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[1] In a peaks over threshold analysis of a series of river flows, a sufficiently high threshold
is used to extract the peaks of independent flood events. This paper reviews existing, and
proposes new, statistical models for both the annual counts of such events and the process of
event peak times. The most common existing model for the process of event times is a
homogeneous Poisson process. This model is motivated by asymptotic theory. However,
empirical evidence suggests that it is not the most appropriate model, since it implies that
the mean and variance of the annual counts are the same, whereas the counts appear to
be overdispersed, i.e., have a larger variance than mean. This paper describes how the
homogeneous Poisson process can be extended to incorporate time variation in the rate at
which events occur and so help to account for overdispersion in annual counts through
the use of regression and mixed models. The implications of these new models on the
implied probability distribution of the annual maxima are also discussed. The models are
illustrated using a historical flow series from the River Thames at Kingston.
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1. Introduction

[2] Given an observed flow series, several questions
naturally arise regarding the extremal aspects of the series.
For example, ‘‘how frequently do flood events occur?’’ and
‘‘what, for large n, is the n-year return level of the annual
maxima?’’. The answers to such questions are of interest to,
amongst others, hydrologists, engineers, planners and insur-
ance companies. Recent attention has also focused on the
issues of whether the frequency (and size) of flood events is
changing over time, perhaps as a consequence of climate
change [Reynard et al., 2001; Mudelsee et al., 2003;
Prudhomme et al., 2003] and how to pool data across
multiple sites to improve the estimation of flood event
characteristics [Cunderlik and Burn, 2003; Ribatet et al.,
2007].
[3] The most common statistical approach to modeling

event times and sizes is the peaks over threshold (POT)
analysis. Davison and Smith [1990] discuss POT from a
statistical perspective, while Lang et al. [1999] provide a
good overview of the application of POT to river flow data
and the particular practical challenges posed by such data.
The POT analysis requires a full daily, or hourly, series from
which a high threshold is used to identify independent flood
events. Typically flood events, which contain multiple highly
dependent threshold exceedances, are characterized by the
size of their peak (above the threshold) and the time at which
the peak occurs [Lang et al., 1999; Robson and Reed, 1999].
This is a theoretically justified approach [Leadbetter, 1991].
We assume throughout that events can be identified; that is,

for a given series and a high threshold u the times and peaks
of the flooding events are known.
[4] Under the assumption of stationarity, Leadbetter et al.

[1983] use asymptotic results to suggest that the process of
event times is modeled by a one-parameter homogeneous
Poisson process and the sizes of peaks Y by the two-
parameter generalized Pareto (GP) distribution. The GP
distribution has the following conditional distribution; for
y > u,

Pr Y � yjY > u½ � ¼
1� 1þ x

y� u

y

� �� ��1=x
þ

if x 6¼ 0;

1� exp � y� u

y

� �
if x ¼ 0;

8>>><
>>>:

where y and x are scale and shape parameters, respectively,
and z+ = max(z, 0). This model implies that the annual
maxima are independent and identically distributed (IID)
from year to year, and follow the generalized extreme value
(GEV) distribution [Davison and Smith, 1990; Engeland
et al., 2004]. In this paper, we will work with water rather
than calendar years. Thus, a year runs from October to
September.
[5] A consequence of the homogeneous Poisson process

is that the number of events N in a year follow a Poisson
distribution and so has index of dispersion, defined by

D ¼ Var Nð Þ
E N½ � ;

equal to 1. Furthermore, event counts in different years are
IID. Due to the Poisson process model, these features hold
regardless of the time period on which the count N is made.
[6] For many rivers, the number of flood events per year

are known to be overdispersed, i.e.,D > 1 [Lang, 1999]. This
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suggests that the homogeneous Poisson process model for
event times might not be entirely appropriate. In this case,
Lang [1999, and references therein] retain the IID assumption
for N, but replace the Poisson distribution with the negative
binomial distribution which exhibits overdispersion. Such
a model is also attractive since, a special case of it, when
combined with the GP model for the size of peaks, implies a
generalized logistic (GL) distribution for the annual maxi-
mum flow, which is the preferred distribution used to model
UK annual maxima flow series [Robson and Reed, 1999].
However, the assumption that the annual maxima are IID
over different years is retained.
[7] The three main problems with using the negative

