threshold. The theoretical justification

for this model requires that φu is small, since, unless F itself is GPD, the approx-

imation to the tail of F by the GPD holds only as u tends to xF . This threshold

approach, popularised by Davison and Smith (1990), models the size and rate of

occurrence of the observations which exceed the threshold.

An important property of the GPD is that of threshold-stability. Suppose that

the conditional distribution of the exceedances of u is a GPD(ψu, ξ). Then for

any level v, u < v < xF , the conditional distribution of the exceedances of v is a

GPD(ψv, ξ) distribution, where ψv = ψu+ξ(v−u). This result shows that the form

of the distribution of the threshold exceedances, including the shape parameter, is

invariant to the selection of a higher threshold.

There are a range of methods for inference for the GPD and tail models when

the data are assumed to be stationary. To avoid dependence in exceedances most
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often a peaks over threshold (POT) analysis is used, where only cluster maxima

data are used in the GPD fit and confidence interval evaluation (Davison and

Smith, 1990). One alternative is to fit the GPD using all exceedances and explic-

itly model the dependence between exceedances in a cluster (Smith, Tawn and

Coles, 1997). A second alternative is to fit the GPD using all exceedances, falsely

assuming that these are independent, and then account for dependence in the con-

fidence interval evaluation by using block bootstrap methods (Buishand, 1993), to

be discussed in Section 3.5.

We shall use likelihood inference throughout. Using all the threshold ex-

ceedances, under the assumption of independence of extreme events the likelihood

function for the stationary model is

L(ψu, ξ, φu) =

n
∏

t=1

(1 − φu)
1−I[yt>u]

(

φuψ
−1
u

[

1 +
ξ(yt − u)

ψu

]−1/ξ−1

+

)I[yt>u]

(3.2.2)

where I[yt > u] is the indicator function taking the value 1 if yt > u and zero

otherwise. The maximum likelihood estimate (MLE) for the rate parameter is

φ̂u = nu/n, where nu is the number of exceedances of the threshold u. The MLE’s

of the GPD parameters are found by numerical optimisation. For a stationary

series, assuming p < φ̂u which implies that yp > u, the estimated marginal return

level is

ŷp = u+
ψ̂u

ξ̂





(

φ̂u
p

)ξ̂

− 1



 . (3.2.3)

3.2.2 Non-stationary processes

Now suppose that the process {Yt} is non-stationary and has an associated se-

quence of covariates {Xt}. The first full proposal for extending the GPD to non-

stationary cases was given by Davison and Smith (1990) with an associated pro-

posal made by Smith (1989). They suggest continuing to model the exceedances of

a fixed high threshold u and to account for the non-stationarity of the exceedances



CHAPTER 3. NON-STATIONARY EXTREMES 60

by allowing the parameters of the GPD to be modelled as functions of the covari-

ates. Thus they model the rate of exceedance by φu(x) = Pr(Y > u|X = x) and

the distribution of excesses by a GPD(ψu(x), ξ(x)), i.e. for y > 0

Pr[Y > y + u|Y > u,X = x] =

[

1 +
ξ(x)y

ψu(x)

]−1/ξ(x)

+

. (3.2.4)

Under the assumption of temporal independence the likelihood function takes the

form

n
∏

t=1

[1 − φu(xt)]
1−I[yt>u]

[

φu(xt)ψu(xt)
−1

[

1 + ξ(xt)
yt − u

ψu(xt)

]−1/ξ(xt)−1

+

]I[yt>u]

.(3.2.5)

Initially linear covariate models were used, with a log-link for the rate and scale

parameters, e.g. Davison and Smith (1990), Smith and Shively (1995) and Coles

(2001), although more recent studies have considered the use of additive or fully

nonparametric models e.g. Hall and Tajvidi (2000), Davison and Ramesh (2000)

and Chavez-Demoulin and Davison (2005). In this paper we treat logψu, ξ and

logit φu as linear functions of covariates, so for vectors of coefficients ψu, ξ and

φu,

logψu(x) = ψ′
ux, ξ(x) = ξ′x, and logit φu(x) = φ′

ux. (3.2.6)

One disadvantage of this model is that it does not retain the threshold-stability

property of the GPD as discussed for the stationary case. In order to retain this

property in the non-stationary model the functional form of the scale parameter

must satisfy, for any v > u,

ψv(x) = ψu(x) + (v − u)ξ(x). (3.2.7)

If different covariates were included in the scale ψu(x) and shape ξ(x) parame-

ters this would obviously lead to inconsistency between the covariates included in

ψu(x) and those included in ψv(x) for all v > u. This fundamental property of the



CHAPTER 3. NON-STATIONARY EXTREMES 61

standard model does not seem to have been identified before and it rather under-

mines the use of such models as it implies their form of covariate selection in the

parameters is non-invariant to threshold choice. It could be argued that as ξ(x)

is often constant then the implications of constraint (3.2.7) are not problematic.

However, even then constraint (3.2.7) implies that ψu(x) cannot retain the same

functional form unless it is constant or a linear function, with the latter being

inconsistent with the log link formulation shown in equation (3.2.6).

The conditional return levels of equation (3.1.1) can be found in a similar

manner to the return levels in the stationary case. The conditional return level

when φu(xt) ≤ p must be below the threshold so the only available information

is that it is censored by yp,t ≤ u. However for observations where φu(xt) > p we

have, for yp,t > u

yp,t = u+
ψu(xt)

ξ(xt)

[

(

φu(xt)

p

)ξ(xt)

− 1

]

. (3.2.8)

Under the assumption of stationarity in the covariate distribution then equa-

tion (3.1.3) can be used for finding the marginal return level yp. Because we

make no distributional assumption on the data below the threshold, we cannot

estimate yp when yp ≤ u. For yp > u then equation (3.1.3) gives

p =
1

n

n
∑

t=1

Pr(Yt > yp|Xt = xt, Yt > u) Pr(Yt > u|Xt = xt)

=
1

n

n
∑

t=1

φ(xt)

[

1 + ξ(xt)
yp − u

ψ(xt)

]−1/ξ(xt)

+

. (3.2.9)

To find the MLE ŷp, replace the parameters in equation (3.2.9) by their MLE’s

and solve numerically.
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3.3 Pre-processing Methods

3.3.1 Full pre-processing model

A common approach for handling non-stationarity in a time series is to pre-process

(or pre-whiten) the full data series before fitting a model for a stationary series

(Chatfield, 2004). Essentially we propose this as the basis for modelling extreme

values of a non-stationary process. Our pre-processing approach involves first

fitting a model for the covariate effect on the underlying distribution of the process

{Yt}. In some contexts an established model, based on a scientific or data-based

rationale, may already exist. In the absence of such a model a flexible statistical

model could be fitted. Specifically, we propose a Box-Cox location-scale model of

the form

Y
λ(xt)
t − 1

λ(xt)
= µ(xt) + σ(xt)Zt (3.3.1)

where {Zt} are assumed to be approximately stationary, and λ, µ and log(σ) are

linear functions of the covariates. We do not include previous values of {Yt} as

covariates since we assume that, conditionally on the covariates, the {Yt} process

has independent events and also for consistency with the standard method, where

we know of no examples of using previous values of the process as covariates for

the current value.

We shall assume that the body of the distribution of the derived series {Zt}

is stationary and can be modelled using its empirical distribution F̃Z . However,

we do not use the stationary model of Section 3.2.1 for the extremes of {Zt} as

the extreme values of {Yt} may have a different form of non-stationarity than

for all of {Yt} or our Box-Cox location-scale model may not fully capture all the

covariate effects, so the extreme values of {Zt} may not behave like extreme values

of a stationary series. Instead, we model the extreme values of {Zt} using the

methods for non-stationary extremes in Section 3.2.2, i.e. with a fixed threshold

uz. Let φz,u(xt) be the rate of exceedance of uz by Zt, and define the GPD
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scale and shape parameters by ψz,u(xt) and ξz(xt) respectively. Thus the full pre-

processing model comprises a GPD(ψz,u(xt), ξz(xt)) for threshold exceedances and

the empirical distribution of the transformed process {Zt}, F̃Z , below this level.

To estimate return levels, we therefore use the GPD if φ(xt) > p, otherwise we

use the empirical distribution F̃Z . Critical to our use of the standard method of

analysis for the extremes of {Zt} is that we believe most, if not all, of the non-

stationarity of {Yt} will have been removed, or at least simplified, so that the

majority of problems identified in Section 3.2.2 concerning the lack of threshold

stability will have been alleviated.

Inference for this model then follows a two-step procedure; the first step is to

estimate the Box-Cox location-scale parameters (λ(xt), µ(xt), σ(xt)). There are

many possible ways to do this, but we suggest assuming that the underlying dis-

tribution is Gaussian since it is then straightforward to use likelihood inference

to estimate the Box-Cox and location-scale parameters and it is robust to obser-

vations in the tails. The second step is to model the tail of the approximately

stationary series {Zt} using the approach for non-stationary series discussed in

Section 3.2.2.

The conditional and marginal return levels defined for a non-stationary series

in equations (3.1.1) and (3.1.2) can easily be obtained under the pre-processing

approach. We start with the conditional return levels. Since

p = Pr(Yt > yp,t|Xt = xt) = Pr

(

µ(xt) + σ(xt)Zt >
y
λ(xt)
p,t − 1

λ(xt)

∣

∣

∣

∣

Xt = xt

)

we can first find the conditional return levels zp,t for the transformed series {Zt}

and then back transform these to give

yp,t = {λ(xt)[µ(xt) + σ(xt)zp,t] + 1}1/λ(xt) .

Unlike in the standard method, if φz,u(xt) ≤ p the conditional return levels zp,t

can be estimated using F̃Z . If φz,u(xt) > p the conditional return levels zp,t can be
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estimated using expression (3.2.8).

Let zp(xt) be the transformation under equation (3.3.1) of the marginal return

level yp. Then yp is the solution to the equation

p =
1

n

[

∑

t∈T

Pr(Zt > zp(xt)|Xt = xt, Zt > uz) Pr(Zt > uz|Xt = xt)

+
∑

t/∈T

Pr(Zt > zp(xt)|Xt = xt)

]

=
1

n

[

∑

t∈T

(

φz,u(xt)

[

1 + ξz
zp(xt) − uz
ψz,u(xt)

]−1/ξz

+

)

+
∑

t/∈T

1 − F̃Z(zp(xt))

]

where T = {t : zp(xt) > uz} is the set of all times where the transformed marginal

return level exceeds the threshold uz so that the GPD model for exceedances holds.

3.3.2 Varying threshold approach

An alternative method that is ‘in-between’ the standard and pre-processing meth-

ods is to use a time (and/or covariate) varying threshold to define the extremes

on the original scale. This can be seen as an extension to the already popular

approach of splitting data into seasons to allow for different thresholds in differ-

ent seasons (see Smith, 1989, Küchenhoff and Thamerus, 1996 and Heffernan and

Tawn, 2004, for examples with ozone data), which allows a continuously varying

threshold. Such a threshold may be obtained from the pre-processing method

by transforming the constant threshold uz back to the original scale to give the

varying threshold

u(xt) = {λ(xt)[µ(xt) + σ(xt)uz] + 1}1/λ(xt) . (3.3.2)

The excesses of this threshold can then be modelled using the method for non-

stationary extremes outlined in Section 3.2.2. Estimates of both conditional and

marginal return levels are obtained in the same way as for the standard method.

Specifically, as in the standard method and unlike the pre-processing method, we
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cannot make estimates of either return level below the threshold.

A further disadvantage of this method compared to the pre-processing method

is that the GPD parameters fitted under the varying threshold method are likely

to have more covariates than in the pre-processing model, making it more difficult

to fit the model. This can be seen by considering the simplest case where the

extremes of {Zt} are stationary, i.e. Zt|Zt > uz ∼ GPD(ψz,u, ξz). By a change

of variable, the distribution of the exceedances of the varying threshold given in

equation (3.3.2) is then, for y > 0

Pr(Yt ≥ y + u(xt)|Yt > u(xt),Xt = xt) =

[

1 +
ξz
{

[y + u(xt)]
λ(xt) − u(xt)

λ(xt)
}

ψz,uλ(xt)σ(xt)

]−1/ξz

+

.

(3.3.3)

For general λ(xt), this is not a GPD and so any attempt to model the exceedances

Yt − u(xt)|Yt > u(xt) using a GPD model is likely to result in a poor fit. Suppose

that the Box-Cox parameter λ(xt) is equal to 1; in this case equation (3.3.3)

simplifies to a GPD with shape parameter ξz and scale parameter ψz,uσ(xt). Now

σ(xt) needs to be estimated for both varying threshold and pre-processing methods,

however we can see that the pre-processing method will give the more efficient

estimate of σ(xt) as it uses all the data {Yt}, not only those {Yt} which are

exceedances of u(xt).

3.4 Theoretical and simulation study

To avoid over-complicating matters we do not consider the varying threshold

method in this section, preferring to compare the standard method with the full

proposed alternative; we shall return to the varying threshold approach in Section

3.5. We first illustrate the increased efficiency of the pre-processing method over

the standard method and then show, under the assumption that the correct form

of the covariate-response relationship is known, that the pre-processing method

is more likely to select the model with the correct covariates than the standard
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method.

The non-stationary process {Yt} is obtained under the location-scale transfor-

mation

Yt = µ(Xt) + σ(Xt)Zt (3.4.1)

where the location and scale parameters µ(Xt) and log σ(Xt) are functions of a

time-varying covariate Xt and {Zt} is an IID sequence of random variables with

Gumbel marginal distribution and a scale parameter k. By varying k we assess

the impact of the signal to noise ratio on each of the methods. The distribution

function of Yt|Xt is

Pr(Yt ≤ y|Xt) = exp

{

− exp

[

−
(

y − µ(Xt)

kσ(Xt)

)]}

, −∞ < y <∞. (3.4.2)

Further the upper tail of the distribution of Yt|Xt converges asymptotically to an

Exponential(kσ(Xt)) distribution, as u→ ∞

Pr(Yt > y + u|Yt > u,Xt) ∼ exp

{

− y

kσ(Xt)

}

, y > 0. (3.4.3)

We consider two models for each of the parameters µ(Xt) and σ(Xt), each con-

taining either a linear or a cyclic trend, with coefficients µ and σ. The cyclic trend

is given by a first-order Fourier series;

1. µ(Xt) = µ0 + µ1
t

n+1
, σ(Xt) = 1,

2. µ(Xt) = 0, log σ(Xt) = σ0 + σ1
t

n+1
,

3. µ(Xt) = µ0 + µ1 cos(2πt
N

) − µ2 sin(2πt
N

), σ(Xt) = 1,

4. µ(Xt) = 0, log σ(Xt) = σ0 + σ1 cos(2πt
N

) − σ2 sin(2πt
N

)

where n in the total number of observations and N is the number of observations

in each of the cycles generated by the Fourier series.
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3.4.1 Efficiency

In showing the decrease in efficiency caused by using the standard rather than pre-

processing method we use the exact probability of exceeding u given by equation

(3.4.2) rather than estimating the rate parameter φu(Xt). Also, following the

asymptotic result in equation (3.4.3) we model the threshold exceedances using

an Exponential distribution, i.e. a GPD with ξ(Xt) = 0. The likelihood for this

model under the standard method is

L0(µ,σ, k) =
n
∏

t=1

[1 − Pr(Yt > u|Xt)]
1−I[yt>u]

[

Pr(Yt > u|Xt)
1

kσ(xt)
exp

{

−
(

yt − u

kσ(xt)

)}]I[yt>u]

(3.4.4)

By construction, the only trends in the process are through the mean or variance.

To estimate the covariate coefficients using the pre-processing method we should

therefore only need to estimate the location and scale parameters by fitting the

regression model with likelihood

L1(µ,σ, k) =

n
∏

t=1

1

kσ(xt)
exp

{

−
(

yt − µ(xt)

kσ(xt)

)}

exp

{

− exp

[

−
(

yt − µ(xt)

kσ(xt)

)]}

.

(3.4.5)

Efficiency here is measured as the ratio of the asymptotic variances of the

MLE for the trend parameter under the pre-processing method to that under the

standard method. The required variances can be obtained from the inverse of the

expected information matrix, details of the calculations of these are in Appendix A.

Figure 3.2 shows efficiency results for each of the four models for a range of Gumbel

scale parameters k and a range of thresholds. In all cases the efficiency of the

standard method compared to the pre-processing method decreases towards zero

as the threshold increases. The efficiency gain is less when there is non-stationarity

in the scale than when there is non-stationarity in the location.
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Figure 3.2: Efficiency of standard method compared to pre-processing method.
Efficiency is shown for the time covariate coefficient in the linear trend models (a)
and (b) and for the coefficient of the cosine term in the cyclic models (c) and (d)
for thresholds between the 75- and 99% quantiles. Four values of the Gumbel scale
parameter k are shown, k = 0.5 (full line), k = 1 (dashed line), k = 2 (dotted line)
and k = 5 (dash-dot line). The thick line shows the proportion of the full data set
exceeding the threshold.

Increasing the Gumbel scale parameter k (equivalently decreasing the signal to

noise ratio) increases the efficiency of the standard approach, except in the case

of a linear trend in the scale where there is no change in the efficiency. For both

location trends the maximum efficiency of the standard method seems to tend to

the proportion of data exceeding the threshold, as k increases. The efficiency of

the standard method relative to the pre-processing method is greater when the

trend is observed in the scale parameter than when it is observed in the location.

The reason for this difference is that the scale parameter appears in all parts of the

standard method likelihood (3.4.4), whereas the location parameter contributes to

the rate part only.
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3.4.2 Model Selection

Evaluating efficiency as above assumes that the correct covariate model has been

selected. We next consider the likelihood of this happening under the two methods.

Given a data set we use the likelihoods given in equations (3.4.4) and (3.4.5) to fit

both the null model, with no covariates, and the correct covariate model, under

both approaches. We use the likelihood ratio statistic to decide whether or not to

accept the correct model.
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Figure 3.3: Proportion of covariate models selected correctly, PA, under standard
(dashed lines) and pre-processing (full lines) methods. 85-, 90-, 95- and 99%
thresholds were used for the standard method (left to right in each plot). Models
are (a) linear trend in mean, (b) linear trend in scale, (c) cyclic trend in mean and
(d) cyclic trend in scale. Gumbel scale parameter is k = 1 in all cases. Proportions
were estimates using 500 simulated data sets.

Figure 3.3 shows results for each of the four models considered. In the linear

models we consider a range of values for the coefficient of the covariate. For the

cyclic models we always take the coefficient of the sine term to be the negative

of the cosine term and so we just vary the value of this coefficient. For each
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model and set of parameter values we simulated 500 data sets of length 1825

(equivalently 5 years of data) and calculated the proportion of these for which the

correct model was selected. For the standard method we considered 85-, 90-, 95-

and 99% thresholds. These plots clearly show that in all cases the pre-processing

method has a higher probability of picking out the correct model, especially for

very low values of the trend coefficients. This seems to confirm our intuition

that a multiple regression model under the pre-processing method is more likely

to correctly identify response-covariate relationships than a multiple regression

model under the standard method.

3.5 Ozone data Analysis

3.5.1 Background

We now discuss various methods of analysing the ozone data set shown in Fig-

ure 3.1. Throughout, we assume that any missing data is missing at random (for

example due to machine failure) and is therefore non-informative. We begin with

a naive approach and assume that the data are stationary. Standard diagnostic

plots, for example, mean residual life and threshold-shape plots (Coles, 2001) sug-

gest a 90% quantile threshold, u = 100, should be sufficient and the QQ plot shown

in Figure 3.9(a) shows that the GPD fitted to the exceedances of this threshold

fits reasonably well.

However, the data clearly do not satisfy the assumption of stationarity, so

that, although the model appears to fit the observations well given the QQ plot in

Figure 3.9(a), we would not trust it in making predictions. Further, the stationary

model is of no use in helping us to estimate trends in the data since it does not

allow us to build in the known physical mechanisms involved in ozone generation.

Neither can we use it to make predictions of extreme ozone levels under any forecast

changes in the variables involved in these underlying mechanisms; for example, we

might be especially interested in the likely impact on ozone levels of various climate
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change scenarios. To address these issues we instead fit a model with covariates

following each of the three methods presented in Sections 3.2.2 and 3.3.
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Figure 3.4: Daily maxima of (a) NO2 (µgm−3), (b) NO (µgm−3) and (c) temper-
ature (◦C). Also (d) daily aggregate sunshine (hours).

The precursor chemicals involved in the production of ozone are well known,

and it is further known that this process is dependent on meteorological condi-

tions (see Section 3.1). Selection of potential covariates should be driven by this

information. As potential covariates in this study we have maximum daily mea-

surements of two precursors, NO and NO2, and two meteorological variables, tem-

perature (daily maxima) and sunshine (daily aggregate), as shown in Figure 3.4.

Since they are likely to be related, we allow a first order interaction (×) between

temperature and sunshine. The meteorological covariates, obtained from the UK

Meteorological Office, come from a site located 2km away from the air pollution

monitoring site, this is close enough to be considered representative of conditions

at the air pollution site. As additional covariates, we consider indicator functions

for each year and for each season, defined as winter (December-February), spring
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(March-May), summer (June-August) and autumn (September-November). The

yearly indicators show whether the ozone levels display any long-term trends over

and above that which is accounted for by trends in the covariates; and thus allow

for more subtle trends than linearity. The seasonal indicators allow for any sea-

sonal trend due to missing covariates, such as volatile organic compounds (VOC’s),

road traffic indicators or proximity to point sources.