binomial model for the number of events in a year are
that it does not have the theoretical justification of the
Poisson model, it is not as easily extended to a model for
the full process of events and it assumes that the number of
events and annual maxima are IID from year to year. In this
paper, we discuss a new model for the full process which is
motivated by an alternative formulation of the negative
binomial model. This full process model retains the asymp-
totically motivated Poisson process, but assumes that the
process is inhomogeneous with a time varying rate parameter.
It allows overdispersion in the counts N, regardless of the
time period over which the count is made and no longer
requires that the counts and annual maxima be IID. The
inhomogeneous Poisson process model is more realistic than
the homogeneous model since it is well known that both
flow series themselves and the processes which cause flood
events, such as heavy rainfall and soil moisture, are time
varying.
[8] In the inhomogeneous Poisson process model, we

explain time variation in the rate parameter using a regression
component and a random component. The former is useful if
some (or all) of the necessary explanatory variables (cova-
riates) are available and the latter if some (or all) of these

required covariates are unavailable. Such a model reflects the
underlying physical processes more realistically, so should
improve the model fit and thus increase our confidence in the
return levels estimated by subsequent extrapolation. Further,
the inclusion of any available observed covariates allows an
assessment to be made of how the frequency of events varies
not just in time, but also in response to the covariates. The
inclusion of regression and random components does increase
model complexity, but we believe that this is outweighed by
the benefits described.
[9] The data are introduced in section 2. Statistical mod-

els for the annual counts of flood events are discussed in
section 3 and for the full process of events in section 4. In
both cases, the implication on the distribution for the annual
maximum is discussed. Methods of statistical inference for
the count and process models are presented in section 5. To
illustrate the methods, a full model fit of the data is given in
section 6. Conclusions and suggestions for further extensions
to the model, including allowing the GP parameters to vary in
time, are given in section 7.
[10] Many of the models to be discussed use statistical

methods which are commonly used in other applications by
the statistical community; however, some of them are novel
to either (or both of) the analysis of extreme events and/or
flood frequencymodeling.We try to indicate where this is the
case.

2. Exploratory Analysis of Case Study Data

[11] The case study is on the River Thames at Kingston,
since a long historical data set of the daily mean flow (m3 s�1)
is available at this site (1 January 1883 to 31 December
2007). This data set, shown in Figure 1, was obtained from
the UK National River Flow Archive at http://192.171.153.
213/data/nrfa/index.html. Event identification was carried
out using the following algorithm. A high threshold for the

Figure 1. (left) Daily mean flow (m3 s�1) of River Thames at Kingston and (right) total daily rainfall
(mm) measured in Oxford. Both data sets are for the period 1 January 1883 until 31 December 2006.
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flow data was first specified and threshold exceedances
extracted. Any exceedances separated by more than m days
of consecutive nonexceedances were assumed to come from
independent events. Conversely, any exceedances separated
by at most m consecutive days of nonexceedances were
assumed to come from the same events. The times of events
are defined as the day on which the peak flow in the event
occurred. For the Kingston data, following this procedure
with m = 2 days and a threshold of 200 m3 s�1 produced an
average of 3.3 events per year. This follows standard practice
in the analysis of river flow series in which typically thresh-
olds with an average of either 1, 3 or 10 exceedances are used
[Robson and Reed, 1999].
[12] The variance in the number of events per year is 5.7,

which implies that the number of events are indeed over-
dispersed with D = 1.71. A number of parametric tests exist
for testing the null hypothesis that D = 1 [Karlis and
Xekalaki, 2000; Lang et al., 1999]. Instead, we considered
a Monte Carlo experiment in which a large number of
homogeneous Poisson processes, of the same length of the
observed process and also having a mean number of 3.3
events per year, were simulated. A sampling distribution
of the index of dispersion was thus derived under the null
hypothesis of D = 1. From this sampling distribution, a 95%
tolerance interval for D = 1 was found to be (0.757, 1.243),
suggesting that the observed data are inconsistent with a
homogeneous Poisson process.
[13] Figure 2 shows the number of events observed in each

of the years and the associated autocorrelation function of
these counts. These suggest that there may be some year-to-
year dependence in the number of events, particularly since
runs of consecutive years have similar numbers of events.
This is inconsistent with both the homogeneous Poisson pro-
cess and IID negative binomial models. Further, since the

events themselves are assumed to be independent, we do not
believe that the numbers of events should be dependent from
year to year. Instead, we suggest that such dependence is
induced by the dependence structures of the underlying
covariates, rather than being a genuine feature of the counts
themselves.
[14] To try to ascertain whether or not this is the case, in

addition to the flow data, we also have daily total rainfall
(mm) at a site in Oxford. These data, also shown in Figure 1,
will be used as a covariate in the regression component of our
models. In this context, catchment averaged rainfall would
have been a preferable covariate; however, it was unavailable
for the time period required. The rainfall data were extracted
from the UK Meteorological Office MIDAS Land Surface
Observation data set through the British Atmospheric Data
Centre; see http://badc.nerc.ac.uk/data/ukmo-midas/ for
details.