Standard threshold diagnostic plots are no longer informative for non-stationary

data, instead one can attempt to fit the covariate models over a range of thresh-

olds and look for consistencies in fit. However, using the standard method, we

experienced difficulties in fitting covariate GPD models to the exceedances of a

range of thresholds, since the numerical routine used to maximise the likelihood

frequently failed to converge without a great deal of tuning. This problem did not

occur when the pre-processing and varying threshold methods were used. We show

results using the 90% threshold for all methods. This guarantees the same number

of exceedances are used in each method, thus ensuring a fair comparison of the

methods. Both constant and varying 90% thresholds are shown in Figure 3.5(a).

The likelihoods used for model fitting, see equations (3.2.2) and (3.2.5), require

the assumption that the data are independent, which in practice is unlikely to

be the case. One way to account for any dependence is to use all the data to

obtain point estimates for the parameters, but to then use a block bootstrap

scheme to estimate confidence intervals for the estimates. The scheme that we

propose involves resampling the pre-processed series {Zt}, assuming that this is

approximately stationary. For this example, a block length of 5 days was chosen

to minimise dependence between blocks as this period is more than sufficient to

ensure independence between pollutants, since molecules of ozone, NO and NO2

react within minutes of being present in the atmosphere, but importantly was long

enough to ensure independence between the meteorological variables, since climate

events may last several days. The re-sampled series is then back-transformed to

the original scale using the parameters fitted to the original data. The resulting
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bootstrapped sample can be modelled using either of the standard, pre-processing

or varying threshold methods and the results used to obtain a sampling distribution

of the model parameters or return levels under each method.

3.5.2 Results

Selection of the actual covariate model is non-trivial, since the mechanisms control-

ling the ozone process are themselves exceedingly complex (Thompson et al., 2001).

We want a model with a minimum number of covariates which reflects the scientific

understanding of the process and well represents the data. We selected the covari-

ates in stages; for example, for the Box-Cox parameter λ(xt), we compared models

with λ(xt) = 1, λ(xt) = λ and λ(xt) = λ(xt). Similarly we first attempted to fit

a model without the yearly and seasonal indicators. Finally, we used a mixture

of forward and backward selection with a significance level of 1% to decide which

covariates to include in each of the parameters, see McCullagh and Nelder (1989).

In the GPD models we follow a standard procedure and fix the shape parameter

as constant, since the amount of information required to estimate this well as a

function of covariates is too great. We do not claim that the model given below

is the definitive model for surface-level ozone concentrations, merely that it is one

that seems plausible; from both a scientific and statistical perspective.

Following the exploratory analysis described above, we chose to fix the Box-

Cox parameter at λ = 0.5, since this maximised the profile likelihood for λ across

a range of interpretable values (e.g. λ = −0.5, 0, 0.5 and 1). Taking λ = 0.5 we

model the mean and scale in the pre-processing model as functions of the square

roots of NO and NO2, since the relationship between these and the square root

of ozone seemed closer to linearity than that between the square root of ozone

and both NO and NO2 on their observed scale. Further, it is standard procedure

to model chemicals on comparable scales; hence for the standard and varying

threshold methods, where we model ozone on the observed scale we also retain

NO and NO2 on their observed scales.
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Scientific Data-based
µ(xt) log σ(xt) µ(xt) log σ(xt)

Constant 7.63 -0.404 7.70 -0.366√
NO -0.232 0.0443 -0.256 0.0520√
NO2 0.148 0.211

Temp 0.00748 0.0130
Sun -0.00668 -0.0345 0.0949
Temp×Sun 0.00685 0.00226 N/A N/A
I[1998] 0.724 0.702
I[1999] 0.958 0.571
I[2000] 0.306 -0.124
I[Spring] 0.587 N/A N/A√

NO×I[Summer2] N/A N/A -0.0335
Temp×I[Summer2] N/A N/A 0.0199
I[Summer2,1999] N/A N/A 0.466 -0.326
Sun×I[Summer2,1999] N/A N/A 0.144 0.0618

Table 3.1: Maximum likelihood estimates of significant covariates in location and
scale parameters for the two pre-processing models. N/A refers to covariates not
fitted in that model, as opposed to blank entries which show covariates which were
not significant.

The MLE’s of the best fitting location-scale parameters selected under this

procedure are shown in Table 3.1, under the heading ‘Scientific’. The MLE’s for

the best fitting GPD and rate parameters are, using the standard method

logit φu(xt) = −8.81 − 0.0127NO + 0.0881Temp + 0.0433Sun

+0.0127Temp × Sun + 3.51I[1998] + 4.44I[1999]

+2.89I[2000] + 1.60I[Spring]

logψu(xt) = 1.27 + 0.0647Temp + 0.0636Sun + 0.541I[1999]

ξ = −0.438,

using the pre-processing method,

φz,u(xt) = 0.100, ψz,u(xt) = 0.510, ξz = −0.227,
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and using the varying threshold method,

φu(xt)(xt) = 0.100, logψu(xt)(xt) = 1.74 + 0.0474Temp + 0.353I[1999], ξ = −0.279.

The results of the pre-processing model fit shown in Table 3.1 confirm that

each of the precursors and meteorological covariates are important in describing

the ozone process. For example, from the fitted location parameter, we see that

high NO levels correspond to low ozone levels (plots confirm that NO tends to peak

in winter, when ozone levels are at there lowest), whereas there is some positive

relationship between NO2 and ozone. Similarly increases in both temperature

and the interaction between sunshine and temperature lead to higher ozone levels.

Ozone levels seem to be higher, on average and given the values of the precursors

and meteorological covariates, in the years 1998, 1999 and 2000, with the greatest

increase in 1999, and also during the spring (March-May). This is likely to be due

to the presence of some missing covariates, such as VOC’s or traffic volume. Note

that the standard method doesn’t pick up all the covariate relationships found

using the pre-processing method; for example the level of NO2 is not significant in

the standard model.

The functional forms of the rate and scale parameters found using the pre-

processing and varying threshold methods are much simpler than those found

using the standard method. Specifically, for the pre-processing method, there is

no evidence of any covariate effects in either the rate or scale parameters. Results,

not shown here, suggest that these findings hold for a range of thresholds. A

consequence of the simplicity of the GPD model for the pre-processing method

is that, under the stationarity assumption, threshold choice can be improved by

using standard methods (Coles, 2001).

Figure 3.5(b) shows a plot of the estimated rate parameter for the standard

method. Compared to the constant rate parameter for the other methods, this

shows considerable variation. Specifically, over the summer periods, the probability

of observing an exceedance under the standard method is extremely high, at least
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Figure 3.5: (a) Reading ozone data with constant (dashed line) and varying (full
line) 90% thresholds and (b) estimated rate parameters for the exceedances of the
constant (dashed line) and varying (full horizontal line) 90% thresholds.

50% for most days; suggesting that these observations are not extreme at all. In

contrast, the pre-processing method has a higher threshold over the same periods

that the standard method has an increased rate parameter and so by accounting

for the underlying mechanisms in determining the threshold the pre-processing

method is ensured a constant rate of exceedance. PP (not shown) and QQ plots

(shown for the pre-processing method only in Figure 3.6) suggest that all three

models fit the exceedances reasonably well.

We now compare the ability of each of the models to predict return levels.



CHAPTER 3. NON-STATIONARY EXTREMES 77

E
m

p
ir

ic
al

Model

0

0 1

2

2 3

4

4

6
8

Figure 3.6: QQ plot to show the goodness of fit of the GPD model for the 90%
threshold exceedances fitted using the pre-processing method. The plot is shown
on the standard exponential scale.

Recall that, for the standard method, if φu(xt) < p we know only that yp,t ≤ u.

In this case, by taking yp,t = u we obtain falsely high point estimates and falsely

narrow confidence intervals. However by choosing p small enough we minimise the

occurrence of this. We look at the conditional return level yp,t where p = (365n)−1;

if identical values for xt were observed each day for n years we would expect yp,t

to be exceeded once.

Figure 3.7 shows the 10-year conditional return levels. The plots show that the

estimates using either the pre-processing or varying threshold approach follow the

pattern of the observed data more closely than the estimates made under the stan-

dard approach. During the summer the standard method seems to under-estimate

the return levels, relative to either of the other methods, whereas during the winter

it over-estimates the return levels, relative to the other methods. Further, many

of the point estimates from the standard method fall just outside the 95% confi-

dence intervals, especially during the winter months. This suggests that the GPD

model with parameters as functions of covariates might not be a good model for

some vectors of covariates, especially for those covariates for which the associated

ozone level was a non-exceedance. Figure 3.8 shows boxplots of the 95% confi-

dence interval widths for the three methods. Even taking into account the falsely
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Figure 3.7: 10-year conditional return levels, point estimates (dots) and 95% con-
fidence intervals (vertical lines), for (a) standard, (b) pre-processing (scientific
model) and (c) varying threshold methods. Exceedances are shown by crosses.
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Figure 3.7 (continued)
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narrow confidence intervals for some of the estimates under the standard method

the scientific pre-processing model seems to have narrower confidence intervals.
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Figure 3.8: Box plots to summarise the 95% confidence interval widths for 10-year
conditional return levels estimated under the standard, pre processing (scientific
and data-based models) and varying threshold methods.

3.5.3 Covariate mis-specification

All three methods for modelling non-stationary extremes are susceptible to missing

or mis-specified covariates. To understand the effect that missing covariates might

have on the model output, we fit a second pre-processing model to the ozone data

using data-based covariates; mostly this means using indicator functions to mimic

unobserved covariates. The key to this model is that there were unusually high

levels of ozone in 1999 which are not explained by any of the available precursors

and meteorological covariates (see Figures 3.1 and 3.4). Exploratory analyses (not

shown) suggested that the best way to model this was using a two season model

with summer defined to be the period April-September. We then allow second-

order interactions between season and all precursors and meteorological covariates

and yearly indicators, as well as third order interactions between season, the yearly

indicator for 1999 and the physical covariates. Significant covariates were selected

in the a similar way as for the previous models.
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We follow the scientific model and select λ = 0.5. Then the MLE’s for the

location and scale parameters under this new model are shown in Table 3.1, under

the heading ‘Data-based’. This model has fewer covariates than its scientific coun-

terpart, but it is less interpretable; for example, there is no reason that the positive

relationship between sunshine and mean ozone level should have increased in the

summer of 1999 or that the variance should also have decreased at this time, other

than that these covariates are acting as dummy variables for missing covariates

that actually caused these changes in mean and variance. The MLE’s for the tail

parameters under this model are

φz,u(xt) = 0.100, ψz,u(xt) = 0.532, ξz = −0.293.

There are a number of similarities between the two pre-processing models;

primarily the series {Zt} is close to stationarity regardless of which set of covariates

is used to model µ(xt) and σ(xt) and so it is not necessary to fit covariates in

the tail parameters in either case. Specifically, the rate parameter is constant,

whereas we found that when using the standard method the rate parameter varied

considerably through time, even when data-based covariates are used.

The point estimates of the tail parameters of the two pre-processing models are

very similar, especially when estimation uncertainty is taken into account. Many

of the covariates common to both location or scale parameters also have similar

coefficients; for example, from Table 3.1, NO has a similarly sized positive effect

on the mean level under both models.

We also estimate 10-year conditional return levels, and associated 95% con-

fidence intervals, for this data-based pre-processing model. We found that the

largest differences between the point estimates from the two pre-processing mod-

els occur during the summer, when the scientific model over-estimates the return

levels compared to the data-based model. Plots (not shown) of a similar compari-

son between standard models fitted using the scientific and data-based covariates

show similar differences. However, the conditional return levels estimated from
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the pre-processing models show a much closer fit to the data than estimates from

models fitted using the standard method, regardless of the covariates used. We

found little difference between the uncertainty associated with the estimates from

different covariate models from a particular method (see the box plot of confi-

dence interval widths in Figure 3.8 for a comparison of the different models under

the pre-processing method), but there was consistently lower uncertainty from the

pre-processing method than from the standard method, regardless of the covariates

used.
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Figure 3.9: QQ plots of estimated marginal return levels against observed data
using models fitted using the (a) stationary, (b) standard and (c) and (d) pre-
processing methods. Plot (c) shows the scientific and (d) the data-based pre-
processing models. Dotted lines show 95% bootstrapped confidence intervals.
Perfect fit is identified by the 45◦ line. Plots (a) and (b) shows only the top
10% of the observed data, whereas plots (c) and (d) show the top 30%.

Finally we consider the estimation of the marginal return levels for the ob-

served period and under future covariate conditions. For the observed period,

marginal return levels estimated using the stationary GPD, standard and both



CHAPTER 3. NON-STATIONARY EXTREMES 83

pre-processing models are compared in the form of QQ-plots in Figure 3.9. Be-

cause we consider the observed period only we can take the empirical distribution

as an estimate of the joint distribution of the covariates. These plots appear

to show that there are considerable similarities between the different estimation

methods in terms of marginal return levels over this period. Figure 3.9 shows that

using the pre-processing method we can make estimates below the threshold as

we have estimates below 100. We have found that the marginal return levels were

particularly difficult to estimate, under both standard and pre-processing meth-

ods, with the best estimates coming from the data-driven, rather than scientifically

motivated, covariate models; this is confirmed by the plots in Figure 3.9.

The QQ plots in Figure 3.9 suggest that the non-stationary models lead to

estimated marginal return levels which show a poorer fit to the data than those

estimated under the stationary model. This is probably due to the use of the

empirical joint distribution for the covariates, see equation (3.1.3). By modelling

the covariates, especially in the tails, we might expect better estimates. The idea

of modelling covariates is explored to some extent in Chapter 4, where marginal

return levels are obtained by simulation, but further work is required on this sub-

ject. Despite the difficulty in estimating marginal return levels, a non-stationary

model may still be preferable to a stationary one since it allows us to use mod-

elled response-covariate relationships to make predictions, especially of conditional

return levels, given future covariate values. Clearly such prediction does rely on

the usual assumption that the covariate-response relationships hold for the new

covariate values.

If interest is in future covariate scenarios we believe that there are distinct

advantages in the pre-processing scientific model. The stationary GPD model

is clearly inappropriate if the covariate scenario is much different from that ob-

served. The superior ability of the pre-processing method relative to the standard

method to capture the under-lying data generating mechanisms is likely to lead

to improved marginal return level estimation under a greater range of covariate
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scenarios. Further, because the covariates in the pre-processing data-based model

were determined specifically to fit the data across the time period of observation

(e.g. using the interactions between the indicator variables for years and seasons

and the other covariates) we could not use this model to estimate marginal re-

turn levels for future covariate scenarios. The pre-processing scientific model does

contain yearly indicators, which were included in an attempt to identify trends,

clearly some assumption is required to extend this inference to future covariate

scenarios.

3.6 Discussion and comparison

The pre-processing method for modelling extremes of non-stationary processes

introduced in this paper seems to show several improvements on alternative meth-

ods. First we discuss the varying threshold approach discussed in Section 3.3.2;

this can be seen as an extension of splitting data into ‘seasons’ and separately

modelling the data within seasons. The disadvantage of this approach compared

to the full pre-processing approach is that, because the excesses are modelled on

the original scale, it is impossible to distinguish the covariate effects found in the

GPD parameters between those which affect the centre of the distribution and

those which affect the tails. This also implies that there are likely to be more sig-

nificant covariates in the GPD parameters with less data from which to estimate

their form, suggesting a numerically complex model-fitting situation. Results from

the ozone data analysis in Section 3.5 also suggest that there is a greater uncer-

tainty in predictions made under this approach compared to those made under the

pre-processing approach.

We now compare the pre-processing and standard method. Primarily, the pre-

processing approach is better because the reasons for non-stationarity in a data

set are often intricately tied up with the mechanisms generating the underlying

process, so modelling non-stationarity in the underlying process is more likely to

capture the appropriate form of non-stationarity. In some contexts a model for the



CHAPTER 3. NON-STATIONARY EXTREMES 85

underlying process may already exist. The simulation study in Section 3.4 confirms

the benefits of exploiting the full structure of the mechanism, showing that the

pre-processing method is more likely to correctly select the covariate model than

the standard method. Further, the threshold exceedances under the pre-processing

method are those that are extreme when we have taken into account the covariate

relationship. This is not necessarily true for the standard method making the

theoretical justification for the standard method seem weak.

The pre-processing method also produces a simpler and more efficient model

fit; if there is no difference between the covariate effects in the body and extremes

of the process {Yt} then the pre-processing approach which uses all the data to

estimate these effects is bound to be more efficient as the rate and GPD parameters

φz,u(xt), ψz,u(xt) and ξz(xt) will then be independent of the covariates. Alternately,

if there is a different covariate effect in the body and extremes of {Yt} then the

standard model confounds these whereas the pre-processing model allows separate

estimation of each and so gives a clearer scientific interpretation of the covariate

effects.

We believe that for hypothesis testing in the extreme value components of the

models the pre-processing method changes the strategy of covariate model fitting

to be scientifically rational. The standard method rejects covariates from the

model if there is not significant evidence for their inclusion based on the extreme

value data and in this case, as Figure 3.3 suggests, rejection of the covariate will

often arise. In contrast the pre-processing method essentially tests whether there

is significant evidence from the extreme values for a departure of the covariate

form from that estimated using the body of the data.

The above discussion assumes that there is no mis-specification in the se-

lected covariate form for the pre-processing stage. We anticipate that gross mis-

specification would be identified by standard diagnostic tools as the pre-processed

series will not appear stationary. Consider instead a small level of mis-specification.

As the varying threshold method differs from the standard method only in which
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extreme events are selected for analysis then the varying threshold should be bet-

ter as it will use data that are generally more appropriate. As the pre-processing

method only differs from the varying threshold method by its choice of covari-

ate forms, if the same covariates are available for each analysis we see no reason

why the pre-processing method should perform worse than the varying threshold

method.

The pre-processing approach also has the advantage of being computationally

simpler since the extremes of the transformed process {Zt} are far closer to station-

arity than those of the original process {Yt}. It follows that threshold selection is

easier in the pre-processing approach as tools for threshold selection for stationary

extremes are likely to be suitable for {Zt} extremes but not {Yt} extremes. It also

follows that, since it is more likely to be independent of the covariates, the GPD

scale parameter is more likely to satisfy the threshold stability property discussed

in Section 3.2.2.

Further work is necessary to investigate how to model the GPD parameters in

the presence of covariates in order to retain the threshold stability property, so that

it holds even if the pre-processing method suggests covariates are necessary. Our

initial ideas for how this problem should be addressed are as follows. Smith (1989)

showed that there is a connection between the generalised extreme value (GEV)

distribution parameters and the GPD parameters through a general point process

result for extreme values. All the parameters of the GEV distribution are threshold

invariant so exploiting this link may help. Given this property, it may appear

preferable to use the GEV model instead of the GPD model for the extreme value

modelling in this paper. However, we feel it is important to parametrise the

non-stationary models through the GPD formulation, as this leads to orthogonal

parameters for the rate and excess distribution.
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Appendix A

A.1 Simulation Study

In Chapter 3 we used a simulation study to illustrate the increased efficiency of

the proposed pre-processing method for modelling non-stationary extremes over

the existing method. The simulation study involves a process with known mean

and variance covariate structure and is defined in equation (3.4.1). Comparison of

the efficiency of the two methods requires calculation of the expected information

matrices; details of these calculations are given below, first for the general process

and then for the specific examples considered. We invert the expected informa-

tion matrices using numerical methods to obtain the covariance matrices for the

parameters.

A.1.1 Details of efficiency calculations

Given a realisation {Y1, . . . , Yn} of the process (3.4.1) the likelihood function for

the existing method is given in equation (3.4.4) and for the pre-processing method

in equation (3.4.5). Let l0 be the log-likelihood function corresponding to equation

(3.4.4) and write

z =
u− µ(Xt)

kσ(Xt)
and r =

exp{−2z} exp{exp(−z)
1 − exp{− exp(−z)} }.

89
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Then the elements of the expected information matrix for the existing approach

are as follows;

E

[

− δ2l0
δµjδµi

]

=

n
∑

t=1

(

1

k2σ2(Xt)
r

)

δµ

δµj

δµ

δµi
,

E

[

− δ2l0
δσjδµi

]

=
n
∑

t=1

(

u− µ(Xt)

k2σ3(Xt)
r

)

δσ

δσj

δµ

δµi
,

E

[

− δ2l0
δkδµi

]

=
n
∑

t=1

(

u− µ(Xt)

k3σ2(Xt)
r

)

δµ

δµi
,

E

[

− δ2l0
δσjδσi

]

=

n
∑

t=1

(

(u− µ(Xt))
2

k2σ4(Xt)
r +

1 − exp{− exp(−z)}
σ2(Xt)

)

δσ

δσj

δσ

δσi
,

E

[

− δ2l0
δkδσi

]

=

n
∑

t=1

(

(u− µ(Xt))
2

k3σ3(Xt)
r +

1 − exp{− exp(−z)}
kσ(Xt)

)

δσ

δσi
,

E

[

−δ
2l0
δk2

]

=

n
∑

t=1

(

(u− µ(Xt))
2

k4σ2(Xt)
r +

1 − exp{− exp(−z)}
k2

)

δσ

δσi
.

Evaluation of the expected information matrix therefore requires a value for the

threshold u. For a given probability p notice that the pth quantile must satisfy

p = Pr(Y > u)

=

∫

xt

Pr(Yt > u|Xt = xt) Pr(Xt = xt) dxt

≈ 1

n

n
∑

t=1

Pr(Yt > u|Xt = xt)

=
1

n

n
∑

t=1

exp

{

− exp

[

−
(

u− µ(Xt)

σ(Xt)

)]}

where the approximation comes by using the empirical distribution for the covari-

ates. It follows that, as n → ∞ and p → 0, numerical solution of this equation

gives a value for u in terms of the model parameters.

Now let l1 be the log-likelihood function corresponding to the likelihood for the

pre-processing method in equation (3.4.5). The elements of the expected informa-
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tion matrix under this approach are as follows;

E

[

− δ2l1
δµjδµi

]

=
1

k2

n
∑

t=1

1

σ2(Xt)

δµ

δµj

δµ

δµi
,

E

[

− δ2l1
δσjδµi

]

=
(γ − 1)

k

n
∑

t=1

1

σ2(Xt)

δσ

δσj

δµ

δµi
,

E

[

− δ2l1
δkδµi

]

=
(γ − 1)

k2

n
∑

t=1

1

σ2(Xt)

δµ

δµi
,

E

[

− δ2l1
δσjδσi

]

= (1 +
π2

6
+ γ(γ − 2))

n
∑

t=1

1

σ2(Xt)

δσ

δσj

δσ

δσi
,

E

[

− δ2l1
δkδσi

]

=
1

k
(1 +

π2

6
+ γ(γ − 2))

n
∑

t=1

1

σ(Xt)

δσ

δσi
,

E

[

−δ
2l1
δk2

]

=
n

k2
(1 +

π2

6
+ γ(γ − 2)).

Here γ = 0.577215 . . . is Euler’s constant.

A.1.2 Examples

The previous section gave the contributions to the expected information matrix

by each of the parameters for the general process described in equation (3.4.1).

Here we give the expected matrices for each of the four examples considered in

Section 3.4.

1. µ(Xt) = µ0 + µ1
t

n+1
, σ(Xt) = 1

2. µ(Xt) = 0, log σ(Xt) = σ0 + σ1
t

n+1
,

3. µ(Xt) = µ0 + µ1 cos(2πt
N

) − µ2 sin(2πt
N

), σ(Xt) = 1,

4. µ(Xt) = 0, log σ(Xt) = σ0 + σ1 cos(2πt
N

) − σ2 sin(2πt
N

)

For the existing method the information matrices are as follows;
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1. Let

r =
exp{−2(u− µ(Xt))/k} exp{− exp[−(u− µ(Xt))/k]}

1 − exp{− exp[−(u− µ(Xt))/k]}
and

v = 1 − exp {− exp (−(u− µ(Xt))/k)}

then

I =
1

k2

















∑n
t=1 r

∑n
t=1 tr

1
k

∑n
t=1(u− µ(Xt))r

∑n
t=1 tr

∑n
t=1 t

2r 1
k

∑n
t=1(u− µ(Xt))tr

1
k

∑n
t=1(u− µ(Xt))r

1
k

∑n
t=1(u− µ(Xt))tr

1
k2

∑n
t=1

(

(u− µ(Xt))
2r

+(2uk + 2 − k2)v
)

















.

2. Let

r =
exp{−2u/kσ(Xt)} exp{− exp[−u/kσ(Xt)]}

1 − exp{− exp[−u/kσ(Xt)]}
and

s = u2r + k2σ2(Xt)(1 − e−e−u/kσ(Xt)

)

then

I =





∑n
t=1

t2

σ2(Xt)k2 s
∑n

t=1
t

σ2(Xt)k3 s

∑n
t=1

t
σ2(Xt)k3 s

∑n
t=1

1
σ2(Xt)k4 s



 .

3. Let C = cos 2πt
N

, S = sin 2πt
N

and

z =
u− µ(Xt)

k
,

r =
exp{−2z} exp{− exp(−z)}

1 − exp{− exp(−z)} and

v = 1 − exp {− exp(−z)}
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then

I =
1

k2























∑n
t=1 r

∑n
t=1Cr

∑n
t=1 Sr

1
k

∑n
t=1(u− µ(Xt))r

∑n
t=1 Cr

∑n
t=1 C

2r
∑n

t=1 CSr
1
k

∑n
t=1 Cr

∑n
t=1 Sr

∑n
t=1 CSr

∑n
t=1 S

2r 1
k

∑n
t=1 Sr

1
k

∑n
t=1(u− µ(Xt))r

1
k

∑n
t=1 Cr

1
k

∑n
t=1 Sr

1
k2

∑n
t=1

{

(u− µ(Xt))
2r

+(2uk + 2 − k2)v
}























.

4. Let C and S be as above and

r =
exp{−2u/kσ(Xt)} exp{− exp(−u/kσ(Xt))}

1 − exp{− exp(−u/kσ(Xt))
and s = u2r + k2σ2(Xt)(1 − e−e−z

)

then

I =
1

k2











∑n
t=1

C2

σ2(Xt)
s

∑n
t=1

CS
σ2(Xt)

s 1
k

∑n
t=1

C
σ2(Xt)

s

∑n
t=1

CS
σ2(Xt)

s
∑n

t=1
S2

σ2(Xt)
s 1

k

∑n
t=1

S
σ2(Xt)

s

1
k

∑n
t=1

C
σ2(Xt)

s 1
k

∑n
t=1

S
σ2(Xt)

s 1
k2

∑n
t=1

1
σ2(Xt)

s











.

Under the pre-processing method the information matrices are as follows;

1.

I =
1

k2













n
∑n

t=1 t n(γ − 1)

∑n
t=1 t

∑n
t=1 t

2 (γ − 1)
∑n

t=1 t

n(γ − 1) (γ − 1)
∑n

t=1 t n(1 + π2

6
+ γ(γ − 2))













.

2.

I = (1 +
π2

6
+ γ(γ − 2))







∑n
t=1 t

2 1
k

∑n
t=1 t

1
k

∑n
t=1 t

n
k2






.
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3. Let C and S be as above, then

I =
1

k2



















n
∑

t=1 nC
∑

t=1 nS n(γ − 1)
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t=1 nC
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t=1 nC
2

∑

t=1 nCS (γ − 1)
∑

t=1 nC

∑

t=1 nS
∑

t=1 nCS
∑

t=1 nS
2 (γ − 1)

∑

t=1 nS

n(γ − 1) (γ − 1)
∑

t=1 nC (γ − 1)
∑

t=1 nS n(1 + π2

6
+ γ(γ − 2))



















.

4.

I = (1 +
π2

6
+ γ(γ − 2))













∑n
t=1 C

2
∑n

t=1 CS
1
k

∑n
t=1 C

∑n
t=1 CS

∑n
t=1 S

2 1
k

∑n
t=1 S

1
k

∑n
t=1C

1
k

∑n
t=1 S

n
k2












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Chapter 4

Models for multivariate extremes

4.1 Introduction

We aim to extend the pre-processing approach for modelling the extreme levels

of ozone to a fully multivariate approach by modelling the joint distribution of

ozone, NO and NO2, conditional on associated meteorological covariates. Such an

approach allows the estimation of ozone return levels which takes into account the

non-stationarity and tail distributions of NO and NO2. We suggest a conditional

(or hierarchical) approach, in which we apply the pre-processing method to each

pollutant in turn. The pollutants are first ordered in some scientifically meaningful

way. Starting with the lowest ranked of the pollutants, level j in the hierarchy

consists of modelling the jth pollutant, conditional on the covariates and the

preceding pollutants. This conditional approach provides a model from which

we can estimate return levels by simulation.

Let {Y1t}, {Y2t} and {Y3t} be processes representing NO, NO2 and ozone levels

respectively and let {Xt} denote the associated covariates (more details of these

are given in Section 4.4). Our approach is then to model each of these processes by

following the pre-processing method introduced in Chapter 3, first fitting a Box-

Cox location-scale model and transforming the processes using these estimated

parameters and then modelling the extremes of the transformed process using the

threshold exceedances approach. From henceforth we shall refer to the combined

95
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Box-Cox and location-scale parameters as the pre-processing parameters and in the

same way refer to the combined rate and GPD parameters as the tail parameters.

We now describe the ordering for our hierarchical model. At the first level

we model NO, or {Y1t}, assuming that the model parameters are functions of the

covariates {Xt} only. At the second level, we model NO2, or {Y2t}, assuming that

the model parameters are functions of both {Xt} and {Y1t}. Finally at the third

level we model ozone, or {Y3t}, assuming that the model parameters are functions

of {Y1t}, {Y2t} and {Xt}. The reasons for this choice of ordering are as follows.

As discussed at length in Chapter 3, ozone is a secondary pollutant with primary

precursors NO and NO2 so it seems sensible to model ozone levels as a function

of both NO and NO2 levels. Now both NO and NO2 are primarily released by

the combustion of fossil fuels; once in the atmosphere, both may become involved

in chemical reactions resulting in the formation of the other. Such reactions take

place in a matter of minutes, so it follows that if, as in our case, we are modelling

daily maxima the choice to model NO2 conditional on NO, rather than the other

way round, is arbitrary. However, note that the complex and cyclic nature of the

chemical reactions taking place means that almost any ordering of these pollutants

may be justified; for example, Shi and Harrison (1997) consider modelling NO2 as

a function of the interactions between NO and O3.

By simulating from this hierarchical model we can estimate, for large N , the

N -year return level for each of the pollutants and also examine the values of the

remaining pollutants when one of them attains such a value. Suppose that we are

interested in one of the three processes {Yit}, where i = 1, 2 or 3. Recall from

Chapter 3 that the N -year return level, which we shall denote by yi,N , is the level

exceeded once every N years, and is defined as

Pr(Yi > yi,N) =
1

365N
, (4.1.1)

since we have daily data. In Chapter 3 we estimated marginal return levels by

averaging across the return levels estimated by conditioning on each of the observed
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vectors of covariates. In this chapter, by estimating the return levels by simulation,

we show that we can obtain the marginal return levels directly.

We begin by fitting our model in a likelihood framework, following the ap-

proach taken in Chapter 3. However the hierarchical nature of the model suggests

that it might be more sensible to carry out the model fit in a Bayesian frame-

work using Markov Chain Monte Carlo (MCMC) techniques. Bayesian inference

has several advantages over likelihood inference, specifically in terms of estimating

the uncertainty in the parameter estimates, since Bayesian inference results in a

posterior distribution, rather than a single point estimate, for each of the model

parameters and functions there-of. By straight-forward extension this means that

we can estimate posterior distributions of the return levels. This makes estimating

uncertainty in our parameter (return level) estimates much simpler than under the

likelihood approach where we have to use bootstrap methods. The main disadvan-

tages of Bayesian inference are that it generally requires computationally intensive

techniques and that it also requires the placing of a prior probability distribution

on each model parameter.

For a generic parameter θ using Bayes theorem, the posterior distribution of θ

given observed data y is given by

f(θ|y) =
f(y|θ)f(θ)

∫

f(y|θ)f(θ) dθ
∝ f(y|θ)f(θ)

where f(y|θ) is the likelihood of the data, f(θ) is the prior probability distribution

on the parameter θ and the integral in the denominator for the exact expression is

known as the normalising constant (or constant of proportionality). However, in

practise and especially for high-dimensional problems, the posterior distribution

often has a complex and non-standard form; further it might only be known up to

the constant of proportionality. For these reasons, the only way to summarise the

posterior distribution is often to simulate from it. However direct simulation is

frequently impossible for the very same reasons. A solution to this problem comes

from a range of techniques, collectively known as Markov Chain Monte Carlo
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(MCMC) methods, which can be used to produce an independent and identically

distributed (IID) sample from the posterior distribution for θ, even when it is

known only up to a constant of proportionality.

MCMC techniques involve simulating data from a Markov chain which has the

required posterior distribution as its stationary distribution. Following an inital

period (known as burn-in) whilst the chain settles down to its stationary distri-

bution, each simulated value is assumed to have been drawn from the posterior.

Due to the ways in which the Markov chains are simulated, there will often be

dependence between consecutive draws, so to induce independence in the sample

it is normal to save only every τth update, where τ is chosen so that the chain

has only weak dependence at this lag. An alternative approach which also aims

to achieve independence is to generate many short chains and save only the final

update of each. We adopt the former approach.

There are many MCMC algorithms (see Smith and Roberts (1993) and Wilks et

al., 1998) each of which has different mechanisms to update the value of the Markov

chain. We use two of the simplest; the Metropolis-Hastings random walk algorithm

and the Gibbs sampler. The Gibbs sampler is a special case of the Metropolis-

Hastings algorithm which is useful when it is possible to simulate directly from

the required posterior distribution (conditional on any other parameters).

Coles and Powell (1996) provide a good overview of the application of Bayesian

inference and MCMC techniques to extreme value problems. An advantage of a

Bayesian approach is that it allows for more complex model structures in a more

intuitive way than under likelihood inference. More recent developments in the

extremes literature have taken advantage of this; for example Coles and Casson

(1999), Fawcett and Walshaw (2006) and Cooley et al. (2007) look at modelling

spatial extremes. Renard et al. (2006) consider modelling non-stationary extremes

in a hydrological context using step-change as well as trend models and Tancredi

et al. (2006) use the Bayesian setting to suggest a way of automatic threshold

selection in the threshold exceedances approach discussed in Chapter 3.
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The remainder of the chapter is organised as follows. In Section 4.2 we outline

more fully the methodology involved in our approach. We discuss two possible

methods of inference for our model in Section 4.3; these being either a likelihood

or a Bayesian approach. Finally in Section 4.4 we present results of fitting the

proposed model to our air pollution data by estimating 10- and 100-year return

levels for NO, NO2 and ozone.

4.2 Methodology

As described in the previous section, our proposed hierarchical model for multi-

variate extremes is a simple extension of the pre-processing method introduced in

Chapter 3. However we introduce some modifications. We allow the model pa-

rameters for the response variable Yi (i = 1, 2, 3) to be a function not only of the

covariates but also of the response variables with a lower ordering in the hierarchy

i.e. the set Si = {Yj : j < i}. This allows us to account for the non-stationarity

in the marginal distributions of {Y1t}, {Y2t} and {Y3t} and also, through the hi-

erarchical nature of the model, for non-stationarity in their extremal dependence

structure. We also allow for a model on both tails of each process. The reason

for this is that, whilst we are ultimately interested in extreme high values, it is

possible that a negative dependence structure between two variables means that

it is the lowest values of one variable which affect the highest values of another.

Our method is the same at each level of the hierarchy and is described as follows.

Suppose that we are interested in modelling the process {Yit} at level i. We

first apply the Box-Cox location-scale model as follows.

Y
λi(xt,Si,t)
it − 1

λi(xt, Si,t)
= µi(xt, Si,t) + σi(xt, Si,t)Zit (4.2.1)

where Si,t = {yjt : j < i}, which is the empty set for Y1. As before we assume

that, for each i, the {Zit} are identically distributed. Further we also assume

that both the transformed processes {Z1t} and {Z2t}, given xt and {Y1t}, and the
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transformed processes {Z2t} and {Z3t}, given xt, {Y1t} and {Y2t}, are conditionally

independent. We take λi, µi and log(σi) to be linear functions of (xt, Si,t), and we

denote the vectors of coefficients for the three parameters by λi, µi and σi.

Assuming that the body of the distribution of the process {Zit} is stationary,

we model both tails of the process using the threshold exceedances method. That

is we select an upper (lower) threshold ui (uli) and estimate the rate φi,u(xt, Si,t)

(φli,u(xt, Si,t)) of an observation occurring above (below) this level. The obser-

vations falling above (below) this threshold are then modelled using a gener-

alised Pareto distribution (GPD) with scale ψi,u(xt, Si,t) (ψli,u(xt, Si,t)) and shape

ξi(xt, Si,t) (ξli(xt, Si,t)) parameters. Note the change of notation for the extremes

parameters from that used in Chapter 3, since all tail models are fitted to the

transformed process we chose to label the parameters not by z which denotes this,

but by i to denote the level of the hierarchy to which they belong. We suggest

using logit and log link functions for the rate and GPD scale parameter respec-

tively and taking logit(φi,u), logit(φli,u), log(ψi,u), log(ψli,u), ξi and ξli to be linear

functions of (xt, Si,t).

4.2.1 Return levels

To estimate the marginal N -year return levels yi,N we simulate N -years of data

directly from the model and take the largest value from this simulation as our

estimate of yi,N in a similar manner to that used by Buishand et al. (2006) to

estimate return levels from their stationary spatial model. Note that, for M < N ,

we can also estimate the M-year return level by taking the N/Mth order statistic

of the simulated data.

Simulation of the multivariate response variable Y = (Y1, Y2, Y3) from the

hierarchical model is straight forward. We simulate from the lowest level of the

hierarchy first and then work our way up, conditioning on the simulated values

from the lower levels to simulate from the higher levels.

However before simulating the response Y we must first simulate a set of covari-
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ates. At this point it is worth noticing that we are interested not just in simulating

a single observation Y but in simulating a whole sequence of observations {Yt}

which has a length of N -years. Because of this the simulation method must ac-

count for two things; first, that we have not assumed a probability distribution

for the covariates and, second, that the covariates are likely to be non-stationary

themselves. Since we have no distribution for the covariates we simply resample

with replacement randomly from the observations. In order to retain any seasonal

trends in the covariates, for each day of the year, rather than random resampling

from all the covariates, we resample randomly across observed years from that day

only.

Let {X∗
1, . . . ,X

∗
N} denote the simulated covariates, then a sequence {Y ∗

11, . . . , Y
∗
1N}

of observations from the model for {Y1t|Xt = x∗
t} is simulated as follows.

1. Simulate a vector {U1, . . . , UN} of realisations from N independent uni-

form(0,1) random variables.

2. For each i = 1, . . . , N ,

(a) If Ui > 1 − φ̂1,u(x
∗
t ) then simulate Z∗

1i from the fitted upper tail model

GPD(ψ̂1,u(x
∗
t ), ξ̂1(x

∗
t )).

(b) If Ui < φ̂l1,u(x
∗
t ), simulate Z∗

1i from the fitted lower GPD(ψ̂l1,u(x
∗
t ), ξ̂

l
1(x

∗
t )).

(c) If φ̂l1,u(x
∗
t ) < Ui < 1 − φ̂1,u(x

∗
t ) simulate Z∗

1i from the empirical dis-

tribution of the transformed process i.e. resample Z∗
1i from the set

{Z1i : ul1 ≤ Z1i ≤ u1}.

3. Back transform the simulated observations to the original scale using equa-

tion (4.2.1)

Y ∗
1i = {λ1(x

∗
t )[µ1(x

∗
t ) + σ1(x

∗
t )Z

∗
1i] + 1}1/λ1(x∗

t )

Using the same steps, we then use these simulated values to simulate the sequence

{Y ∗
21, . . . , Y

∗
2N} from the model for {Y2t|Y1t = y∗1t,Xt = x∗

t} and similarly combine



CHAPTER 4. MODELS FOR MULTIVARIATE EXTREMES 102

our simulated values for the covariates Xt, Y1 and Y2 to simulate the sequence

{Y ∗
31, . . . , Y

∗
3N} from the model for {Y3t|Y2t = y∗2t, Y1t = y∗1t,Xt = x∗

t}.

4.3 Inference

As discussed in Chapter 3 the pre-processing model is fitted in two steps; first the

pre-processing parameters are estimated, then the tail model(s) are fitted to the

transformed data. The rate and GPD parameters can be estimated independently,

which simplifies computational matters. We further simplify matters by choosing

to fix the Box-Cox parameter at some constant value, which can then be estimated,

for example, by maximising the profile likelihood for λ. Following the results in

Chapter 3, we also chose to fix the tail parameters as constant.

4.3.1 Likelihood inference

Likelihood inference for the model parameters is straightforward. Each level of the

hierarchy is fitted independently of the rest. Estimating uncertainty in the model

parameters and return levels is not quite so straightforward. For example, the

rate and GPD parameters depend on the Box-Cox and location-scale parameters,

but because of the two-stage nature of the model fit there is no way to take this

into account when attempting to estimate their standard errors using standard

asymptotic likelihood results; instead we use a block bootstrap method. Note that

to estimate uncertainty in the estimated return levels we simulate a new set of

covariates for each bootstrapped sample, thus accounting for uncertainty in the

covariates as well.

4.3.2 Bayesian model inference

Since the location-scale and tail models are fitted independently to the data at

each level of the hierarchy, our Bayesian model specification is the same at each

level and so we state it only for the generic level i.
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We update the location-scale parameters using a Metropolis within Gibbs step,

the rate parameter using a Gibbs step and the GPD parameters using a Metropolis

within Gibbs step. Further details of the updating steps used for each parameter,

along with the priors used, are given below. First, the general algorithm to generate

samples from the posterior distributions of all the parameters at level i is as follows.

1. Simulate the Markov chains whose stationary distributions are the posterior

distributions of the pre-processing parameters µi and σi by iterating the

following procedure. Starting at some initial value,

(a) Jointly update the vector µi given the current values of µi and σi

(b) Jointly update the value of σi given the updated value of µi and the

current value of σi.

2. Following burn-in, an independent sample is taken from the posterior distri-

butions for the location-scale parameters by taking only every τth update,

with τ chosen so that the chain has only weak dependence at this lag.

3. For each of the sample values of µi and σi found in step 2, calculate the

transformed process {Zit} using equation (4.2.1). Select the upper (lower)

threshold as a pre-specified quantile of this transformed process; where the

quantile level is constant across all iterations.

4. Using the threshold obtained for each transformed process from step 3, sim-

ulate the Markov chains whose stationary distributions are the posterior dis-

tributions of the upper and lower tail parameters by iterating the following

procedure. Starting at some initial values,

(a) Update the rate parameter φi,u (φli,u) conditional on its current value.