3. Existing Models for Annual Counts

[15] In this section, we review two models for the number
of events per year and show that each of these models, when
combined with the GP distribution model for the peak event
sizes, can be used to imply a model for the annual maximum
flow. While these results are already well established [e.g.,
Lang, 1999], a brief review serves to introduce notation and
motivate the models introduced in the following section.
[16] Let the random variables Ni and Mi represent the

number of events and the annual maximum flow in year i,
respectively. Both models in this section involve the assump-
tion that the counts Ni are an IID sample from a probability
distribution and that the event peaks are an IID sample from a
GP distribution. These models imply that the annual maxima
Mi are an IID sample.

Figure 2. (left) Observed number of flow events per year for Kingston data and (right) autocorrelation
function for these counts. The sample mean of 3.3 is shown by a horizontal dashed line on the observed
flows, whereas the dashed lines on the autocorrelation plot show approximate 95% confidence intervals for
the null hypothesis that r = 0.
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[17] In the first model, the counts Ni are assumed to be an
IID sample from a Poisson distribution with mean l > 0. The
Poisson distribution has a probability mass function

Pr Ni ¼ n½ � ¼ ln exp �lf g
n!

; n ¼ 0; 1; 2; . . . : ð1Þ

The expectation, variance, and index of dispersion for Ni

under this model are given in Table 1. A consequence of the
Poisson and GP models is that the annual maximum has a
GEV distribution [Davison and Smith, 1990; Engeland et al.,
2004], for x > u,

G xð Þ ¼ Pr Mi � x½ � ¼
exp � 1þ x

x� a

b

� �h i�1=x� 	
if x 6¼ 0;

exp � exp � x� a

b

� �h in o
if x ¼ 0;

8><
>:

ð2Þ

where a = u + y(lx � 1)/x, b = ylx and, for the case x = 0,
using the limits a!ylogl and b!y (as x! 0). See
section A1 for details.
[18] For the second model, the Ni are assumed to be an IID

sample from the two-parameter negative binomial distribu-
tion. The negative binomial distribution is often derived from
a Poisson distribution with a rate li, which is a random
variable. In particular, the following two models for Ni are
equivalent.

Ni � Poisson lið Þ;li ¼ lgi and gi � Gamma 1=a; 1=að Þ

and

Ni � Negative binomial 1=a; 1= 1þ lað Þð Þ; ð3Þ

where l > 0 and a > 0 [Poortema, 1999]. The parameter a
accounts for the dispersion in the expected number of events
from year to year. In the case in which a! 0, the variance of
the gi tends to zero, so that all gi! 1, and the model reduces
to the Poisson model described in equation (1).
[19] Both formulations of this second model assume that

theNi are independent of year to year. In the first, this follows
by assuming that the gi are independent from year to year.
Here the gamma probability density function and negative
binomial probability mass function are, respectively,

f xð Þ ¼ 1=að Þ1=a

G 1=að Þ x
�1=a�1 expf�x=ag; x > 0 ð4Þ

and

Pr Ni ¼ n½ � ¼ G nþ 1=að Þ
n!G 1=að Þ

� 1

1þ la

� �1=a

1� 1

1þ la

� �n

; n ¼ 0; 1; 2; . . . ;

where G(s) =
R1
0
xs�1e�x dx is the gamma function. The

expectation, mean, and index of dispersion of Ni under the
negative binomial model are given in Table 1.
[20] As a consequence of the negative binomial model for

Ni and the GP model for the event peaks, the annual maxima
have the following distribution, for x > u.

Hr xð Þ ¼
pr 1� 1� pð Þ 1� 1þ x

x� u

y

� �� ��1=x
þ

 !( )�r
if x 6¼ 0;

pr 1� 1� pð Þ 1� exp � x� u

y

� �� �� 	�r
if x ¼ 0;

8>>>><
>>>>:

ð5Þ

where p = 1/(1 + la) and r = 1/a (see section A2 for details).
This is a four-parameter extension of the three-parameter GL
distribution, which occurs as a special case when a = 1. Note
that the negative binomial distribution with a = 1 is referred
to as the geometric distribution.

4. Models for Processes

4.1. Introduction

[21] The models in this section all attempt to explain how
the rate at which events occur varies over time. All of these
models are based on an inhomogeneous Poisson pro-
cess, parameterized by a rate l(t)� 0 which varies with time
(and/or additional explanatory variables). An important con-
sequence of the Poisson process model, which we will make
use of and was hinted at in section 1, concerns the random
variable N(A) which represents the number of events in the
time interval A. Assuming an inhomogeneous Poisson pro-
cess the distribution of N(A) is Poisson with mean

R
A
l(t) dt.

In our example, the time at which an event occurs is known
only to the nearest day, so the integral is approximated by a
sum over the rate parameter for the days in the interval A.
[22] A second consequence of the Poisson process model

is that the integrated interevent times are IID with a standard
exponential distribution. We will use this result for model
diagnostics. Further theoretical details on Poisson processes
are given by Cox and Isham [1980] and Kingman [1993].
[23] We also require the following notation. Let Yij repre-

sent the average flow on day j of year i2 {1, . . ., k}, where k is
the number of years for which data are available. Define the
indicator function dij to denote the occurrence of an event
peak on day j of year i, so that

dij ¼
1 if there is an event peak on day j in year i;
0 otherwise:

�
ð6Þ

4.2. Regression Models

[24] The most natural model for the sequence {dij} is as
a sequence of Bernoulli variables, with the probability of an

Table 1. Expectations, Variances, Index of Dispersion, and Implied

Distribution for the Annual MaximumMi for Poisson and Negative

Binomial Models for Annual Counts

Model for Counts E[Ni] Var(Ni) D Mi

Poisson l l 1 GEV
Negative binomial l l(1 + la) 1 + la Extended GL
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event lij = Pr[dij = 1] taken to be a function of a p � 1 vector
of covariates xij. The covariates may themselves be time
varying. Further, they may vary at different temporal scales.
For example, some covariates may only vary between years,
some between months, and others between days. The cova-
riates may also include seasonal indicators or functions (e.g.,
seasonal sinusoids).
[25] Since by definition events are rare, within any year i,

the probability of an event lij will be close to zero for most j.
Consequently, the expected number of events per yearP365

j¼1lij will be small and so by the Poisson approximation
to the Binomial distribution, an appropriate model for the
number of events per year is Ni � Poisson(

P365
j¼1lij).

[26] For the same reason, we can approximate the
sequence of Bernoulli trials by a Poisson process with a rate
parameter lij on day j in year i. This is the asymptotically
motivated model for the rate of extreme events [Davison and
Smith, 1990]. Although this model formerly implies that
two or more events could occur per day, the probability of
this is of order lij

2 and is therefore very small. Then a standard
model for lij as a function of covariates is

lij ¼ g b0xij

 �

; ð7Þ

where the function g is chosen to ensure that lij� 0 and b is
the p � 1 vector of regression coefficients. A popular choice
of g is the exponential function, g(x) = exp(x); such a model is
referred to as either as a Poisson regression model or as a
generalized linear model with log-link function [McCullagh
and Nelder, 1989].
[27] This model implies that the annual number of events

is independent from year to year, but is not identically
distributed with

Ni � Poisson lið Þ;where li ¼
X365
j¼1

lij: ð8Þ

From this model for the annual counts Ni, it follows that the
annual maxima Mi are independent but nonidentically
distributed, following a GEV distribution with location and
scale parameters which change on a year-to-year basis. In
particular, in equation (2), the parameters a and b become a =
u+y(li

x� 1)/x and b=yli
x, whereli is given by equation (8).

[28] A special case of the regression model described in
equation (7) is when the covariates available only vary
between years, i.e., xij = xi for all j in a given year i. If this
is the case, then the covariate model alone cannot capture any
within-year variation and lij = g(b0xi) for all j in a given year
i. Consequently, the distribution of the annual counts Ni

remains the same as in equation (8), except that the mean
parameter li becomes li =

P365
j¼1lij = 365g(b0xi).

4.3. Mixed Models

[29] It is often found that not all of the observed variability
in the rate is accounted for by the regression model just
described. Oneway to account for some of this extra variation
is to include what is often referred to as a ‘‘random effect’’
term into the model for lij. We illustrate such a model by
including an annual random effect, although random effects
could be included at any sensible temporal scale, e.g.,
decadal, seasonal or monthly scales.