(b) Update the GPD scale ψi,u (ψli,u) conditional on the current values of

the GPD scale ψi,u (ψli,u) and shape ξi (ξli) parameters.

(c) Update the GPD shape ξi (ξli) conditional on the updated value of

the GPD scale ψi,u (ψli,u) and the current value of the shape ξi (ξli)
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parameters.

5. Following burn-in, an independent sample is taken from the posterior dis-

tributions for the tail parameters by taking only those updates from the

chains simulated in step 4 that are separated by at least one other consec-

utive update. The samples are pooled across the simulated location-scale

parameters.

The priors used in our model fit are as follows. For the first stage we place

independent multivariate Gaussian priors on the location and scale coefficients µi

and σi, that is

µi ∼ MVN(µ0,Σµ)

σi ∼ MVN(σ0,Σσ).

With this choice of prior, the posterior distribution of µi|σi,X, Si,Yi is also mul-

tivariate Gaussian, and so we can update each value in the Markov chain for µi

using a Gibbs step. However the posterior distribution of σi|µi,X, Si,Yi is more

complicated and requires the use of a Metropolis-Hastings random walk for the

updates.

When fitting the tail models we assume a priori that all the extremes pa-

rameters are independent. We place independent Beta(α, β) priors on the rate

parameters, so that for 0 < φi,u, φ
l
i,u < 1,

φi,u ∼ Beta(α, β), φli,u ∼ Beta(α, β).

For the GPD scale parameters we assume independent Gamma(η,θ) priors; for

ψi,u, ψ
l
i,u > 0,

ψi,u ∼ Gamma(η, θ), ψli,u ∼ Gamma(η, θ).

Finally for the GPD shape parameters we follow Cooley et al. (2006) and assume
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independent improper uniform priors; for −∞ < ξi, ξ
l
i <∞,

ξi ∼ 1, ξli ∼ 1.

With these priors the posterior distributions of the rate parameters are also inde-

pendent Beta and so can be updated using a Gibbs step. The GPD parameters

each have complicated posteriors with unknown normalising constants and so, like

the scale parameter, we update these using a Metropolis-Hastings random walk.

We note that whilst Coles and Tawn (1996) suggest placing priors on the quantiles

of the distribution for exceedances, rather than on the GPD parameters, here we

deal directly with the parameters since there is no extra information available on

the quantiles.

Calculation of the posterior distribution of the return levels follows immediately

using the samples from the posterior distributions of the model parameters. For

each set of parameters drawn from the posterior distributions we can simulate an

N -year data set, as discussed in Section 4.2 and so estimate theN -year return level.

Carrying this out for all draws from the parameter posteriors gives an estimate of

the posterior distribution for the return levels.

4.3.3 MCMC details

Following initial exploration to try to determine the speed of convergence of the

chains we ran the chain for the pre-processing parameters for a total of 205000

updates, removed the first 5000 as burn-in and took every 10th update, giving a

posterior sample of size 20000. For the tail parameters we ran a chain of length

10000 for every 500th update of the pre-processing parameters, following burn-in.

For each chain we removed the first 5000 as burn-in and then took every 100th

update to get a posterior sample also of size 20000.

We tried various initial values for each of the chains; for the pre-processing and

tail parameters there was little sensitivity to this choice, certainly once we had
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removed burn-in periods of the size described above. Initial values for the GPD

parameters proved a little more difficult, particularly because the parameters seem

to be quite strongly negatively correlated so that picking a value of either well out

of its likely range had quite drastic effects on the convergence of the chain. We

found that starting the scale close to 1 and the shape close to 0 had desirable

consequences.

We chose prior parameter values as follows. For the pre-processing parameters

we make the priors uninformative, with means µ0 = σ0 = 0 and covariance

matrices Σµ = Σσ = 1000I where I is the identity matrix. For the rate parameters

we take α = β = 1 and similarly for the GPD scale parameters we set η = θ = 1.

As with the initial values, altering these parameter values had little effect. We

also considered using an uninformative Gaussian prior, rather than the improper

uniform prior, for the GPD shape. This too made no evident difference to the final

results.

4.4 Results

The data that we use to demonstrate our hierarchical modelling scheme consist

of maximum daily concentrations of hourly measurements of ozone, NO and NO2.

The data are shown in Figure 4.1 and are the same as those used in Chapter 3.

The data has been measured at a monitoring station located in central Reading,

UK. This site is classified as being in an urban location and the data used here

cover the period from September 1997 to June 2001.

We have three meteorological covariates, all of which have the potential to

affect the concentration levels of one or more of our response variables. These

are wind speed (measured daily at 0900), maximum daily temperature and total

daily sunshine. Measurements of these covariates are shown in Figure 4.2 across the

same period as the air pollution data. We also consider as covariates the first-order

interactions of these variables. Reasons for including sunshine and temperature

were discussed in Chapter 3 and are primarily due to their being key factors in
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Figure 4.1: Time series plots of maximum daily NO, NO2 and ozone concentrations
(top) with bivariate scatter plots on the original (middle) and square root (bottom)
scales. Data were measured in central Reading from September 1997 until June
2001. Measurements are in µmg−3.

the synthesis of ozone. We include wind speed because increases in wind speed

cause greater mixing of particles in the atmosphere which in turn leads to faster

dispersion of the air pollutants; this is especially relevant for the primary pollutants

NO and NO2.

We also use various time indicators as covariates. The purpose of these is mostly

to try to account for physical covariates for which we have no data; examples of

such covariates include other air pollutants, such as volatile organic compounds

(VOC’s), traffic volume and proximity of the site to potential point sources (such as

factories). As substitutes for these, we use yearly, seasonal and weekend indicators.

The year indicator should pick up long term trends attributable, for example, to

successful implementation of legislation to decrease emissions due to the combus-

tion of fossil fuels. We use a year indicator rather than a linear year-on-year trend,

as this will allow the detection of more subtle trends. The reason for including a

seasonal indicator is evident from the time-series plots of the pollutants (see Fig-
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Figure 4.2: Time series plots of wind speed, measured daily at 9am (knots), daily
maxima temperature (◦C) and total daily sunshine (hours), measured in central
Reading from September 1997 until June 2001.

ure 4.1) all of which show clear seasonal variation; with peaks in the winter for NO

and NO2 and in the summer for ozone. We use four three-month seasons defined

as winter (December-February), spring (March-May), summer (June-August) and

autumn (September-November). Finally we use the weekend indicator since there

is evidence in the literature of a marked difference between NO and NO2 levels

in the week and those at the weekend, especially in urban areas (e.g. Shi and

Harrison, 1997). This is due to alterations in the traffic pattern at weekends.

For models fitted using likelihood inference we report maximum likelihood es-

timates (MLE’s) as point estimates for the parameters, whereas we use posterior

medians (PM’s) for the Bayesian models. To estimate uncertainty we use, respec-

tively, the asymptotic normality property of the MLE, with the standard error

estimated using the observed information matrix, and posterior credibility regions.
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4.4.1 Individual models

To begin with we consider the fit of the saturated model to each of the NO, NO2

and ozone data sets. By saturated we mean that the location-scale parameters at

level i (i = 1, 2, 3) of the hierarchy contain all possible covariates {Xt} as well as

the responses {Yjt : Yjt ∈ Si}. Unless specified otherwise we fit models only to the

upper tail of the transformed data sets.

In Section 4.3 we decided to fix the Box-Cox parameter λ(xt) to be a constant

value λ. For each data set, we select λi (i = 1, 2, 3) by maximising the profile

likelihood for λi over a discrete number of parameter values. The profile likelihood

is found by maximising the joint likelihood for the full vectors of location-scale

coefficients µi and σi conditional on each possible value of λi. The potential values

for λi are usually chosen to have some meaningful interpretation, for example

λi = −1,−0.5, 0, 0.5, 1, 2. In this case, for all three data sets, the profile likelihood

is maximised across these values when λ = 0.5. Further, the plots in Figure 4.1

show that the relationship between both (
√

NO,
√

NO2) and (
√

NO,
√

O3) looks

closer to being linear than the equivalent relationships on the original scale (see

Figure 4.1) or on the log scale (not shown). Given both of these results we shall

model the square root of NO, the square root of NO2 conditional on the square

root of NO and the square root of ozone conditional on the square roots of both

NO and NO2.

Tables 4.1-4.3 show point estimates, under both methods of inference, for the

location-scale coefficients of the saturated model fitted to, respectively, NO, NO2

and ozone. We see that in all cases the MLE’s are very close to the posterior

medians (PM’s), in particular they always fall within the 95% posterior credibility

regions. Figure 4.3 shows the fitted means µi(xt) and transformed processes {Zit}

for each of the data sets using the PM’s given in Tables 4.1-4.3 as point estimates

for the location-scale coefficients µi and σi. These plots show both that the mean

functions follow the data well and that the transformed processes are consider-

ably closer to stationarity than the original ones. Scatter plots of the transformed
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Figure 4.3: Square root of NO, NO2 and ozone data sets with estimated mean
µi(xt) (top) and transformed processes {Zit} (bottom). Estimates come from
fitting the saturated model using Bayesian inference.

processes against each other, shown in Figure 4.4, and against the covariates (not

shown) suggest that, under the saturated model, the assumptions that the trans-

formed processes {Zit} are independent of each other and of the covariates {Xt}

are reasonable.
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Figure 4.4: Scatter plots of the transformed processes {Zit} for i = 1, 2, 3 from
the saturated model to show their independence. Plot (a) shows transformed NO2

against transformed NO, plot (b) transformed ozone against transformed NO and
plot (c) transformed ozone against NO2.
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Figure 4.5: Histograms of the upper tail thresholds obtained from each draw out
of the posterior distribution of the location-scale parameters for (a) NO, (b) NO2

and (c) ozone. For each draw, thresholds were found by taking the 90% quantile of
the transformed data sets given by these values of the location-scale parameters.

For each data set, we select the 90% (10%) quantile of the transformed data

as the threshold for our upper (lower) tail model. For each of the three pollu-

tants, Figure 4.5 shows histograms of the upper thresholds obtained by pooling

the thresholds given at each draw from the posterior distribution of the location-

scale parameters. These show some, but not much, variation; plots for the lower

threshold (not shown) were similar. The estimated parameters for both tail mod-

els fitted under both methods of inference are shown in Table 4.4. As with the

location-scale parameters, the likelihood and Bayesian point estimates for the pa-

rameters are very similar and the MLE’s all fall within the corresponding 95%

posterior credibility regions.

The estimated posterior densities for the upper tail parameters are shown in

Figure 4.6. The kernel density estimation in these plots used the default method

in R, i.e. a Gaussian kernel using Silverman’s (1986) associated ‘rule of thumb’

for choice of bandwidth (0.9 times the minimum of the standard deviation and
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Figure 4.6: Estimated posterior distributions for upper tail parameters φi,u, ψi,u
and ξi,u using the saturated location-scale model and a 90% threshold. Results
are for NO (top), NO2 (middle) and ozone (bottom). Full vertical lines indicate
posterior medians and dashed vertical lines 95% posterior credibility regions. To
produce these plots, a kernel density estimate was used to smooth the sample
histograms.

interquartile range, divided by 1.34, multiplied by the sample size to the power

of -0.2). For illustrative purposes this seems sufficient. All of these parameters

seem to have posterior distributions whose upper tails are slightly heavier than

their lower tails, but they are all reasonably symmetric, especially close to the

posterior mode. To demonstrate the goodness of fit of the GPD model to the tails

we show, in Figure 4.7, quantile-quantile (QQ) plots for the GPD model fit to

both the upper and lower tails again taking the PM’s of the GPD parameters as

point estimates. Note that the QQ plots are all on the standard exponential scale

in order to enable easy cross model comparisons. Under exact agreement between

the model and the data, we would expect the points on the QQ plot to lie on the

45◦ line. In all cases the plots lie fairly closely to this line and they certainly fall

within the 95% credibility regions.
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Figure 4.7: QQ plots to show the goodness of fit of the GPD model to the values
of the transformed processes falling above the 90% (left) or below the 10% (right)
thresholds for NO (top), NO2 (middle) and ozone (bottom). Point estimates for
the GPD parameters were given by the posterior medians and the transformed
process was found using the saturated model. Dashed lines show 95% credibility
regions and the plots are on the standard exponential scale.

To assess the overall model fit, we plot the observed order statistics against

the order statistics obtained by simulating data from the fitted model. We use

the simulation methods described in Section 4.2.1 to simulate a number of data

sets of the same length n as the observed data. For the likelihood approach we

chose to take 500 bootstrapped resamples of the data and then simulate a data set

from the model fitted to each of these resamples; in the Bayesian case we simply

simulate a new data set from each of the draws from the posterior distribution.
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Figure 4.8: QQ plots to show overall model fit. Plots were generated by simulat-
ing data from the hierarchical models using likelihood (left) and Bayesian (right)
inference. Plots (a) and (b) refer to the NO model, plots (c) and (d) to the NO2

model and plots (e) and (f) to the ozone model. The green line shows exact agree-
ment between the model and observations whilst the dashed (dashed-dot) lines
show 95% (99%) confidence intervals (credibility regions).

Each simulated data set is first ordered and then, for i = 1, . . . , n, we find the

median, α/2 and 1 − α/2 quantiles of the ith order statistic across the simulated

data sets. We take the medians as point estimates for the order statistics under

the fitted model, whereas the α/2 and 1 − α/2 quantiles provide 100(1 − α)%

confidence intervals (credibility regions).

The results of this overall measure of fit for the saturated, upper tail only model

are shown in Figure 4.8. These show that the model fits under both methods of
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inference are reasonably good, with a possibility of slight under estimation in

the upper tails, particularly for the NO and ozone models. This under-fitting

can almost certainly be explained by random variation in the simulated data as

the 45◦ line almost always falls within the 95% confidence intervals (posterior

credibility regions). The posterior credibility regions are noticeably wider than

the corresponding likelihood confidence intervals. Finally, time series plots (not

shown) summarising the simulated data sets show that the simulated data seems to

reproduce the seasonal trends in the observed data sets well, which again confirms

overall model fit.

4.4.2 Return levels

We compare the estimated return levels from four different models. The first of

these is the saturated model, discussed in the previous section. We try fitting this

with a GPD model for the upper tail only (Model 1) and then with a GPD model

for both tails (Model 2). To specify the next model we apply a forward selection

procedure to choose only the most significant covariates in the location and scale

parameters (Model 3). We apply the forward selection to the models fitted using

the likelihood approach, but also fit the best fitting models using the Bayesian

approach. Finally we estimate the return levels using the saturated upper tail

model but without assuming the hierarchical structure (Model 4). This means

that instead of using the response data simulated from the previous levels S∗
i to

simulate the data at the current level we use response data that has been resampled

from the responses Si in the same way that we resample the covariates Xt.

Tables 4.5 and 4.6 show the 10- and 100-year return levels respectively for all

three pollutants estimated using each of the four models. Note that the return

levels for NO are the same under Model 1 as they are under Model 4, since the set

up of the model and the way of simulating the data is the same at the first level

of the hierarchy for these models. The most obvious feature of the results in these

tables is that neither point estimates nor the measures of uncertainty vary much
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between the models. Whilst this suggests that we can fit the simpler Model 3,

it also suggests that the model in which we do not use the hierarchical structure

of the data gives as good an estimate as the hierarchical model. This is possibly

because the responses are asymptotically independent once we have accounted for

the covariates Xt. Also notice that the posterior credibility regions are wider than

the confidence intervals.
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Figure 4.9: Estimates of the joint distributions of NO and NO2 when ozone achieves
it’s N -year return levels, for N = 5 (top) and N = 10 (bottom). Estimates come
from the Bayesian fits of Model 1 (left) and Model 4 (right). Note the different
scales on each of the plots.

Finally in Figure 4.9 we show scatter plots of NO and NO2, conditional on

ozone achieving it’s 5- and 10-year return levels. These plots can be used to

estimate the joint posterior distribution of NO and NO2 given that ozone has

attained an N -year return level. We show results for the Bayesian fits of both

Model 1 and Model 4. Because of the resampling method used in Model 4 we get

a poor estimate of the joint distribution because we cannot extrapolate into the

distribution tails, further only a small subset of the observed values of NO and

NO2 seem to contribute to the extreme values of ozone; using Model 1 instead
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gives a much fuller picture of the joint distribution.

4.4.3 Further work

There are several ways in which the work summarised here could be extended.

Firstly a simulation study should be run to test the accuracy and efficiency of

the estimation of the return levels under the proposed method. It might also be

informative to quantify how well the hierarchical method (Models 1-3) models the

extremal dependence structure, perhaps under the assumption of different levels

of asymptotic (in)dependence, especially when compared to the non-hierarchical

model (Model 4). We might also consider the effect that the choice of ordering in

the hierarchy has; for example would the estimated return levels be the same if we

had modelled NO conditional on NO2, rather than the other way round?

For the pre-processing model, it might be interesting to consider other more

complex methods of pre-processing the data, for example to account for auto-

correlation in the residuals which may be due to missing covariates or some mis-

specification in the covariate model. For this particular data set it would also be

useful if we could repeat the analysis with additional covariates; for example wind

direction, levels of VOC’s or traffic volume.
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µ1 σ1

Covariate Likelihood Bayesian Likelihood Bayesian
Constant 14.0 (0.529) 13.3 (12.3,14.4) 1.23 (0.138) 1.29 (1.02,1.57)
Temperature -0.328 (0.0341) -0.272 (-0.339,-0.207) -0.0293 (0.00914) -0.0319 (-0.0502,-0.0138)
Sunshine 0.569 (0.0867) 0.533 (0.360,0.784) 0.034 (0.0187) 0.0388 (0.000758,0.0758)
Wind -0.932 (0.0752) -0.816 (-0.966,-0.669) -0.00240 (0.0200) -0.00922 (-0.0496,0.0295)
Temperature × sunshine -0.0161 (0.00379) -0.0166 (-0.0241,-0.00918) 0.000251 (0.000899) -0.0000274 (-0.00149,0.00215)
Temperature × wind 0.0433 (0.00494) 0.0342 (0.0245,0.0439) -0.000280 (0.00130) 0.0000247 (-0.00235,0.00287)
Sunshine × wind -0.0335 (0.00764) -0.0249 (-0.0400,-0.101) -0.00274 (0.00183) -0.00318 (0.00677,0.000466)
I[wkend] -2.12 (0.168) -2.13 (-2.46,-1.79) -0.0926 (0.0488) -0.0996 (-0.195,-0.00507)
I[1997] 2.38 (0.566) 2.36 (1.24,3.47) 0.608 (0.113) 0.589 (0.366,0.812)
I[1998] 1.38 (0.279) 1.36 (0.811,1.91) 0.279 (0.0759) 0.264 (0.111,0.413)
I[1999] 1.00 (0.280) 0.938 (0.382,1.50) 0.193 (0.0817) 0.186 (0.0224,0.348)
I[2000] 0.675 (0.260) 0.650 (0.133,1.16) 0.0417 (0.0742) 0.0252 (-0.123,0.172)
I[spring] -1.83 (0.253) -1.88 (-2.38,-1.37) -0.0360 (0.0650) -0.0453 (-0.173,0.843)
I[summer] -0.631 (0.338) -0.715 (-1.38,-0.0488) -0.129 (0.0967) -0.136 (-0.325,-0.0556)
I[autumn] 0.484 (0.300) 0.466 (-0.147,1.04) 0.0148 (0.0778) 0.0164 (-0.136,0.171)

Table 4.1: Point estimates for location-scale coefficients for the saturated model for
√

NO (level 1 in the hierarchy). Both MLE’s and
asymptotic standard errors (in brackets) and PM’s and 95% posterior credibility regions (in brackets) are shown.
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µ2 σ2

Covariate Likelihood Bayesian Likelihood Bayesian
Constant 5.18 (0.184) 5.17 (4.80,5.53) -0.0397 (0.156) -0.0222 (-0.314,0.291)√

NO 0.211 (0.00857) 0.212 (0.195,0.230) -0.0391 (00680) -0.382 (-0.0518,-0.0246)
Temperature 0.0505 (0.0110) 0.0511 (0.0294,0.729) 0.00699 (0.00932) 0.00576 (-0.0126,0.0241)
Sunshine 0.0490 (0.0225) 0.0478 (0.00316,0.0923) 0.000853 (0.0206) -0.00192 (-0.0427,0.0392)
Wind 0.0766 (0.0204) 0.0750 (0.0350,0.116) -0.0135 (0.0184) -0.0137 (-0.0507,0.0227)
Temperature × sunshine -0.000599 (0.000124) -0.000584 (-0.00303,0.00150) 0.00174 (0.000967) 0.00190 (-0.0000445,0.00388)
Temperature × wind -0.00782 (0.00148) -0.00772 (-0.0106,-0.00481) -0.000499 (0.00126) -0.000449 (-0.00297,0.00205)
Sunshine × wind 0.00341 (0.00220) 0.00360 (-0.000657,0.00750) -0.00113 (0.00199) -0.00110 (-0.00502,0.00280)
I[wkend] -0.282 (0.0541) -0.278 (-0.385,-0.169) -0.147 (0.0503) -0.141 (-0.239,-0.0459)
I[1997] 0.290 (0.154) 0.290 (-0.0172,0.602) 0.564 (0.119) 0.566 (0.341,0.811)
I[1998] 0.489 (0.0830) 0.488 (0.328,0.648) -0.00490 (0.0783) -0.00415 (-0.161,0.147)
I[1999] 0.420 (0.0849) 0.419 (0.250,0.586) 0.0579 (0.0814) 0.0614 (-0.103,0.221)
I[2000] 0.0983 (0.0798) 0.0982 (-0.0606,0.257) 0.0443 (0.0753) 0.0443 (-0.107,0.191)
I[spring] 0.109 (0.0700) 0.105 (-0.0332,0.244) 0.0803 (0.0712) 0.0807 (-0.0631,0.187)
I[summer] -0.557 (0.108) -0.565 (-0.779,-0.353) -0.00543 (0.0953) -0.00410 (-0.190,0.187)
I[autumn] -0.378 (0.0838) -0.387 (-0.552,-0.223) 0.0212 (0.0844) 0.0213 (-0.144,0.188)