[30] Under the annual random effects model, we have a
Poisson process with a rate parameter which takes the form

lij ¼ gig b0xij

 �

; gi � Gamma 1=a; 1=að Þ; ð9Þ

where the random variable gi is often referred to as a random
effect. The random effects are taken to have the Gamma(1/a,
1/a) distribution in analogous to the alternative represen-
tation of the negative binomial model in equation (4). The
parameter a quantifies any extra annual variability in the rate
which is not explained by the regression part of the model and
so the gi can be interpreted as covariates, on the annual scale,
which are unobserved. The simplest model is to take the gi to
be independent from year to year. However, a more flexible
model, in particular given their interpretation as covariates,
is for the random effects to retain the Gamma(1/a, 1/a) mar-
ginal distribution, but to introduce some year-to-year depen-
dence. As a consequence of allowing dependence in the
random effects, the distributions of both the annual counts Ni

and the annual maxima Mi will be neither independent nor
identically distributed.
[31] The mathematical details of one possible dependence

model, in which the sequence of random effects are taken to
have a first-order autoregressive structure, is given in
section A3. This model requires only one additional param-
eter �1 � r � 1, which describes the association between
consecutive random effects. If r = 0, the random effects are
independent, whereas if r > 0 (r < 0) the random effects are
positively (negatively) associated.
[32] The distributions of the annual counts Ni and annual

maxima Mi implied by the mixed model are both dependent
and nonidentically distributed with

Ni � Negative binomial 1=a; 1= 1þ a
X365
j¼1

g b0xij

 � ! !

: ð10Þ

Consequently the annual maxima follow the extended GL
distribution of equation (5) with p = 1/(1 + la) replaced by
p = 1/(1 + a

P365
j¼1g(b

0xij)). Dependence in the random effects
also affects the distribution of the maximum ofm-consecutive
years Mi

(m) = max{Mi, . . ., Mi+m�1}, although we do not dis-
cuss this further.
[33] A special case of the mixed model occurs when no

covariates are observed. In this case, the mixed model can
only capture variation in the rate parameter at the same time
scale as the random effects. For example, with annual random
effects, we can only account for year-to-year variation in the
rate. In fact, the negative binomial model for Ni discussed in
section 3 is a consequence of the mixed model with no
covariates and IID gamma distributed random effects.

4.4. Comments

[34] In the literature, there already exist examples of
covariate models being used to model temporal variability
in the rate of extreme flow events [Katz et al., 2002; Chavez-
Demoulin and Davison, 2005]. Motivated in part by the
alternative formulation for the existing negative binomial
model for overdispersion in annual counts of flood events, we
have introduced the concept of a mixed model, in which the
rate parameter is modeled as a function of both covariates and
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random effects. Both the Poisson and negative binomial
models for Ni can be derived as special cases of this model.
[35] The mixed model is an attempt to remedy the three

main disadvantages of the negative binomial model which
were discussed in section 1. The mixed model provides a
consistent Poisson process framework in which to model the
time varying rate, regardless of the time scale at which
covariates are observed and even whether or not they are
observed. It also has, as a special case, the existing negative
binomial model. Even if no covariates are observed, temporal
variation and dependence can be accounted for by including
(dependent) random effects at the necessary temporal scales.
[36] A further advantage of the mixed model is the inter-

pretation of the random effects, as approximating additional,
but unobserved, covariates. For example, annual random
effects can be thought of as unobserved covariates which
only vary from year to year. As such, the estimated random
effects can be used to help select suitable covariates for the
model (by looking for covariates which display similar
structure to the estimated random effects) and also to decide
when sufficient covariates have been included in the model
(when this is the case, the random effects will show little
variability in time). This interpretation helped to motivate the
use of dependent random effects, since we believe that the
number of events from year to year should be independent
(since the events themselves are), and therefore any depen-
dence in the counts is due to dependence in the underlying
physical processes which influence the rate at which extreme
events occur.

5. Inference

5.1. Selection of Inference Method

[37] A range of inference methods are used for extreme
value modeling: probability weighted moments (PWM),
maximum likelihood (ML), and Bayesian methods. The
PWM approach by Greenwood et al. [1979] is widely used
when the variables are independent and identically distrib-
uted as it has good small sample size properties, but it cannot
be used to fit models with random effects or covariates. ML
and Bayesian methods both have the flexibility to fit regres-
sion models, but for complex models containing random
effects, Bayesian methods tend to be most widely used in all
other statistical applications. The fundamental reason for this
is that Bayesian inference treats random effects as additional
unknown parameters and so no difference in methodology
is required by their inclusion and they are estimated simul-
taneously with the model parameters. In contrast, the ML
approach treats the random effects as fixed unknowns.
[38] When estimating models containing random effects,

ML requires two separate maximizations: one being the
likelihood obtained by integrating out the random effects,
which is maximized over the model parameters; the other is
the likelihood of the random effects given the estimated
model parameters. When closed form expressions from
integrating out the random effects are not possible, numerical
methods are required for the integration [Breslow and
Clayton, 1993]. In particular, for our model with dependent
random effects, a k-dimensional integral is required, which is
computationally demanding and liable to be highly sensitive
to the method of numerical integration that is used. However,

even when closed form integration is possible, the ML esti-
mates will not reflect the full uncertainty of the random
effects. Therefore, for consistency of inference over the dif-
ferent models, a Bayesian approach is adopted throughout for
parameter estimation, as the same approach can be used for
all models and the uncertainty is accounted for appropriately.

5.2. Bayesian Inference

[39] In Bayesian inference, model parameters are assumed
to be unknown and to have an underlying probability
distribution (as opposed to being unknown and fixed as in
ML). Bayes theorem is used to combine a prior probability
distribution for these parameters with the likelihood function
for the model (given the observed data) to obtain a posterior
probability distribution for the parameters. The estimated
posterior distribution is often summarized using the posterior
median and 100(1 � t)% posterior intervals in analogy with
the ML estimate and confidence interval output of a ML fit.
[40] When the form of the statistical model is unknown,

model selection is required. As all the models we consider are
nested; i.e., a special case of one model leads to another
model, a standard method of model selection is to use 95%
posterior intervals to see if the estimated parameters are
consistent with the simpler model structure. This is the
approachwewill take. However, formalmethods of Bayesian
model selection exist such as Bayes factors [Kass and
Raftery, 1995; Chib and Jeliazkov, 2001, and Sinharay and
Stern, 2005] and DIC [Spiegelhalter et al., 2002], though
neither is widely used due to computational problems and
theoretical objections, respectively. More generally, Baye-
sian methods allow for the uncertainty of the model selection
to be accounted for in the resulting inferences by treating a
range of models as feasible and allowing their ability to fit
the data to weight their contribution to the overall inference
[Green, 1995].
[41] The main disadvantages of using the Bayesian ap-

proach are that it requires a prior distribution for the param-
eters; the posterior distribution may not have a closed form;
and it may be hard to obtain the marginal posterior for a given
parameter from the joint posterior for all parameters (par-
ticularly for high dimensional models). However there are a
wide variety of tools available to simulate from the posterior
distribution when it is not possible to sample from it directly.
These are collectively known as Markov Chain Monte Carlo
(MCMC) methods; two of the simplest being the Gibbs sam-
pler and the Metropolis–Hastings random walk [Gamerman
and Lopes, 2006]. Although not discussed further, a recent
series of papers [Rue andMartino, 2007 and Rue et al., 2009]
suggest alternatives to MCMC. In addition, for a general
introduction to Bayesian inference, seeGilks et al. [1996] and
Gelman et al. [2004]. Examples of the use of Bayesian infer-
ence in a hydrological context are Reis Jr. and Stedinger
[2005] and Ribatet et al. [2007].
[42] The Bayesian approach can also be used to obtain a

predictive distribution for some future observation. The
predictive distribution accounts for parameter uncertainty
by averaging over the distribution of the posterior parameters
(see Coles and Tawn [1996], for an application in extremes).
For example, a predictive distribution could be obtained for
Ni or Mi in future or unobserved years (this is not discussed
further in this paper).
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5.3. Priors

[43] As mentioned above, in order to undertake a Bayesian
analysis, prior distributions must be defined for all the
parameters of the model. All parameters in all models are
assumed, a priori, to be independent of each other. We then
use the following prior distributions.

l � Gamma a1; a2ð Þ; a1 > 0; a2 > 0

a � Gamma b1; b2ð Þ; b1 > 0; b2 > 0

b � MVN b0;sIð Þ; s > 0

r ¼ 1þ rð Þ=2 � Beta c1; c2ð Þ; c1 > 0; c2 > 0:

The parameters ai, bi, ci (i = 1, 2), and s are referred to as
hyperparameters. Values of these are fixed prior to the anal-
ysis. The reparameterization of r to r was necessary to im-
prove the convergence features of theMCMC. The remaining
priors were chosen either because they were conjugate, or to
ensure that parameters took values only on the correct range.
Note that we do not need to specify priors for the ran-
dom effects, since these are implied (where necessary) by the
model.