Table 4.2: As Table 4.1, point estimates for location-scale coefficients for the saturated model for
√

NO2 (level 2 in the hierarchy).
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µ3 σ3

Covariate Likelihood Bayesian Likelihood Bayesian
Constant 6.64 (0.325) 6.36 (5.71,7.01) 0.321 (0.213) 0.395 (-0.0241,0.823)√

NO -0.184 (0.156) -0.179 (-0.120,-0.148) 0.0359 (0.00951) 0.0352 (0.0167,0.0536)√
NO2 0.0957 (0.0382) 0.102 (0.0266,0.180) -0.0283 (0.241) -0.0342 (-0.0806,0.135)

Temperature 0.0683 (0.0156) 0.0808 (0.0498,0.112) -0.0101(0.00993) -0.0113 (-0.0315,0.00819)
Sunshine 0.0540 (0.0337) 0.0592 (-0.00747,0.126) -0.108 (0.0215) -0.106 (-0.147,-0.0628)
Wind 0.181 (0.0293) 0.209 (0.151,0.268) -0.0417 (0.0205) -0.0425 (-0.0853,-0.00110)
Temperature × sunshine 0.00671 (0.00172) 0.00643 (0.00297,0.00980) 0.00599 (0.00106) 0.00595 (0.00386,0.00807)
Temperature × wind -0.0100 (0.00200) -0.0117 (-0.0157,-0.00773) 0.000499 (0.00136) 0.000597 (-0.00214,0.00343)
Sunshine × wind -0.00855 (0.00279) -0.000877 (-0.0143,-0.00337) 0.00425 (0.00201) 0.00403 (0.000132,0.00790)
I[wkend] -0.071 (0.0716) -0.0562 (-0.200,0.0848) -0.0134 (0.0501) -0.0151 (-0.110,0.0865)
I[1997] 0.0824 (0.186) 0.0600 (-0.312,0.434) 0.0971 (0.114) 0.111 (-0.115,0.335)
I[1998] 0.751 (0.108) 0.733 (0.518,0.944) 0.0189 (0.0800) 0.0220 (-0.142,0.178)
I[1999] 0.995 (0.1112) 0.974 (0.753,1.20) 0.000240 (0.0849) 0.00000601 (-0.166,0.165)
I[2000] 0.384 (0.0997) 0.337 (0.140,0.537) -0.0800 (0.0782) -0.0769 (-0.235,0.0703)
I[spring] 0.532 (0.0881) 0.537 (0.363,0.713) -0.0851 (0.0706) -0.0791 (-0.214,0.0561)
I[summer] -0.383 (0.139) -0.390 (-0.664,-0.110) -0.0836 (0.0972) -0.0777 (-0.264,0.110)
I[autumn] -0.162 (0.114) -0.173 (-0.399,-0.0596) (0.0794) 0.0163 (-0.137,0.172)

Table 4.3: As Table 4.1, point estimates for location-scale coefficients for the saturated model for
√

O3 (level 3 in the hierarchy).
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Upper tail Lower tail
φi,u ψi,u ξi,u φli,u ψli,u ξli,u

Likelihood
NO 0.100 0.476 0.0100 0.100 0.681 -0.332

(0.00888) (0.0595) (0.0828) (0.00888) (0.0806) (0.0789)
NO2 0.100 0.577 -0.121 0.100 0.615 -0.0731

(0.00888) (0.0683) (0.0735) (0.00888) (0.0724) (0.0717)
O3 0.1001 0.520 -0.270 0.100 0.657 -0.0635

(0.00888) (0.0625) (0.0795) (0.00888) (0.0899) (0.0999)
Bayesian
NO 0.101 0.543 -0.0267 0.101 0.688 -0.301

(0.0844,0.119) (0.425,0.688) (-0.165,0.172) (0.0839,0.119) (0.536,0.873) (-0.445,-0.122)
NO2 0.100 0.594 -0.111 0.101 0.613 -0.0325

(0.0839,0.119) (0.455,0.776) (-0.268,0.103) (0.0834,0.119) (0.467,0.796) (-0.184,0.195)
O3 0.101 0.525 -0.244 0.101 0.665 -0.0343

(0.0837,0.119) (0.407,0.679) (-0.432,-0.0387) (0.0839,0.119) (0.503,0.869) (-0.214,0.203)

Table 4.4: Estimates for upper (lower) tail rate φu (φlu) and GPD scale ψu (ψlu) and shape xi (xil) parameters for the saturated model
fitted under both the likelihood and Bayesian methods. Point estimates are MLE’s with asymptotic standard errors (in brackets) and
PM’s with 95% posterior credibility regions (in brackets).
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Model 1 Model 2 Model 3 Model 4
Likelihood Bayesian Likelihood Bayesian Likelihood Bayesian Likelihood Bayesian

NO 698 824 689 824 666 820
(573,868) (670,1123) (562,895) (669,1123) (548,865) (670,1144)

NO2 156 169 156 169 156 167 163 169
(144,175) (154,198) (142,174) (154,198) (143,173) (152,193) (151,180) (156,192)

O3 208 237 208 237 213 234 208 234
(190,236) (211,275) (188,235) (210,276) (190,246) (208,271) (187,232) (209,272)

Table 4.5: Estimated 10-year return levels under the four different models. Point estimates were obtained by simulation with either
bootstrapped 95% confidence intervals (in brackets) or 95% posterior credibility intervals (in brackets).
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Model 1 Model 2 Model 3 Model 4
Likelihood Bayesian Likelihood Bayesian Likelihood Bayesian Likelihood Bayesian

NO 1044 1357 1027 1349 937 1346
(722,1840) (909,3058) (711,1912) (912,3042) (677,1399) (913,3366)

NO2 190 215 188 215 184 210 188 203
(163,250) (177,369) (158,257) (177,371) (158,229) (174,363) (164,236) (174,317)

O3 241 292 241 292 248 288 238 290
(211,294) (241,397) (211,296) (242,399) (215,312) (239,390) (205,288) (238,396)

Table 4.6: As Table 4.5 but estimated 100-year return levels.
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Chapter 5

Nonparametric estimation of

extremal dependence measures

using a limiting conditional

representation.

5.1 Introduction

The quantification of dependence is the central issue in probabilistic and sta-

tistical methods for multivariate extreme value problems. When estimating the

probability of any extreme multivariate event it is vital to make inferences about

the extremal dependence structure. A growing literature on this topic illustrates

the importance of understanding the properties of the joint tails of multivariate

distributions. The range of applied fields on which multivariate statistical extreme

value theory is making an impact is expanding and includes to date: environmen-

tal impact assessment (Coles and Tawn, 1991, Joe, 1994, de Haan and de Ronde,

1998, Schlather and Tawn, 2003), financial risk management (Embrechts et al.,

1997, 2000, Longin, 2000, Stărică, 1999, Poon et al., 2003a, 2003b), internet traffic

modelling (Maulik et al., 2002, Resnick and Rootzén, 2002) and sports (Barão and

126
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Tawn, 1999).

The two types of extremal dependence structure are asymptotic dependence

and asymptotic independence. For random variables (X1, X2) with identical marginal

distributions with upper endpoint x∗, following Coles et al. (1999) we define

χ = lim
x→x∗

Pr{X2 > x |X1 > x}. (5.1.1)

If χ > 0 then we say that X1 and X2 are asymptotically dependent, in which

case the largest values of both variables tend to occur simultaneously. If χ = 0

then the variables are asymptotically independent and it is impossible to get the

largest values of X1 and X2 to occur simultaneously, even though (X1, X2) can be

positively dependent.

Traditionally, attention has focused on extremal dependence models arising

from the class of distributions that describe the stochastic behaviour of compo-

nentwise maxima data. This is the class of so-called multivariate extreme value

distributions (de Haan and Resnick, 1977, Pickands, 1981, and Resnick, 1987).

This class provides a rich description of data that are asymptotically dependent,

but collapses all asymptotically independent distributions to being treated as in-

dependent. Ledford and Tawn (1996, 1997) and Coles et al. (1999) pointed out the

inadequacies of multivariate extreme value distribution models, and asymptotically

dependent distributions more generally, to describe data which are asymptotically

independent. Recently, much work has concentrated on developing more general

extremal dependence modelling frameworks which can accommodate both asymp-

totically dependent and asymptotically independent data.

One such approach is offered by the recent work of Heffernan and Tawn (2004),

who put forward a new strategy for modelling the joint tails of multivariate distri-

butions. Their approach uses the conditional distribution of the remaining vari-

ables given that at least one variable is large. This approach offers a flexible

class of models incorporating both asymptotic dependence and asymptotic inde-

pendence, and allows the modelling of parts of the joint distribution for which not
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all variables are large.

Despite the development of methods that can accommodate both asymptot-

ically dependent and asymptotically independent data there is still much focus

on the asymptotically dependent class of models due to many examples natu-

rally falling in the class. For example many financial variables exhibit asymptotic

dependence (Stărică, 1999, Embrechts, 2000 and Poon, et al. 2003b); one such

example is given in the financial application illustrating our proposed methods in

this paper.

In the current paper we exploit the tail representation presented by Heffer-

nan and Tawn (2004) to refine their estimation procedure in the case when the

variables can be treated as being asymptotically dependent. We focus on the bi-

variate case and obtain new nonparametric estimators for the underlying spectral

measure and Pickands’ dependence function that characterise extremal dependence

structure and the bivariate extreme value distribution respectively. We show con-

sistency of these estimators by considering their asymptotic distributions. The

performance of the resulting methodology is shown to be competitive with, if not

slightly better than, that of the existing estimators which assume the data are

asymptotically dependent. However, we believe that a major benefit of our aug-

mentation of the Heffernan and Tawn approach with the methods described in this

paper is that they uniquely offer a unified methodology for the analysis of a broad

range of dependence structures which extends beyond the class of asymptotic de-

pendence.

The remainder of this paper is structured as follows. In Section 5.2 we in-

troduce the classical point process representation for bivariate extremes and we

derive from this the probabilities of various extreme events including the bivariate

extreme value distribution. In Section 5.3 we recall the conditional representation

of Heffernan and Tawn (2004), and explicitly in closed form express their non-

parametric estimator which can be used whether the variables are asymptotically

dependent or not. Our proposed nonparametric estimators, obtained under the as-
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sumption of asymptotic dependence, are developed in Section 5.4. We also present

here theorems on the consistency of the estimators, although proofs are relegated

to an appendix. In Section 5.5 we review existing nonparametric estimators of

Pickands’ dependence function, and in Section 5.6 we compare the performance of

the new estimator with leading existing nonparametric estimators. In Section 5.7

we illustrate the use of the new estimator with an application to finance. We finish

in Section 5.8 with a discussion and outline how our estimator can be extended to

the multivariate case.

5.2 Classical results for bivariate extremes

Let (X1, X2) be a vector random variable with unknown distribution function F .

We assume the marginal distributions of F to be unit Fréchet. Where the margins

are unknown they may be estimated by the empirical distribution function. This

is justified by Genest et al. (1995) who show that replacing the true margins by

their empirical counterparts does not affect the efficiency of dependence parameter

estimators. Suppose that (X1i, X2i), i = 1, . . . , n, is a series of independent random

variables distributed as (X1, X2). Let

Pn = {(X1i/n,X2i/n) : i = 1, . . . , n}

represent the point process of normalised points (X1i, X2i) on R
2
+. The normali-

sation by n arises from the max-stability property of unit Fréchet variables. As

n→ ∞, subject to weak regularity conditions on the tail form of F (Resnick, 1987),

Pn converges to an inhomogeneous Poisson process P on R
2
+\{0}.

A key feature of P is that its intensity measure factorises into functions of

pseudo-radial R and angular W components defined by

R = ||(X1, X2)|| and W = X1/R (5.2.1)
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where || · || is any choice of norm. For ease of exposition, we follow Coles and

Tawn (1991) and choose to work henceforth with the L1 norm so that R =

||(X1, X2)|| = X1 + X2, though others also work with the L2 (Einmahl et al.,

1993) and L∞ norms (Einmahl et al., 1997 and 2001). With the L1 norm, the

intensity measure of P satisfies

µ( dr × dw) =
dr

r2
2 dH(w) (5.2.2)

where H is a distribution function on the interval [0, 1] satisfying the moment

condition

∫ 1

0

w dH(w) = 1/2. (5.2.3)

The angular measure H and its density h, when it exists, are referred to as the

spectral measure and the spectral density respectively.

The form of the known function of the radial component in intensity (5.2.2)

arises from the choice of unit Fréchet margins. Thus, the dependence structure of

extreme observations is characterised entirely by the spectral measure. Specifically,

let Nn(B) be the number of occurrences of the event B ⊂ R
2
+\{0} by the process

Pn and let N(B) be the equivalent number for the Poisson process P , so that

Nn(B) converges in distribution to N(B) and N(B) follows a Poisson distribution

with mean

Λ(B) =

∫

B

dr

r2
2 dH(w). (5.2.4)

Furthermore, for C ⊂ B, as n→ ∞

Pr{(X1/n,X2/n) ∈ C | (X1/n,X2/n) ∈ B} → Λ(C)

Λ(B)
. (5.2.5)

These results illustrate that inference for H is fundamental to all inferences for

extreme events.
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We illustrate the use of results (5.2.4) and (5.2.5) for examples of events B and

C which will be useful in Section 5.4. The simplest such sets are those for which at

least one component of (X1, X2) exceeds some high level, that is B1 = {(X1, X2) :

X1 > x} and B2 = {(X1, X2) : X2 > y}. Then Λ(B1) is

Λ(B1) =

∫ 1

0

∫ ∞

x/w

µ( dr× dw) dr dw =

∫ 1

0

∫ ∞

x/w

dr

r2
2 dH(w) =

2

x

∫ 1

0

w dH(w) =
1

x

(5.2.6)

by the moment condition on H of equation (5.2.3). Similarly, we have Λ(B2) = 1
y
.

The second pair of interesting sets are subsets of B1 and B2 given by

B
(t)
1 =

{

(X1, X2) : X1 > x,
X1

X1 +X2
< t

}

and B
(t)
2 =

{

(X1, X2) : X2 > y,
X1

X1 +X2
< t

}

.

which are created by adding a constraint on the size of the angular coordinate.

Then, using the moment condition on H , the integrated intensity for B
(t)
1 is given

by

Λ(B
(t)
1 ) =

∫ t

0

∫ ∞

x/w

dr

r2
2 dH(w) =

2

x

∫ t

0

w dH(w). (5.2.7)

Similarly, we have

Λ(B
(t)
2 ) =

2

y

∫ t

0

(1 − w) dH(w) =
2

y
H(t) − 2

y

∫ t

0

w dH(w). (5.2.8)

A consequence of these results for the integrated intensity is that if

C1(t) = lim
n→∞

Pr{(X1/n,X2/n) ∈ B
(t)
1 | (X1/n,X2/n) ∈ B1} (5.2.9)

and

C2(t) = lim
n→∞

Pr{(X1/n,X2/n) ∈ B
(t)
2 | (X1/n,X2/n) ∈ B2} (5.2.10)

then,

1

2
[C1(t) + C2(t)] = H(t), (5.2.11)



CHAPTER 5. ESTIMATING EXTREMAL DEPENDENCE FUNCTIONS 132

for t ∈ [0, 1]. Equation (5.2.11) is a new representation for H(t) and is the basis

of our statistical estimator in Section 5.4.

A further use of the point process convergence is to derive the bivariate extreme

value distribution as the limiting distribution of the componentwise maxima

Mn,1 = max
i=1,...,n

X1i and Mn,2 = max
i=1,...,n

X2i.

Specifically consider the event Bxy = {(X1, X2) : X1 > x or X2 > y}, then by the

convergence of the process Pn to P , as n→ ∞,

Pr{Mn,1/n ≤ x,Mn,2/n ≤ y} → Pr{N(Bxy) = 0}

= exp {−Λ(Bxy)} (5.2.12)

where

Λ(Bxy) =

∫ 1

0

∫ ∞

min{x/w,y/(1−w)}

dr

r2
2 dH(w) =

∫ 1

0

2 max

(

w

x
,
1 − w

y

)

dH(w).

(5.2.13)

We denote the limiting distribution by G(x, y), where

G(x, y) = exp

{

−
∫ 1

0

2 max

(

w

x
,
1 − w

y

)

dH(w)

}

(5.2.14)

which is the bivariate extreme value distribution, see de Haan and Resnick (1977)

and Pickands (1981).

A widely used characterisation of the dependence structure ofG is the Pickands’

dependence function (Pickands, 1981 and Resnick, 1987; Chapter 5), defined as

A(t) = 2

∫ 1

0

max{wt, (1 − w)(1 − t)} dH(w) (5.2.15)

so that G is given in terms of A as

G(x, y) = exp

{

−
(

1

x
+

1

y

)

A

(

y

x+ y

)}

.
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The property that G is a distribution function and the moment condition on H

in (5.2.3) requires that A be a convex function on [0, 1] satisfying max(t, 1 − t) ≤

A(t) ≤ 1. Noting that

H(t) =
1 − A′(1 − t)

2
, (5.2.16)

at all points for which A is differentiable, then it is clear that G, A and H are all

uniquely determined by the specification of any one of them. Furthermore, for χ

as defined in equation (5.1.1), χ = 2(1−A(0.5)) and so provides a natural simple

measure of asymptotic dependence.

If X1 and X2 are asymptotically independent, then χ = 0 and H places all

of its mass on the endpoints of the interval [0, 1], and equivalently G(x, y) =

exp(−1/x− 1/y) and A(t) = 1 for t ∈ [0, 1]. When X1 and X2 are asymptotically

dependent, χ > 0 and broadly speaking the larger χ the stronger the asymptotic

dependence between X1 and X2. The cases of stronger asymptotic dependence

arise when H places mass closer to the centre of [0, 1] in which case A(t) is closer

to the bounding curve max(t, 1 − t) for t ∈ [0, 1].

5.3 Heffernan and Tawn method for bivariate

tail estimation

Let (Y1, Y2) = (logX1, logX2) so that the random variable (Y1, Y2) has Gumbel

margins. In the bivariate case, Heffernan and Tawn (2004) assume the existence

of normalising functions a | 1(y1), a | 2(y2) and b | 1(y1), b | 2(y2), which can be chosen

such that the residuals Z | 1 and Z | 2 defined by

Z | 1 =
Y2 − a | 1(y1)

b | 1(y1)
and Z | 2 =

Y1 − a | 2(y2)

b | 2(y2)
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have non-degenerate limit distributions D|1 and D|2 such that

lim
y1→∞

Pr{Y2 ≤ a | 1(y1) + b | 1(y1)z | 1 | Y1 = y1} = D | 1(z | 1),

and lim
y2→∞

Pr{Y1 ≤ a | 2(y2) + b | 2(y2)z | 2 | Y2 = y2} = D | 2(z | 2).

The variables Z |1 and Y1 (equivalently Z | 2 and Y2) are independent as Y1 (equiv-

alently Y2) approaches its limit. Further details of the required normalising con-

stants are given by Heffernan and Tawn (2004) and Heffernan and Resnick (2007).

Using the Heffernan and Tawn model, we derive the conditional probability of

being in the general set B∗ ⊂ R
2, given that the first component of (Y1, Y2) exceeds

some large threshold v, i.e. Pr{(Y1, Y2) ∈ B∗ | Y1 > v}. Under the assumption

that the Heffernan and Tawn model holds for Y1 > v and using the limiting

independence of Z | 1 and Y1 we have, for large v,

Pr{(Y1, Y2) ∈ B∗ | Y1 > v} =

∫ ∞

v

Pr{(Y1, Y2) ∈ B∗ | Y1 = y1}fY1 | Y1>v(y1) dy1

≈
∫ ∞

v

Pr{(y1, a | 1(y1) + b | 1(y1)Z | 1) ∈ B∗}fY1 |Y1>v(y1) dy1

(5.3.1)

where fY1 |Y1>v is the conditional density function of Y1 | Y1 > v. Let {y1j} be the

nv points whose first component exceeds the threshold v where nv =
∑n

k=1 I{Y1k>v}

and I is the indicator function. To estimate probability (5.3.1) we first approximate

the distribution of Z | 1 by the empirical distribution of the nv residuals {z | 1,j}

associated with the points {y1j}. Keeping y1 > v fixed, we can then estimate the

probability that (y1, a | 1(y1) + b | 1(y1)Z | 1) lies in B∗ by

P̂r{(y1, a | 1(y1) + b | 1(y1)Z | 1) ∈ B∗} =
1

nv

nv
∑

i=1

I[(y1,a | 1(y1)+b | 1(y1)z | 1,i)∈B∗].

Using a similar empirical estimate for the distribution of Y1|Y1 > v the required
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conditional probability that (Y1, Y2) is in the set B∗ is then estimated by

P̂r{(Y1, Y2) ∈ B∗ | Y1 > v} =
1

n2
v

nv
∑

j=1

nv
∑

i=1

I[(y1j ,a | 1(y1j)+b | 1(y1j)z | 1,i)∈B∗].

A similar estimate holds when conditioning on Y2 > v. In practice the normalising

functions a | 1, a | 2, b | 1 and b | 2 must also be estimated, see Heffernan and Tawn

(2004) for details of how to do this.

We use the probability integral transform to transform back to unit Fréchet

margins. We first transform the set B∗ and the threshold v. Since B∗ is an

arbitrary set on R
2 it can be transformed to the set B = {exp{y} : y ∈ B∗} ⊂

R
2
+\{0}. Similarly, the threshold v is transformed to u = exp{v}. Since this

transformation is strictly monotonic, points with first component exceeding the

threshold v on Gumbel margins are the same points for which the first component

exceeds the threshold u on Fréchet margins, hence nv = nu =
∑n

k=1 I{X1k>u}.

Thus the estimated probability that (X1, X2) is in the set B, given that the first

component exceeds the threshold u, is

P̂r{(X1, X2) ∈ B |X1 > u} =
1

n2
u

nu
∑

j=1

nu
∑

i=1

I[(exp{y1j},exp{a | 1(y1j)+b | 1(y1j )z | 1,i})∈B].

(5.3.2)

This estimate holds regardless of the extremal dependence structure of the vari-

ables (X1, X2).

5.4 New nonparametric estimators

In Section 5.3 we used the Heffernan and Tawn model to find an estimate of

Pr{(X1, X2) ∈ B |X1 > u} as u → ∞. In the special case of asymptotic depen-

dence this estimate can be simplified further since, as shown by Heffernan and

Tawn (2004), in this case the normalising functions are given by a | 1(y1) = y1 and
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b | 1(y1) = 1. Thus we obtain the estimate

P̂r{(X1, X2) ∈ B |X1 > u} =
1

n2
u

nu
∑

j=1

nu
∑

i=1

I[(exp{y1j},exp{y1j+z | 1,i})∈B].(5.4.1)

When B = B
(t)
1 (equivalently, B = B

(t)
2 ) the estimate of equation (5.4.1) can

be simplified further as follows. Consider the observations for which the indicator

function is non-zero, i.e. for which (exp {y1j} , exp{y1j + z | 1,i}) ∈ B. For the case

B = B
(t)
1 this expression is equivalent to

exp{y1j}/(exp{y1j} + exp{y1j + z | 1,i}) < t

which, following multiplication of both the numerator and denominator on the

left hand side by exp{y1i − y1j} and transformation by the probability integral

transform to the unit Fréchet marginal space, is equivalent to

wi ≡ x1i/(x1i + x2i) < t,

using the definition of W given in equation (5.2.1). Hence equation (5.4.1) can be

rewritten for B = B
(t)
1 as

P̂r{(X1, X2) ∈ B
(t)
1 |X1 > u} =

1

n2
u

nu
∑

j=1

nu
∑

i=1

I[wi<t]

=

∑n
i=1 I[x1i>u,wi<t]
∑n

i=1 I[x1i>u]

. (5.4.2)

The additional constraint in the indicator function on the numerator of the second

expression ensures that we continue to count only those variables whose first com-

ponent is a threshold exceedance even though the sum is taken over all n variables.

A similar expression may be found for P̂r((X1, X2) ∈ B
(t)
2 |X2 > u). Since the sets

[X1 > u] and [(X1, X2) ∈ B1] are equivalent, we can combine these estimates using

equation (5.2.11) to obtain our first empirical estimator of the spectral measure
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H . Allowing for different marginal thresholds (u1 and u2), this estimator is

Ĥ1(t) =
1

2

{

1
∑n

i=1 I[X1i>u1]

n
∑

i=1

I[X1i>u1&Wi<t] +
1

∑n
i=1 I[X2i>u2]

n
∑

i=1

I[X2i>u2&Wi<t]

}

.

(5.4.3)

Note that the estimator Ĥ1 given in equation (5.4.3) can also be written as

follows

Ĥ1(t) =
1

2

[

Λ̂(B
(t)
1 )

Λ̂(B1)
+

Λ̂(B
(t)
2 )

Λ̂(B2)

]

(5.4.4)

where Λ is the integrated intensity function (5.2.4) of the limiting Poisson process

P and Λ̂ is the empirical estimate of Λ.

Analogously, an empirical estimator of the dependence function A in equa-

tion (5.2.15) follows naturally from (5.4.3). For j = 1, 2, let nuj
be the number

of variables whose jth component exceeds the associated marginal threshold uj.

Using the estimator Ĥ1 of equation (5.4.3) it is clear that each variable (X1i, X2i)

has point mass (m∗
1i +m∗

2i)/2 where

m∗
ji =

1

nuj

I[Xji>uj
], i = 1, . . . , n, j = 1, 2.

It then follows from equation (5.2.15) that the empirical estimator of A is

Â1(t) =
n
∑

i=1

(m∗
1i +m∗

2i) max{tWi, (1 − t)(1 −Wi)}. (5.4.5)

In Theorems 5.4.1 and 5.4.2 we show consistency of the estimators Ĥ1(t) and

Â1(t). Proofs can be found in Appendix B. These theorems show that both es-

timators are unbiased and have variance tending to zero as sample size increases.

For the estimator Ĥ1(t) we can also prove asymptotic normality; for the estima-

tor Â1(t) this result is more complicated and we do not prove it here. However

empirical evidence from simulations suggests that Â1(t) is indeed asymptotically

normal. In both theorems we assume, for large n, that the process Pn ≡ P on the

region R
2
+\{[0, u1] × [0, u2]}.
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Theorem 5.4.1 For any fixed t, 0 ≤ t ≤ 1, as n→ ∞,

√
n
[

Ĥ1(t) −H(t)
]

→ N(0, σ2
t (u)), (5.4.6)

where σ2 is constant and is derived in Appendix B and u = (u1, u2).

Theorem 5.4.2 For fixed t, 0 ≤ t ≤ 1, as n→ ∞,

E[Â1(t)] = A(t) and Var(Â1(t)) = O(n−1).

Full expressions for the asymptotic variances of both estimators are given in

Appendix B. Figure 5.1 shows some plots of these variances in the case of the

spectral measure taking the form of the logistic distribution; this distribution is

characterised by a single parameter α which defines the strength of asymptotic

dependence (for further details see Section 5.6). We have assumed a sample size

of n = 100000 and marginal threshold levels of 99%; in this case Figure 5.1 shows

that, for a range of parameter values, the variances of both estimators are very

small. As expected, for fixed n, the variances increase as u1 (u2) increase, since

there are fewer data points for use in the inference. To verify our theoretical

variance functions, we also estimated the variances of the estimators by simulation,

i.e. we simulated a number of data sets with the required form of the spectral

measure and applied the estimators Â1(t) and Ĥ1(t). For each t, we then found

the sample variance of the estimates; these are also plotted in Figure 5.1. We see

that they are very similar to the theoretical variances. Similar plots (not shown)

of both the theoretical and simulated expected values of the estimators showed

both to be unbiased.

We now introduce a minor modification to the estimator Ĥ1(t), since as it is

defined in (5.4.3), the estimator does not satisfy moment condition (5.2.3). We

propose a linear tilting of this estimator to give the modified estimator Ĥ(t) with
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Figure 5.1: Theoretical (full lines) and simulated variances of untilted (dashed
lines) Ĥ1(t) and Â1(t) and tilted (dotted lines) Ĥ(t) and Â(t) estimators for the
logistic dependence function with parameters α = 0.15, 0.35, 0.55, 0.75. Variances
for H estimators are shown on the top row and for A estimators on the bottom
row. In these plots the sample size is n = 100000 and thresholds were fixed at the
marginal 99% quantile.

the following property:

dĤ(t) = (α̃ + β̃t) dĤ1(t) (5.4.7)

where constants α̃ and β̃ are chosen to ensure that Ĥ(t) satisfies (5.2.3) and has

mass 1 on [0, 1]. The values of α̃ and β̃ that satisfy these constraints are:

α̃ =
S − T

S2 − T
and β̃ =

2(S − 1)

S2 − T
(5.4.8)
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where

S =

∫ 1

0

w dĈ1(w) +

∫ 1

0

w dĈ2(w) and T = 2

(
∫ 1

0

w2 dĈ1(w) +

∫ 1

0

w2 dĈ2(w)

)

,

(5.4.9)

with Ĉ1(·) and Ĉ2(·) being empirical estimates of the functions given in equations

(5.2.9) and (5.2.10). In practice the moments determining α̃ and β̃ are estimated

by their sample values, using data above thresholds u1 and u2 as appropriate. This

modification to Ĥ1(t) results in the following estimator Ĥ(t):

Ĥ(t) =
1

2

{

1
∑n

i=1 I[X1i>u1]

n
∑

i=1

(α̃+ β̃Wi)I[X1i>u1&Wi<t]+

1
∑n

i=1 I[X2i>u2]

n
∑

i=1

(α̃ + β̃Wi)I[X2i>u2&Wi<t]

}

. (5.4.10)

Analogously, we can modify our empirical estimator of the dependence function

A given in equation (5.4.5) which follows naturally from (5.4.10). To do this, we

simply modify the point mass m1i +m2i to take account of the tilting, so that we

now have

mji =
1

nuj

(α̃+ β̃Wi)I[Xji>uj
], i = 1, . . . , n, j = 1, 2.

It then follows from equation (5.2.15) that the empirical estimator of A is

Â(t) =
n
∑

i=1

(m1i +m2i) max{tWi, (1 − t)(1 −Wi)}. (5.4.11)

It is reasonably straightforward to show that the tilting parameters tend to their

asymptotic values as n → ∞, i.e. that α → 1 and β → 0. From this it follows

that, in the limit, dĤ ∼ dĤ1, and similarly for Â(t) ∼ Â1(t), so that the tilted

and untilted estimators are asymptotically equivalent.

As with the untilted estimators, we conducted a simulation study to estimate

the variances of the tilted estimators; thus for each of the simulated data sets

we fitted the tilted estimators and then, for each t, found the sample variance
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for each of Ĥ(t) and Â(t). Plots of these variances are shown, for n = 100000

and 99% marginal threshold levels in Figure 5.1. They show that the variances of

both of the tilted estimators are much smaller than those of their counterparts,

Ĥ1(t) and Â1(t), which we know to be consistent by Theorems 5.4.1 and 5.4.2;

this confirms that tilting only improves the accuracy of the estimators. Further

the tilted estimator for the Pickands’ dependence function drastically improves

the variance estimate at the end-points of the range of t (i.e. when t is close to

0 or 1). This is because the tilting forces the estimator to satisfy the conditions

Â(0) = Â(1) = 1 or, equivalently, that the mean of Ĥ(t) is 0.5.

Implementation of these estimators requires the choice of thresholds u1 and u2.

We follow the form of diagnostics proposed by Heffernan and Tawn (2004), which

check for the stability of the fitted model above the selected threshold. We first

check for independence between the angular variables Wi and the conditioning

variables, for values of X1i and X2i above their respective thresholds. Thus for a

given data set, we plot wi against x1i for x1i > u1 and against x2i for x2i > u2.

Dependence of the wi’s on the x1i’s or x2i’s indicates that either the associated

threshold is not sufficiently high, or that the limiting BEV distribution has a spec-

tral measure which puts mass on the endpoints of the interval [0, 1]. For proposed

thresholds u1 and u2, we also check that the estimated dependence functions do

not differ greatly when the thresholds are raised still higher, although clearly some

changes due to random variation will arise.

5.5 Existing estimators

We concentrate on nonparametric estimators for the dependence functions defined

in Section 5.2. For insight into existing parametric estimators see Tawn (1988),

Smith et al. (1990), Shi et al. (1992) and Stephenson and Tawn (2004). We first

present details of the estimator offered by Capéraà and Fougères (2000). This

estimator was shown by Capéraà and Fougères to perform similarly in terms of

L1 errors to the estimators of Einmahl et al. (1993, 1997 and 2001) and Joe et
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al. (1992) in the case of strong dependence, and to out-perform these estimators

when dependence is weak.

Capéraà and Fougères use the L1 norm and define Ri and Wi as in equa-

tion (5.2.1). They propose an initial estimator of the Pickands dependence function

in (5.2.15) to be

Ā1(t) =
2

kn

n
∑

i=1

max{tWi, (1 − t)(1 −Wi)}I[Ri≥1/kn], (5.5.1)

where {kn, n ∈ N} is a sequence of integers such that kn → ∞ and kn/n → 0

as n → ∞. To ensure that their estimate is a consistent convex estimator of A

satisfying max(t, 1 − t) ≤ A(t) ≤ 1, Capéraà and Fougères propose the following

modification to their estimator

Ā(t) = max
{

t, 1 − t, Ā1(t) + (2t− 1)(1 − 2Γn)
}

. (5.5.2)

Here Γn = 1/kn
∑n

i=1WiI[Ri≥1/kn]. This modification is equivalent to our tilting of

the conditional estimator. We obtain the corresponding estimator of H using the

relation of equation (5.2.16). For small samples Capéraà and Fougères propose a

bias correction amounting to a down-weighting of the contributions of the central

Wi’s occurring with the Ri’s exceeding 1/kn. Note that we follow Capéraà and

Fougères and down-weight the Wi corresponding to the 30% largest radial order

statistics above the threshold. This is consistent with the “empirically optimal”

proportions found by Capéraà and Fougères (2000).

The second non-parametric estimator which we shall look at is that proposed

by Abdous and Ghoudi (2005). They observe that all existing nonparametric

estimators are empirical estimators of the spectral measure H , for data with radial

component above a high threshold. This is slightly different to our estimator, in

which the data used for estimation are those with at least one component exceeding

a marginal threshold (i.e. either X1 > u1 or X2 > u2), rather than those with a

large radial component. The main differences between the existing methods arise
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from different choices of norm, which influence the precise form of H , and the exact

approach taken for its estimation. Further minor differences arise from different

methods being adopted to ensure the satisfaction of moment condition (5.2.3) and

different approaches to threshold choice.

Abdous and Ghoudi assume general margins, Fj (j = 1, 2). Of the characteri-

sations of A studied by Abdous and Ghoudi we present the kernel-based estimator

of Abdous et al. (1999) which takes the näıve form

Ã1(t) =
1

ln

n
∑

i=1

I[ζt,i≤ln/n]. (5.5.3)

where

ζt,i =























1 − max{F1(X1i)
1/t, F2(X2i)

1/(1−t)} for t ∈ (0, 1),

1 − F2(X2i) for t = 0,

1 − F1(X1i) for t = 1.

(5.5.4)

The marginal distribution functions are replaced by their empirical counterparts

when unknown. We assume that the margins are identical unit Fréchet distribution

functions, using the probability integral transform if necessary.

This estimator, like all the other existing nonparametric estimators, requires a

choice of threshold. For the estimators of Capéraà and Fougères (2000) and Abdous

et al. (1999) and our conditional estimator this is determined by the values of kn, ln

and u1 (u2). One diagnostic developed for this purpose is given by Stărică (1999).

However, Abdous and Ghoudi (2004) propose a method of automatic threshold

selection. Observing that all the existing estimators presented are approximated

by the derivative of a distribution function close to zero, they suggest using local

polynomial fitting and kernel estimation to generate an estimator for A. If m

is the degree of the polynomial, K the kernel and h the bandwidth used for the

kernel estimation, then Abdous and Ghoudi propose updating the estimator Ã1 of
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equation (5.5.3), to give

Ã(t) =
1

n

n
∑

i=1

∫ 1

ζt,i

K [m](v, h) dv. (5.5.5)

The function K [m](v, h) = eT1 S
−1
m [v, . . . , vm]TK (v/h) /h is an equivalent kernel,

where the vector e1 has value 1 for the first component and zero thereafter and the

(i, j)th element of the matrix S is given by the (i+ j)th moment of K (v/h) /h.

This estimate depends on the choice of polynomial degree m, kernel K and

bandwidth h. Since only points within the bandwidth are used in the estima-

tion procedure, the choice of a bandwidth is equivalent to choosing a threshold.

Abdous and Ghoudi suggest automatic selection of the bandwidth (equivalently,

threshold) using the L1-double kernel method, first proposed by Devroye (1989).

The estimator is constrained to fulfil the properties of the dependence function

using either convex hulls or smoothing splines. Abdous and Ghoudi do not discuss

estimation of the spectral measure H . Using equation (5.2.16) we propose using

finite differencing methods to obtain an estimate of H given an estimate Ã.

5.6 Simulation study

We carry out two studies to compare the performance of the conditional estimators

for dependence functions A andH with that of the Capéraà and Fougères estimator

Ā and the Abdous and Ghoudi estimator Ã.

5.6.1 Study design

For data arising from a distribution F in the domain of attraction of a BEV

distribution G, the performance of any estimator for H or A is principally driven

by two features. First is the rate of convergence of the Poisson process Pn to its

limit P as n → ∞. This is determined exclusively by the underlying distribution

F ; we are not interested in the effect of this feature as it will be the same for all

estimators. For comparison with the Capéraà and Fougères estimator we therefore
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simulate directly from the limiting Poisson process. However, for comparison with

the Abdous and Ghoudi estimator, due to its self-selecting threshold feature, we

must simulate from the full distribution.

The second feature affecting the performance of the estimators is the rate

of convergence of each estimator to its limiting distribution. This is of interest

and is driven by the number of points above the estimation threshold(s). Due

to the self-selecting threshold, this number is determined within the Abdous and

Ghoudi estimator, whereas it is determined by the prior choice of threshold for

both the Capéraà and Fougères and our conditional estimators. To allow for a fair

comparison between the two models in the Abdous and Ghoudi study, we apply the

conditional estimator to exceedances of several thresholds. Such examination of a

range of thresholds is regularly employed during the threshold selection component

in an extreme value analysis.

For comparison with the Capéraà and Fougères estimator, we simulate 1000

independent replicate data sets from the limiting point process P , and retain a

total of m points above the threshold(s) for estimation. To allow a fair comparison

of the two methods this means that the (Ri,Wi) points giving the largest M radial

order statistics are used for the Capéraà and Fougères method. We then select a

threshold u = u1 = u2 so that exactly M (M = 50, 200, 1000 in our case) points lie

above either threshold, these are used for estimation with our conditional method.

The different definitions of thresholds for the two methods mean that some points

will be included in one analysis but not in the other.

For comparison with the Abdous and Ghoudi estimator Ã, we simulate 1000

independent replicate data sets, of 100000 points each, from the full distribution.

Three thresholds (empirical 90-, 95- and 99% quantiles) were tested for the condi-

tional estimator. In applying the Abdous and Ghoudi estimator, we followed their

choice of the Epanechnikov kernel for kernel smoothing and used first and second

order polynomials (m = 1, 2) for selection of the optimal bandwidth. To constrain

the function to be a dependence function we used convex hulls and then used finite
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differencing of the estimate of A to estimate H .

We used a range of parametric forms of the spectral density h and a variety of

strengths of dependence for each form of h. All of the spectral densities considered

place all their mass on the interior of the interval [0, 1]. The spectral densities we

used are:

Logistic: Gumbel (1960). This is a symmetric density with a single parameter

α ∈ [0, 1]. Perfect dependence is obtained in the limit as α → 0 and exact

independence is given by α = 1. For α < 0.5, h is unimodal, whereas for

increasingly large values of α > 0.5, the density places greater mass towards

the ends of the interval [0, 1]. The density is given by

h(w) =
1

2

(

1

α
− 1

)

w−1−1/α(1 − w)−1−1/α{w−1/α + (1 − w)−1/α}α−2

Hüsler-Reiss: Hüsler-Reiss (1989). This symmetric model has a

single parameter λ > 0. Perfect dependence and exact independence are

obtained as limiting cases as λ→ ∞ and λ→ 0 respectively. The density is

given by

h(w) =
a(w)

2w2(1 − w)
+

a(1 − w)

2w(1 − w)2

where a(w) = λφ(1/λ + λ/2 log{(1 − w)/w})/2 + λ2φ′(1/λ + λ/2 log{(1 −

w)/w})/4, φ is the standard Gaussian density function and φ′ its first deriva-

tive.

Dirichlet: Coles and Tawn (1991). This model has two parameters α1 > 0 and

α2 > 0. For α1 = α2 this model is symmetric and for α1 6= α2 it is asym-

metric, allowing for nonexchangeability of the variables. Perfect dependence

and exact independence are obtained as limiting cases as α1 = α2 → ∞ and
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α1 = α2 → 0 respectively. The density is given by

h(w) =
α1α2Γ(α1 + α2 + 1)

2Γ(α1)Γ(α2)k(w)3

(

α1w

k(w)

)α1−1(
α2(1 − w)

k(w)

)α2−1

where k(w) = α1w + α2(1 − w).

We used four sets of parameter values to explore the performance of each of

the estimators at various levels of dependence within the class of asymptotic de-

pendence. The four parameterisations used correspond to having an A(0.5) =

0.555, 0.637, 0.732 and 0.841. We note that a lower value of A(0.5) corresponds to

stronger dependence within the class of asymptotic dependence. These choices of

A(0.5) correspond to the logistic parameter α taking the values 0.15, 0.35, 0.55

and 0.75.

For each value of α, the equivalent parameter values for the other distribu-

tions are as follows. For the Hüsler-Reiss distribution, we take λ = 1/Φ−1(2α−1).