5.4. Existing Models for Annual Counts

[44] We use the Poisson model for annual counts intro-
duced in section 3 as a baseline model for comparison with
the more sophisticated models. This model has a single
parameter l. Let n = (n1, . . ., nk) be a vector containing the
observed numbers of events in each of k years. Using the
priors in section 5.3, the posterior distribution for l is also
gamma but with parameters (a1 +

Pk
j¼1ni, a2 + k).

[45] The negative binomial model (equivalently IID annu-
al random effects with no covariates) has two parameters, a
and l. Using the priors in section 5.3 and integrating out
the random effects, the joint posterior for (l, a) is propor-
tional to

p l;ajn; a; bð Þ / l
Pk

i¼1 niþa1�1 expf�a2lgab1�1 expf�b2ag

�
Yk
i¼1

G ni þ 1=að Þ
lþ 1=að Þniþ1=a

;

where a = (a1, a2) and b = (b1, b2). It is straightforward to
show that, given the implicit Gamma(1/a, 1/a) prior, l, a,
and ni, the random effects g = (g1, . . ., gk) are independent
with posterior distributions Gamma(1/a + ni, l + 1/a).

5.5. Process Models

[46] The regression model has p parameters (the regression
coefficients). Using the prior for b defined in section 5.3, the
posterior for b is given by

p bjd; x;b0; sð Þ / exp �
Xk
i¼1

X365
j¼1

g b0xij

 �

� 1

2s2
b� b0ð Þ0 b� b0ð Þ

( )

�
Yk
i¼1

Y365
j¼1

g b0xij

 �dij ;

where d = (d1,1, d1,2, . . ., dk,365) is the vector of indicators
defined in equation (6) and x is the 365k � p matrix of

covariates in which row 365(i � 1) + j corresponds to the
covariates for day j in year i.
[47] The mixed model with IID random effects has p + 1

parameters, p regression coefficients, and the dispersion
parameter a. The joint posterior for (b, a) is found by inte-
grating out the random effects to obtain

p b;ajd; x;b0;s; bð Þ / 1=að Þk=a

G 1=að Þk
Yk
i¼1

G ni þ 1=að ÞX365

j¼1 g b0xij

 �

þ 1=a
� �niþ1=a
2
64

�
Y365
j¼1

g b0xij

 �dij

3
5� exp � 1

2s2
b� b0ð Þ0 b� b0ð Þ

� 	
ab1�1 expf�b2ag:

The posterior distribution for the random effects again turns
out to be gamma, i.e., gijdi, xi, b, a � Gamma(ni + 1/a,P365

j¼1g(b
0xij) + 1/a).

[48] Themixedmodel with dependent annual random effects
has p + 2 parameters having in addition the dependence
parameter r. The random effects cannot be integrated out of
this model, so the joint posterior for the parameters b, a, and
r (r) and the random effects g = (g1, . . ., gk) is given by

p b;a; r;gjd; x;b0;s; b; cð Þ

/
Yk
i¼1

exp �
X365
j¼1

gig b0xij

 �( )Y365

j¼1
gig b0xij

 �� 
dij !

�
Yk
i¼1

f gijað Þ
Yk
i¼2

f2 zi�1; zið Þ
Yk�1
i¼2

f zið Þ�2f z1ð Þ�1f zkð Þ�1

� ab1�1e�b2arc1�1 1� rð Þc2�1 exp � 1

2s2
b� b0ð Þ0 b� b0ð Þ

� 	
;

where f, f, and f2 are probability density functions of the
Gamma(1/a, 1/a), see equation (4), standard normal and
bivariate normal distributions respectively, and zi =F

�1(F(gi)),
where F and F are distribution functions associated with f
and f respectively. The bivariate normal distribution, in this
case has mean 0, unit variances and correlation r.
[49] In all cases, including the independent random effects,

a Metropolis–Hastings random walk algorithm is required to
draw a sample from the joint posterior distribution for the
parameters, via the conditional posterior distributions. Only
the regression parameters could be updated using a block
update.