For the two parameter Dirichlet distribution, a further constraint on the parame-

ters is needed for identifiability. We used three different constraints D1:α2 = α1,

D2:α2 = 2α1 and D3:α2 = 4α1. These three constraints allowed us to explore dif-

ferent degrees of nonexchangeability of the variables. For each value of the logistic

parameter α, the value of α1 was found numerically under each of constraints D1,

D2 and D3.

5.6.2 Results

We summarise the output of the two studies by looking at the median and the

2.5% and 97.5% quantiles of the sampling distributions of Â(t)−A(t) and Ā(t)−

A(t) (Capéraà and Fougères comparison, see Figure 5.2) and of Â(t) − A(t) and

Ã(t) − A(t) (Abdous and Ghoudi comparison, see Figure 5.3) for t ∈ [0, 1]. We

discuss first the Capéraà and Fougères comparison.

For each dependence structure and each distribution a pilot study of 100 sim-

ulated data sets with M = 1000 was made to observe the proportion of the data
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sets that were used in both methods. For example, for the logistic distribution

with parameter fixed at α = 0.15, 0.35, 0.55 and 0.75 the median proportion of the

points used in the conditional method that were also used by the Capéraà and

Fougères method are 0.558, 0.643, 0.733 and 0.841. Corresponding interquartile

ranges are 0.0233, 0.0235, 0.0153 and 0.0185. Results for the remaining distribu-

tions are similar. The number of overlapping points depends on the underlying

strength of dependence with a greater overlap between the sets of points used

under the two methods for weaker dependence structures. There is very little

difference in the number of overlapping points between the different distributions

once the strength of dependence is fixed.

The value of M appears to have little influence on the relative performance

of the two estimators. Results for M = 1000 for all of the distributions under

each parameterisation are shown in Figure 5.2. Similar plots for M = 50, 200 (not

shown) have vertical axes with larger ranges as expected, but there is little or no

material difference in the shapes of the plotted curves.

For smaller values of α, corresponding to stronger dependence, the Capéraà and

Fougères estimator is more variable than the conditional estimator, particularly

away from the centre of the interval. For such α the methods are comparable

in the very centre of the interval. This is where the effect of the Capéraà and

Fougères bias correction is evident. The relatively poor performance of the Capéraà

and Fougères estimator appears to be due to the nature of the correction applied

in equation (5.5.2), adding (2t− 1)(1 − 2Λn) to Ā1(t).

For values of the parameters corresponding to weaker dependence the two meth-

ods seem to perform comparably. The Capéraà and Fougères estimator is slightly

less variable than the conditional estimator for the very weakest dependence con-

sidered. For all parameter values the median lines for both methods are very close

so that the main differences between the performances correspond to differences

in variability rather than in bias. There is little systematic difference between the

output for different underlying distributions.



CHAPTER 5. ESTIMATING EXTREMAL DEPENDENCE FUNCTIONS 149

0.0 0.2 0.4 0.6 0.8 1.0−
0.

00
4

0.
00

2
0.

00
8

0.0 0.2 0.4 0.6 0.8 1.0−
0.

01
0

0.
00

5

0.0 0.2 0.4 0.6 0.8 1.0−
0.

01
5

0.
00

0
0.

01
5

0.0 0.2 0.4 0.6 0.8 1.0−
0.

02
0.

00

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

00
4

0.
00

2

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

00
5

0.
00

5

0.0 0.2 0.4 0.6 0.8 1.0−
0.

01
5

0.
00

0
0.

01
5

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

02
0

0.
00

0
0.

01
5

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

00
4

0.
00

2

0.0 0.2 0.4 0.6 0.8 1.0−
0.

01
0

0.
00

5
0.

01
5

0.0 0.2 0.4 0.6 0.8 1.0
−

0.
01

0
0.

00
5

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

01
5

0.
00

5

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

00
4

0.
00

2
0.

00
8

0.0 0.2 0.4 0.6 0.8 1.0−
0.

01
0

0.
00

5

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

01
5

0.
00

0
0.

01
5

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

02
0.

00

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

00
4

0.
00

2

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

00
5

0.
00

5
0.

01
5

0.0 0.2 0.4 0.6 0.8 1.0−
0.

01
5

0.
00

5
0.

02
0

0.0 0.2 0.4 0.6 0.8 1.0−
0.

02
0

0.
00

0
0.

01
5

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Â
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Figure 5.2: Pointwise median and 2.5% and 97.5% quantiles of sampling distribution
of proposed estimator Â(t) − A(t) (solid lines) and the Capéraà and Fougères esti-
mator Ā(t) − A(t) (dashed lines). All plots show output for M = 1000 data points
used for estimation by both methods. The five columns show left to right Logis-
tic, Hüsler-Reiss, Dirichlet (D1), Dirichlet (D2) and Dirichlet (D3) distributions. The
four rows show top to bottom parameter values corresponding to Logistic parameter
α = 0.15, 0.35, 0.55, 0.75.

We now go on to discuss the relative performances of our conditional estimator

and the Abdous and Ghoudi estimator. Results for all of the distributions for each

of the four parameterisations are shown in Figure 5.3. This shows that the factor

most strongly influencing the relative performance of the estimators is the strength

of dependence. The Abdous and Ghoudi estimator shows more bias than the

conditional estimator, especially at higher levels of dependence (α = 0.15, 0.35). In

all cases the Abdous and Ghoudi estimator tends to overestimate the dependence,

especially in the midrange of t. This estimator is also much more variable than

the conditional estimator at all levels of dependence. The conditional estimator

shows a decrease in bias but a corresponding increase in variance as the threshold

is increased. This is as we would expect from the standard bias-variance trade-off
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(higher thresholds approximate the asymptotics better, but use fewer data points).
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Â
(t

)−
A

(t
)

0.0 0.4 0.8

−
0.

08
−

0.
02

0.
04

t

Â
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Figure 5.3: Pointwise median and 2.5% and 97.5% quantiles of sampling distribution of
proposed estimator Â(t)−A(t) (solid lines) and the Abdous and Ghoudi estimator Ã(t)−
A(t) (dashed lines). All plots show output from the 1000 replications used for estimation
by both methods. The five columns show left to right Logistic, Hüsler-Reiss, Dirichlet
(D1), Dirichlet (D2) and Dirichlet (D3) distributions. The four rows show top to bottom
parameter values corresponding to Logistic parameter α = 0.15, 0.35, 0.55, 0.75.

We also examined the performance of the proposed estimator for the spectral

measure Ĥ(t) given in (5.4.10) relative to the estimator H̃(t) that follows from

the finite differencing of the Abdous and Ghoudi estimator Ã(t). Our conclusions

were very similar to those highlighted by the results of Figure 5.3. This is hardly

surprising since the estimates of the two dependence functions are functionally

linked. It is interesting to note that the Abdous and Ghoudi estimator performed

poorly in estimatingH at the ends of the (0,1) interval, consistently overestimating

H when t is close to 0 and underestimating it when t is close to 1. This is

possibly due to the convex hull and finite differencing techniques which resulted

in a step function estimate of H , whereas the conditional estimator returns a

smooth estimate. The erroneous placing of mass at the points t = 0 and 1 by the
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Abdous and Ghoudi estimator is emphasised in the plots of Figure 5.4 which show

Ĥ(t)−H(t) and H̃(t)−H(t), for the logistic distribution only. The conclusions for

both the A and H functions, appear to hold regardless of whether the underlying

spectral density is uni- or bi-modal, symmetric or asymmetric.
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Figure 5.4: Pointwise median and 2.5% and 97.5% quantiles of sampling distribution
of proposed estimator Ĥ(t) −H(t) (solid lines) and the Abdous and Ghoudi estimator
H̃(t) −H(t) (dashed lines). All plots show output from the 1000 replications used for
estimation by both methods. The results shown here are for the Logistic distribution,
with parameter values α = 0.15, 0.35, 0.55, 0.75. Plots for the remaining distributions
(not shown) are similar.

We conclude with a further point of interest regarding the automatic bandwidth

selection by the Abdous and Ghoudi estimator. Histograms of these bandwidths

(not shown) illustrate the wide variation in the bandwidths selected for any given

dependence structure, although the range of bandwidths does not seem to vary

greatly across distributions. The lower the level of dependence the greater the

range of bandwidths selected. For the logistic distribution the median (2.5%

and 97.5% quantiles) of the bandwidths selected for the 1000 datasets simu-
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lated for the dependence parameters in order of decreasing dependence (α =

0.15, 0.35, 0.55, 0.75) were, 0.21 (0.03, 0.49), 0.22 (0.03, 0.53), 0.24 (0.03, 0.56) and

0.31 (0.03, 0.75). Since data exceeding these bandwidths are utilised in the esti-

mation procedure thresholds, it is clear that this estimator favours much lower

thresholds than one would intuitively pick for an extreme value analysis. Indeed

in all cases the median threshold is lower than any of the thresholds used for the

conditional estimator.

5.7 Application to finance data

We now analyse financial indices describing the performance of four national stock

exchanges during the years leading up to and following European Economic Mon-

etary Union (EMU) in 1999.

The FTSE 100 is a benchmark index tracking the performance of the London

Stock Exchange. We consider data comprising daily values of the FTSE 100 Index

on trading days from 1st January 1985 to 12th November 2001, as well as values

from US (Standard and Poors 500, equivalently S&P 500), French (CAC 40) and

German (DAX 30) indices on the same days. Much of this data was examined in

a larger extreme value analysis by Poon et al. (2003b). They analysed data going

back to the late 1960’s but did not focus on the effect of EMU on the extremal

behaviour as we do here.

This period is of particular interest as it was during these years that the Eu-

ropean currencies preparing for EMU were harmonised. In this analysis, we are

interested in the effect of this harmonisation on the extremal properties of the

concomitant stock exchange behaviour. As such, we compare the joint extremal

behaviour of the German DAX and French CAC; the DAX and the UK FTSE;

and the DAX and the US Standard and Poors indices. This gives us three com-

parisons: the first between two European economies who did join the EMU in

1999; the second between two European economies, one of which did not join the

EMU and the third between a European economy joining the EMU and a Western
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economy outside Europe.

The key dates during these years are: 1st July 1990, preliminary reforms and

the beginning of convergence; 1st January 1994, preparation for EMU; 1st January

1999, adoption of the Euro and fixing of exchange rates for countries in EMU. We

break the data into four periods accordingly.

As is standard for analyses of such data, we work with daily returns rather

than with the raw data (Embrechts et al., 1997). This transformation removes the

time trend, giving an approximately stationary time series. We are interested in

extreme losses and work with negative returns. The first stage is to transform the

negative daily returns to unit Fréchet scale using the rank transform. Denote the

negative return variables after transformation to Fréchet scale as XDAX,i etc.

The proposed methods are appropriate for data arising as realisations from the

asymptotic dependence class of bivariate distributions. Therefore we must verify

that our pairs of negative returns are realisations of vector random variables which

are members of this class. Clearly it is impossible to ascertain this unequivocally.

However, we can check some necessary conditions for membership and a number

of such diagnostics exist. Nonparametric estimation of χ(u) and χ̄(u) of Coles

et al. (1999) provides a helpful visual diagnostic for the limiting values of these

functions as u → 1. We require the respective limits to be χ > 0 subject to

χ̄ = 1. Figure 5.5 shows the estimated function χ̄(u) for the first (1985-1990) and

last (1999-2001) of the time periods. These show χ̄(u) to be tending to 1 as the

threshold tends to its limit. Plots of χ(u) for these data show a positive limit.

Similar diagnostic plots of both χ(u) and χ̄(u) suggest that the data from the

middle time periods is also consistent with the required limiting values (χ̄ = 1 and

χ > 0).

Equivalently we can estimate the coefficient of tail dependence of Ledford and

Tawn (1996) for each pair. The coefficient of tail dependence for asymptotically

dependence variables is equal to 1, with values less than one indicating asymp-

totic independence. Let (X85,FTSE,i, X85,DAX,i); i = 1, . . . , n85 denote the pairs of
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Figure 5.5: Estimates of χ̄(u) (dashed lines) for financial indices over time periods 1st
January 1985 - 30th June 1990 (left-hand side) and 1st January 1999 - 12th November
2001 (right-hand side), with pointwise 95% confidence intervals.

Fréchet transformed negative FTSE and DAX returns during the period 1st Jan-

uary 1985 - 31st June 1990, where n85 denotes the number of such returns recorded

in this period. The remaining pairs of indices for all four periods are defined anal-

ogously. Then let T85,FTSE,DAX,i = min(X85,FTSE,i, X85,DAX,i); i = 1, . . . , n85.

Then the coefficient of tail dependence η85,FTSE,DAX is the shape parameter of

the univariate variables T85,FTSE,DAX,i; i = 1, . . . , n85. Standard univariate ex-

treme value techniques lead to inferences on η85,FTSE,DAX and on the coefficients

of tail dependence for the other pairs and other periods. We follow Davison and

Smith (1990) in adopting a threshold based likelihood approach.

Table 5.1 shows maximum likelihood estimates for the coefficients of tail de-

pendence for each pair. Threshold selection was carried out using standard diag-

nostics including mean residual life plots and parameter threshold stability plots

(Coles, 2001). Table 5.1 shows that all of these pairs exhibit tail behaviour that

is consistent with a coefficient of tail dependence equal to 1. This indicates the
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appropriateness of the proposed methods to describe extremal dependence within

the asymptotic dependence class for this data set.

DAX, FTSE DAX, FR DAX, S&P
1st January 1985 – 30th June 1990 0.89 (0.12) 0.99 (0.12) 0.92 (0.12)
1st July 1990 – 31st December 1993 1.01 (0.16) 1.08 (0.16) 0.98 (0.15)
1st January 1994 – 31st December 1998 1.05 (0.13) 0.92 (0.12) 0.87 (0.13)
1st January 1999 – 12th November 2001 0.87 (0.16) 0.81 (0.16) 0.91 (0.17)

Table 5.1: Maximum likelihood estimates of coefficients of tail dependence for pairs of
indices in different time periods from January 1985 – November 2001. Standard errors
in parentheses.

We estimate the spectral measure and associated dependence function A for

each pair of indices in each of the four time periods considered. We use the

proposed estimation method of Section 5.4. Estimation uncertainty is assessed

using a nonparametric bootstrap in which we sample with replacement from the

pairs of variables within each time period to obtain replicate data sets of the

same size as the original data sets. The number of bootstrap replicate data sets

generated for this analysis was 1000. We estimated the dependence function A

for each bootstrap data set. Each estimate was treated as a realisation from the

sampling distribution of the estimator for the dependence function.

The estimation threshold is selected by assessing stability of estimates to thresh-

old choice, as described in Section 5.4. For simplicity, the threshold exceedance

probability was constrained to be the same for each marginal variable, the selected

threshold value being equal to the 0.9 marginal quantile.

Figure 5.6 shows estimated dependence functions for each of the pairs and each

of the time periods considered. We look first at dependence between the German

DAX and the French CAC. Both of these countries joined the EMU on the 1st

January 1999. For this pair the dependence is weakest in the earliest period, similar

during the two periods preparing for EMU, and strongest after the exchange rate

freeze on the 1st January 1999. Indeed, this final dependence is the strongest

between any pair of indices during any period.

Dependence between the UK FTSE and the German DAX in the first period
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is similar to that between the DAX and the CAC in this period. However despite

the dependence between the UK and German indices strengthening over time, the

ultimate dependence between these indices in the final period considered is weaker

than that of the DAX and CAC.

Dependence between the US Standard and Poors and the German DAX is

weakest of all, with little change in dependence occurring during the first three

periods and slightly stronger dependence during the last period. We investigated

whether this increased dependence in the last period could be explained by the

downturn in shares occurring on or around September 11th 2001, which affected

markets internationally. There is little evidence from the data to support this hy-

pothesis as although large negative marginal returns are observed on and following

this date, these large values do not occur simultaneously.

Poon et al. (2003) point out the greater influence of the US stock market on

other international markets. They argue that since the US stock markets close

later than the European markets, the effect of US activity is liable to be seen

in the following day’s activity of the European markets. We therefore repeated

the analysis, this time comparing US returns with German returns recorded the

following day, rather than on the same day as above. This change in approach

actually decreased the observed lower tail dependence between the S&P and DAX.

Values of these returns from the first three periods were found to be consistent

with asymptotic dependence. This was not the case for the final period, for which

the estimated coefficient of tail dependence was 0.49 (s.e. 0.13), corresponding to

near independence.

Comparing the estimated dependence functions and their pointwise confidence

intervals for the different pairs in each time period, we can see that the differences

between strength of dependence in the first and last period is significant for all

three pairs. The estimated S&P and DAX dependence in the final period is sig-

nificantly weaker than the CAC and DAX dependence, although the FTSE and

DAX dependence is not.
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Our results suggest that the harmonisation of European currencies joining the

EMU may have had some converging effect on these nations’ stock exchanges. All

of the indices considered become more strongly dependent on the German DAX.

Stronger dependence is seen between European pairs and the strongest dependence

of all is observed between the two economies within the EMU. Further compar-

isons of stock exchange indices could be undertaken to investigate whether this

phenomenon occurs more widely than for the limited data set considered here.
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Figure 5.6: Estimated dependence functions (thick solid lines) for financial indices in
time period during 1985 - 2001, with pointwise 95% bootstrap based confidence intervals.

5.8 Discussion

We have exploited the model structure used by Heffernan and Tawn (2004) to

motivate the new consistent conditional estimator of Section 5.4. The resulting

estimator for asymptotically dependent distributions lies within the broader class

of models proposed by Heffernan and Tawn. This estimator is thus seen as an

important special case of the more flexible modelling strategy which accommodates
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asymptotic dependence and asymptotic independence as well as negative extremal

dependence.

The augmentation of the Heffernan and Tawn approach with the new meth-

ods described in this paper therefore offers a unified methodology for the analysis

of a broad range of dependence structures. We have demonstrated that the per-

formance of our conditional estimator for the dependence function of a bivariate

extreme value distribution is similar to the existing estimator of Capéraà and

Fougères (2000) (in the case of weak dependence) and that the conditional esti-

mator out-performs the same estimator in the case of strong dependence. The

conditional estimator out-performs the Abdous and Ghoudi (2004) estimator un-

der all types of dependence. These conclusions hold for a variety of underlying

distributional forms within the asymptotic dependence class. Further, our estima-

tor is the only one of the estimators which extends outside this family to classes

of asymptotic independence.

We have concentrated on obtaining conditional estimators of the spectral mea-

sure H and the Pickands’ dependence function A for bivariate random variables.

We now extend these to the multivariate case. Let X = (X1, . . . , Xp) be the p-

dimensional random variable with distribution function F and unit Fréchet mar-

gins. To derive an estimate for the spectral measure H , we consider the natural

multivariate extension to the Poisson process described in Section 5.2. In this case

the pseudo-radial R and angular Wj coordinates are

R = ||X|| and W = (Xj/R : j = 1, . . . , p− 1)

and Wp = 1 −
∑p−1

j=1 Wj . We continue to use the L1 norm to define R. Then, as

n→ ∞, the point process Pn = {Xi/n : i = 1, . . . , n} tends to the Poisson process

with intensity measure

µ( dr × dw) =
dr

r2
p dH(w)



CHAPTER 5. ESTIMATING EXTREMAL DEPENDENCE FUNCTIONS 159

where the spectral measure H is a distribution function on the unit simplex Sp =

{w :
∑p

j=1wj = 1 ; wj ≥ 0, j = 1, . . . , p}. Further the measure satisfies the

marginal moment conditions

∫

Sp

wj dH(w) =
1

p
, j = 1, . . . , p. (5.8.1)

The multivariate extreme value distribution and the multivariate Pickands’ depen-

dence function are then defined, respectively, as

G(x) = exp

{

−
∫

Sp

max
1≤j≤p

(wj/xj)p dH(w)

}

(5.8.2)

and

A(t) =

∫

Sp

max
j=1,...,p

{tjwj}p dH(w). (5.8.3)

Now take Y = log(X) to be the transformed random variable with Gumbel

margins and let Y−j denote the random variable Y with the jth component re-

moved. The Heffernan and Tawn (2004) model discussed in Section 5.3 extends

to the multivariate setting to give, conditional on one component of Y exceeding

some high threshold, the distribution of the remaining components as follows:

lim
yj→∞

Pr{Y−j ≤ a | j(yj) + b | j(yj)z | j | Yj = yj} = DZ | j
(z | j), j = 1, . . . , p,

where a | j(yj) and b | j(yj) are vectors of normalising functions. If Y−j is asymptot-

ically dependent on Yj these functions are simply a | j(yj) = yj1 and b | j(yj) = 1.

As in the bivariate case we assume such asymptotic dependence in deriving our

estimators.

The conditional estimate of H can be found by considering the sets Bj =

{X : Xj > xj} and B
(t)
j = {X : Xj > xj ,W < t}, for j = 1, . . . , p. Following the
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methods of Section 5.4 we have

H(t) =
1

p

p
∑

j=1

Λ(B
(t)
j )

Λ(Bj)
. (5.8.4)

This conditional formula for H leads to the natural empirical estimate

Ĥ1(t) =
1

p

p
∑

j=1

{

1
∑n

i=1 I[Xji>uj ]

n
∑

i=1

I[Xji>uj&Wi≤t]

}

(5.8.5)

where uj is the threshold used for the jth component.

As in the bivariate case, this first estimate does not satisfy the moment condi-

tions of equation (5.8.1). We introduce a linear tilting, similar to that of equation

(5.4.7). This takes the form

dĤ(t) = β̃(1, t1, . . . , tp−1) dĤ1(t) (5.8.6)

where β̃ = (β̃1, . . . , β̃p)
T . In order to satisfy the moment conditions and ensure a

mass of 1 on Sp the constants β̃ are obtained by solving the system of equations

β̃
T
V̂ = (p, 1, . . . , 1)T

where V̂ is a p× p matrix defined by

V̂i,j =



































∫

Sp

∑

k dĈk(t) if i = 1, j = 1,
∫

Sp
ti−1

∑

k dĈk(t) if i ≥ 2, j = 1,
∫

Sp
tj−1

∑

k dĈk(t) if i = 1, j ≥ 2,
∫

Sp
ti−1tj−1

∑

k dĈk(t) if i ≥ 2, j ≥ 2,

in which the Ĉk(·) are estimates of the multivariate extensions to equations (5.2.9)

and (5.2.10), i.e. for k = 1, . . . , p, they estimate

Ck(t) = lim
n→∞

Pr{X/n ∈ B
(t)
k |X/n ∈ Bk}.
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Hence the modified estimator of equation (5.8.5) is given by

Ĥ(t) =
1

p

p
∑

j=1

{

1
∑n

i=1 I[Xji>uj ]

n
∑

i=1

β̃W∗
i I[Xji>uj&Wi≤t]

}

(5.8.7)

where W∗
i = (1,Wi).

The analogous empirical estimator for the multivariate Pickands’ dependence

function is found by extension of the method used to obtain the bivariate estimator

in equation (5.4.11). The estimator Ĥ defined in (5.8.7) assigns a point mass of

∑p
k=1mki to each variable Xi, where

mji =
1

nuj

β̃W∗
i I[Xji>uj ].

Using definition (5.8.3) the empirical estimator of the multivariate Pickands’ de-

pendence function is then

Â(t) =
n
∑

i=1

{

max
j=1,...,p

{tjWji}
p
∑

k=1

mki

}

. (5.8.8)

This estimator satisfies all the conditions for a Pickands’ dependence function.

Further, by the method of their derivation, these estimators for A and H are self

consistent with themselves and with G, the multivariate extreme value distribution

function (5.8.2). Note also that the bivariate estimators for both A and H given in

Section 5.4 arise for any bivariate marginal of the multivariate estimators presented

here.
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Appendix B

Recall that in stating both Theorems 5.4.1 and 5.4.2 we assumed that Pn ≡ P on

the region R
2
+\{[0, u1] × [0, u2]} where P is a Poisson process with intensity given

by equation (5.2.2). In the following proofs we therefore assume that we have a

sequence X1, . . . ,Xn from this limiting process P . We further assume unit Fréchet

margins.

B.1 Proof of Theorem 5.4.1

The key here is to write the estimator Ĥ1(t) as in equation (5.4.4) as the mean,

across the components j, of the proportion of variables for which the jth compo-

nent exceeds the marginal threshold and the angular coordinate is less than t out

of the total number of variables for which the jth component exceeds the marginal

threshold. For a data set of size n, we can re-write equation (5.4.4) as follows; let

v = u1/(u1 + u2) and consider the sets

S1 = {X : X1 < u1, X2 > u2,W < min(t, v)},

S2 = {X : X1 < u1, X2 > u2,min(t, v) < W < v},

S3 = {X : X1 > u1, X2 > u2,W < t},

S4 = {X : X1 > u1, X2 > u2,W > t},

S5 = {X : X1 > u1, X2 < u2,W > max(t, v)},

S6 = {X : X1 > u1, X2 < u2, v < W < max(t, v)}.
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These sets partition the region of interest {X : X1 > u1 or X2 > u2}. For

i = 1, . . . , 6 let the number of points X1, . . . ,Xn in the set Si be Ni. We can then

write the estimator Ĥ1(t) as the sum of the ratios

Ĥ1(t) =
1

2

(

N1 +N3

N1 +N2 +N3 +N4
+

N3 +N6

N3 +N4 +N5 +N6

)

. (B.1.1)

Clearly N = (Ni : i = 1, . . . , 6) follows a multinomial(n,p) distribution, where

p = (pi : i = 1, . . . , 6) is the vector of probabilities of falling in each set. The

mean and covariance structure of N is therefore given by µi = E(Ni) = npi,

var(Ni) = npi(1 − pi) and cov(Ni, Nj) = −npipj, where the covariance is defined

for i 6= j.

We can now derive the asymptotic distribution of the quantity of interest

√
n
[

Ĥ1(t) −H(t)
]

by writing,

√
n
[

Ĥ1(t) −H(t)
]

=
√
n

[

Ĥ1(t) −
p1 + p3

p1 + p2 + p3 + p4
+

p3 + p6

p3 + p4 + p5 + p6

]

Using the expression for Ĥ1(t) given in equation (B.1.1) and a first order Taylor-

series expansion of the terms in the denominators we can show that this is approx-

imately equal to

√
n

2

[

(µ2 + µ4)(N
∗
1 +N∗

3 ) − (µ1 + µ3)(N
∗
2 +N∗

4 )

(µ1 + µ2 + µ3 + µ4)2

+
(µ4 + µ5)(N

∗
3 +N∗

6 ) − (µ3 + µ6)(N
∗
4 +N∗

5 )

(µ3 + µ4 + µ5 + µ6)2

]

(B.1.2)

where N∗
i = Ni−µi. By the univariate central limit theorem, as n→ ∞ these two

ratios each follow a normal distribution with mean zero. Further, by the bivariate

central limit theorem, their sum is also normal. Using the variance-covariance

properties of the multinomial distribution, the variance of expression (B.1.2) and
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also therefore the variance term in equation (5.4.6) is given by

σ2
t (u) =

1

4

[

(p1 + p3)(p2 + p4)

(p1 + p2 + p3 + p4)3
+

(p3 + p6)(p4 + p5)

(p3 + p4 + p5 + p6)3

+ 2
p3(p2 + p4)(p4 + p5) + p4(p1 + p3)(p3 + p6)

(p1 + p2 + p3 + p4)2(p3 + p4 + p5 + p6)2

]

.

Finally, in order to evaluate this variance for a particular form of spectral distri-

bution H we can write the probabilities p in terms of H ; writing v1 = min(t, v)

and v2 = max(t, v) and using the intensity given in equation (5.2.2), these are

p1 =

∫ v1

0

1 − s

u2

2 dH(s) −
∫ v1

0

s

u1

2 dH(s),

p2 =

∫ v

v1

1 − s

u2

2 dH(s) −
∫ v

v1

s

u1

2 dH(s),

p3 =

∫ v1

0

s

u1
2 dH(s) +

∫ v2

v

1 − s

u2
2 dH(s),

p4 =

∫ v

v1

s

u1
2 dH(s) +

∫ 1

v2

1 − s

u2
2 dH(s),

p5 =

∫ 1

v2

s

u1

2 dH(s) −
∫ 1

v2

1 − s

u2

2 dH(s),

p6 =

∫ v2

v

s

u1
2 dH(s) −

∫ v2

v

1 − s

u2
2 dH(s).

We note that, using the relationship between the Pickands dependence function A

and the spectral measure H defined in equation (5.2.16), that all of these proba-

bilities can be found in closed form using the result that

∫ b

a

s2 dH(s) = 2bH(b) − 2aH(a) + a+ A(1 − a) − b− A(1 − b).
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B.2 Proof of Theorem 5.4.2

The proof of Theorem 5.4.2 follows simply from the following lemma and theorem.

Lemma B.2.1 For a sequence of bivariate random variables X1, . . . ,Xn with unit

Fréchet margins, let Nu1 be the number of variables in the set {Xi : X1i > u1} and

Nu2 be the number of variables in the set {Xi : X2i > u2}. Then, as n → ∞, the

mean and covariance structure of 1/Nu1 and 1/Nu2 are given by

E

[

1

Nuj

]

=
uj
n
, Var

(

1

Nuj

)

=
u2
j(uj − 1)

n3
for j = 1, 2 (B.2.1)

and

Cov

(

1

Nu1

,
1

Nu2

)

=
u1u2(u1u2p11 − 1)

n3
. (B.2.2)

Proof

Consider the four quadrants

R00 = {X : X1 ≤ u1, X2 ≤ u2},

R10 = {X : X1 > u1, X2 ≤ u2},

R01 = {X : X1 ≤ u1, X2 > u2},

R11 = {X : X1 > u1, X2 > u2}. (B.2.3)

Let N00, N10, N01 and N11 denote the number of points in each of the four re-

gions respectively, and let p00, p10, p01 and p11 be the probabilities of the variable

X falling in each. Clearly N = (N00, N10, N01, N11) follows a multinomial dis-

tribution so that, for example, E[N00] = np00, Var(N00) = np00(1 − p00) and

Cov(N00, N10) = −np00p10. Using a normal to binomial approximation, for large

n, we can approximate the random variables Nu1 and Nu2 by

Nu1 ≃ np10 + np11 + Z10

√

np10 (1 − p10) + Z11

√

np11 (1 − p11)
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and

Nu2 ≃ np01 + np11 + Z01

√

np01 (1 − p01) + Z11

√

np11 (1 − p11),

where the random variable Z = (Z10, Z01, Z11) is trivariate normal with standard

margins and pairwise covariance given by

Cov(Z10, Z11) = −
(

p10p11

(1 − p10)(1 − p11)

)1/2

and similarly for (Z10, Z01) and (Z01, Z11). As n → ∞, we use a binomial series

expansion to find first order approximations for the random variables 1/Nuj
, j =

1, 2, as a linear function of the random variables Z10, Z01 and Z11. From these

expressions it is then straightforward to see that the asymptotic expressions for

the mean and covariance structure of the random variable (1/Nu1, 1/Nu2) are those

given in equations (B.2.1) and (B.2.2).
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Theorem B.2.1 For a sequence of bivariate random variables X1, . . . ,Xn from

the point process P with intensity (5.2.2) with unit Fréchet margins, let Yi =

m∗
i (X) max{tWi, (1−t)(1−Wi)} wherem∗

i (X) = m∗
1i+m

∗
2i withm∗

ji = n−1
uj
I[Xji>uj

], i =

1, . . . , n and j = 1, 2. Let N = (N00, N10, N01, N11) represent the number of vari-

ables in the regions R00, R10, R01 and R11 defined in equation (B.2.3) and let

Ii and Ij be indicator functions denoting which of the quadrants the ith and jth

variables lie in. Then, for fixed t, as n→,∞,

nE[Yi] = A(t)

n2Var(Yi) → u1(β
2
1 + β3) + u2(β

2
2 + β4) + 2u1u2(p11β1β2 + β5) − 2A(t)2

(B.2.4)

and

n3Cov(Yi, Yj) → β2
1

u2
1

[

V1 − 2u2
1(1 + u1)

]

+
β2

2

u2

[

V2 − 2u2
2(u2 + 1)

]

+2 {A1A2 [C − 2u1u2] + A1A3 [C − u1u2(u1 + 2)]

+ A2A3 [C − u1u2(u2 + 2)] + A2
3 [C − u1u2(u1 + u2 + 2)]

}

(B.2.5)

where β1, β2, β3, β4, β5, A1, A2 and A3 are defined in the proof and, taking

v = u1/(u1 + u2),

Vj = u3
j

(

1 − 1

uj

)

, j = 1, 2,

C = c(u1u2)
3/2

(

1 − 1

u1

)1/2(

1 − 1

u2

)1/2

,

c =

(

p11 −
1

u1u2

)(

1

u1u2

(

1 − 1

u1

)(

1 − 1

u2

))−1/2

and

p11 = Pr(Xi ∈ R11) =

∫ v

0

w

u1
2 dH(w) +

∫ 1

v

1 − w

u2
2 dH(w).
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Proof The expectation of Yi is found by first conditioning on the random variables

Nu1 and Nu2, and then using the total law of expectation,

E[Yi] = E{E[Yi|Nu1 = nu1, Nu2 = nu2 ]}.

The conditional expectation E[Yi|Nu1 = nu1 , Nu2 = nu2 ] is obtained by integrating

across the Poisson process intensity of equation (5.2.2), to give

E[Yi|Nu1 = nu1, Nu2 = nu2 ] =
β1

u1nu1

+
β2

u2nu2

.

where we redefine v1 = min(1 − t, v) and v2 = max(1 − t, v) to write

β1 =

∫ v1

0

w(1 − w)(1 − t)2 dH(w) +

∫ v

v1

w2t2 dH(w)

+

∫ v2

v

w(1 − w)(1 − t)2 dH(w) +

∫ 1

v2

w2t2 dH(w)

and

β2 =

∫ v1

0

(1 − w)2(1 − t)2 dH(w) +

∫ v

v1

w(1 − w)t2 dH(w)

+

∫ v2

v

(1 − w)2(1 − t)2 dH(w) +

∫ 1

v2

w(1 − w)t2 dH(w).

Note that β1+β2 = A(t). Undoing the conditioning using the limiting expectations

of 1/Nuj
, j = 1, 2, given in equation (B.2.1) of Lemma B.2.1 we find that, as

n→ ∞, the expectation of Yi is simply E[Yi] = A(t)/n.

The variance of Yi is also found by conditioning on Nu1 and Nu2 and then using

the total law of variance,

Var(Yi) = E[Var(Yi|Nu1 = nu1 , Nu2 = nu2)] + Var(E[Yi|Nu1 = nu1 , Nu2 = nu2 ]).

(B.2.6)
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This requires the variance and covariance results for (1/Nu1, 1/Nu2) given in equa-

tions (B.2.1) and (B.2.2). Combining these and taking the highest order terms

gives the variance as expressed in equation (B.2.4), where the constants are

β3 =

∫ v1

0

w(1 − w)2(1 − t)22 dH(w) +

∫ v

v1

w3t22 dH(w)

+

∫ v2

v

w(1 − w)2(1 − t)22 dH(w) +

∫ 1

v2

w3t22 dH(w),

β4 =

∫ v1

0

(1 − w)3(1 − t)22 dH(w) +

∫ v

v1

(1 − w)w2t22 dH(w)

+

∫ v2

v

(1 − w)3(1 − t)22 dH(w) +

∫ 1

v2

(1 − w)w2t22 dH(w),

and

β5 =
1

u1

∫ v1

0

w(1 − w)2(1 − t)22 dH(w) +
1

u1

∫ v

v1

w3t22 dH(w)

+
1

u2

∫ v2

v

(1 − w)3(1 − t)22 dH(w) +
1

u2

∫ 1

v2

(1 − w)w2t22 dH(w).

Finally, to obtain the covariance term Cov(Yi, Yj) = E[YiYj] − E[Yi]E[Yj ] we

need to find the expectation of the product of Yi and Yj. Since these are not

independent, even when we condition on Nu1 and Nu2 , to simplify matters, we

also condition on which of the quadrants R00, R10, R01 and R11 the variables Xi

and Xj lie in; this information is denoted by the indicator functions Ii and Ij .

By conditioning on the actual location of the variables Xi and Xj and repeated

application of the total law of expectation we can obtain the expectation of the

product of Yi and Yj as

E[YiYj] = EIEN∗|I {E[Yj|N∗, I]E[Yi|Yj,N∗, I]}

where N∗ = (Nu1, Nu2) and I = (Ii, Ij).
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The conditional expectations of Yi and Yj in this expression are straightforward.

By conditioning on both Nuj
(j = 1, 2) and the actual position of the two variables,

we can find the expectation of Yi (Yj) in the region in which Xi (Xj) is now

known to lie in by evaluating the expectation with respect to the Poisson process

intensity (5.2.2) across this region and then normalising by the probability of being

in this region. Averaging over the combinations of the indicator variables Ii and

Ij then gives

E[YiYj] = A2
1E

[

1

N2
1

∣

∣

∣

∣

Xi ∈ R10,Xj ∈ R10

]

+ 2A1A2E

[

1

N1

1

N2

∣

∣

∣

∣

Xi ∈ R10,Xj ∈ R01

]

+2A1A3E

[

1

N2
1

+
1

N1

1

N2

∣

∣

∣

∣

Xi ∈ R10,Xj ∈ R11

]

+2A2A3E

[

1

N2
2

+
1

N1

1

N2

∣

∣

∣

∣

Xi ∈ R01,Xj ∈ R11

]

+A2
2E

[

1

N2
2

∣

∣

∣

∣

Xi ∈ R01,Xj ∈ R01

]

+A2
3E

[

1

N2
1

+
1

N2
2

+ 2
1

N1

1

N2

∣

∣

∣

∣

Xi ∈ R11,Xj ∈ R11

]

.

(B.2.7)

The constants A1, A2 and A3 are, respectively, the expectations of Yi in each of

the regions R10, R01 and R11, and as such are given by

A1 =
1

u1

∫ v2

v

w(1 − w)(1 − t)2 dH(w) − 1

u2

∫ v2

v

(1 − w)2(1 − t)2 dH(w)

+
1

u1

∫ 1

v2

w2t2 dH(w) +
1

u2

∫ 1

v2

w(1 − w)t2 dH(w),

A2 =
1

u2

∫ v1

0

(1 − w)2(1 − t)2 dH(w) − 1

u1

∫ v1

0

w(1 − w)(1 − t)2 dH(w)

+
1

u2

∫ v

v1

(1 − w)wt2 dH(w) +
1

u1

∫ v

v1

w2t2 dH(w),
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and

A3 =
1

u1

∫ v1

0

w(1 − w)(1 − t)2 dH(w) − 1

u1

∫ v

v1

w2(1 − t)2 dH(w)

+
1

u2

∫ v2

v

(1 − w)2t2 dH(w) +
1

u2

∫ 1

v2

w(1 − w)t2 dH(w).

Note that if either of Xi or Xj lies in R00 the contribution to the conditional

expectation, and hence also to the overall unconditional expectation, is zero, since

in this case Yi = 0 (Yj = 0).

What remains is to find the conditional expectations of the various functions of

Nuj
(j = 1, 2) given in equation (B.2.7). These expectations must be worked out

for all combinations of I, although in what follows, we consider only the case in

which Xi lies in the region R10 and Xj in R01, since all other cases follow similarly.

Conditional on the value of I, the variable N = (N00, N10, N01, N11) follows a

multinomial(n−2,p) distribution. So that, in our example, E[N10|I] = (n−2)p10+

1, Var(N10|I) = (n− 2)p10(1− p10) and Cov(N10, N01|I) = −(n− 2)p10p01. We can

use these primary results to find, conditional on I, the expectations, variances and

covariance of Nu1 and Nu2 using the same methods as those used in the proof of

Lemma B.2.1. In the example considered, we then approximate 1/Nuj
(j = 1, 2)

using a binomial series expansion as follows,

1

Nuj

=

{

n− 2

uj
+ 1 +

[

n− 2

uj

(

1 − 1

uj

)]1/2

Zj

}−1

=
uj

n− 2

{

1 − uj
n− 2

−
[

(

uj
n− 2

)1/2(

1 − 1

uj

)1/2

Zj +
uj

n− 2

(

1 − 1

uj

)

Z2
j

]}

+o(n−2),

where Zj ∼ N(0, 1) and Cov(Z1, Z2) = c, where c is given in Theorem B.2.1.

To find the conditional expectations required in equation (B.2.7) requires the

conditional expectation, variance and covariances of 1/Nuj
(j = 1, 2). To find

these we use the moment generating function (mgf) for bivariate normal random

variables to find the necessary higher order moments of Zj (j = 1, 2). The required
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mgf is

MZ(t) = exp

{

1

2
(t21 + 2ct1t2 + t22)

}

where c = Cov(Z1, Z2) as previously. We find that E[Z2
1Z2] = E[Z1Z

2
2 ] = 0 and

E[Z2
1Z

2
2 ] = 1 + 2c2. Further, using the moment generating function for the normal

distribution Var(Z2
j ) = 2 and Cov(Zj, Z

2
j ) = 0, for j = 1, 2. Using these results,

it is then straightforward to find the moments required in equation (B.2.7). For

example,

E

[

1

Nu1

∣

∣

∣

∣

Xi ∈ R10,Xj ∈ R01

]

=
u1

n− 1

(

1 − 1

n− 2

)

,

Var

(

1

Nu1

∣

∣

∣

∣

Xi ∈ R10,Xj ∈ R01

)

= V1,

Cov

(

1

Nu1

,
1

Nu2

∣

∣

∣

∣

Xi ∈ R10,Xj ∈ R01

)

= C,

where V1 and C are defined in Theorem B.2.1.

Proof of Theorem 5.4.2 Using Theorem B.2.1 we can now prove the main result

given by Theorem 5.4.2. Using the definition of our estimator for the Pickands’

dependence function as Â1(t) =
∑n

i=1 Yi, we have

E[Â1(t)] = nE[Yi]

and

Var(Â1(t)) = nVar(Y1) + n(n− 1)Cov(Y1,Y2)

where the expectation and variance of Y1 and the covariance of Y1 and Y2 are

defined in Theorem B.2.1. From this we get the required results that, as n→ ∞,

E[Â1(t)] = A(t)
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and that

Var(Â1(t)) =
1

n

(

u1(β
2
1 + β3) + u2(β

2
2 + β4) + 2u1u2(p11β1β2 + β5) − 2A(t)2

)

+n(n− 1)

{

β2
1

u2
1

[

V1 −
2u2

1(1 + u1)

(n− 2)3

]

+
β2

2

u2

[

V2 −
2u2

2(u2 + 1)

(n− 2)3

]

+2A1A2

[

C − 2u1u2

(n− 2)3

]

+ 2A1A3

[

C − u1u2(u1 + 2)

(n− 2)3

]

+ 2A2A3

[

C − u1u2(u2 + 2)

(n− 2)3

]

+ 2A2
3

[

C − u1u2(u1 + u2 + 2)

(n− 2)3

]}

= O(n−1).