6. Case Study Data Analysis

6.1. Introduction

[50] Since we saw in section 2 that there is significant
evidence for overdispersion in the annual counts, we start
with the negative binomial model for annual counts (Model
1). We then fit the mixed model with dependent random
effects but no covariates (Model 2), the regression model
(Model 3) and finally the mixed model with either indepen-
dent (Model 4) or dependent random effects (Model 5). As an
example of what we mean by nested models, Model 1 is
nested inside Model 2.
[51] For each of these models we present a range of

diagnostic summaries. We estimate parameters using the
posterior median (PM) and parameter uncertainty using a
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95% posterior interval. A plot of the PM estimate of the
expected number of events in each observed years is provided
as a goodness-of-fit diagnostic. These expected numbers are
estimated, where appropriate, conditionally on the estimated
random effects and the observed covariates. Goodness of fit
for the regression and mixed models is also assessed though a
quantile-quantile (QQ) plot of the posterior integrated inten-
sity, with a good model fit indicated by points lying close to
the 45� line. The basis for these QQ plots is that, as mentioned
in section 4, the estimated intensities integrated between
consecutive events should be a random sample from the
exponential distribution with rate 1 [Cox and Isham, 1980].

6.2. Results

[52] Model 1 has two parameters, l and a. It was assumed
a priori that l � Gamma(1, 1) and a � Gamma(1, 1). The
model fit did not appear to be sensitive to the use of alter-
native prior parameters. The PM’s (95% posterior intervals)
for the two parameters are l = 3.26 (2.85, 3.75) anda = 0.300
(0.153, 0.509). Note that a is significantly greater than 0 but
significantly less than 1. The former result confirms that there
is evidence of overdispersion in the data; hence, this model is
preferable to assuming that the annual counts are IID Poisson.
The latter result suggests that the counts do not follow a
geometric distribution and therefore the GL distribution is
inappropriate as a model for the annual maxima.

[53] A plot of the estimated mean number of events per
year under this model is given in Figure 3a. This shows that
the random effects shrink the estimated number of events
in each year toward the overall across-years mean l. The
shrinkage effect is perhaps better illustrated by the box plot
of the estimated mean numbers of events in a year shown in
Figure 3f.
[54] Model 2 has three parameters, l, a, and r. The prior

distributions for l and a were the same as for Model 1, and
we took, a priori, rþ1

2
� Beta(3, 3). The PM’s (95% posterior

intervals) for the parameters are l = 3.24 (2.74, 3.85), a =
0.307 (0.171, 0.518), and r = 0.376 (0.0474, 0.657). Again a
is significantly greater than 0 (evidence for overdispersion)
and less than 1 (evidence against the geometric distribution).
Also r is significantly greater than zero (evidence of a
positive correlation between the random effects). This is con-
sistent with the observation from Figure 2 that consecutive
years have runs of similar numbers of events. Figures 3b and 3f
show that allowing for dependence on the random effects
results in slightly less shrinkage toward the overall mean
annual count in the estimated annual counts, in comparison
to Model 1.
[55] We now fit Models 3–5, each of which involves a

regression component. We use baseflow (calculated using
linear interpolation of local minima of the observed data, see
Gustard et al. [1992]) and a moving average of the rainfall

Figure 3. (a–e) Estimated expected annual counts (lines) for all five fitted models. Observed numbers
of events are shown by dots, and the overall sample mean is shown by a horizontal dashed line. (f) Box
plots of these estimated expected annual counts.
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data introduced in section 2 (with a window of the last three
months). In all models, the regression coefficients are
assumed a priori to be independent with Normal(0, 1000)
marginal distributions.Where appropriate, prior distributions
for the random effects parametersa and rwere taken to be the
same as already discussed. A log-link function was applied
throughout.
[56] For all three models, Table 2 shows that the estimates

of the regression coefficients are very similar. In particular, in
all models the effects of both covariates are significantly
above zero at the 2.5% level. This confirms that the covariates
are useful in explaining some of the variability in the rate
at which flood events occur. The estimates suggest that
increases in both baseflow and the average rainfall over the
past three months cause increases in the rate of events.
[57] For Model 4, the estimate of the random effects

parameter a is 0.229 (0.105, 0.389), whereas for Model 5
the random effect parameters a and r are estimated as a =
0.217 (0.109, 0.386) and r = 0.436 (�0.0682, 0.754). In both
models, a is still significantly greater than 0, but less than 1.
However, for Model 5, there is not enough evidence to sug-
gest positive correlation between the random effects. This is
probably because the significant correlation estimated in the
random effects in Model 3 is now being accounted for by the
covariates (rainfall and baseflow).
[58] Figures 3c–3e show plots of the estimated mean

number of events in each year for Models 3–5. These
estimates vary considerably more from year to year than
the estimates produced under Models 1 and 2. The shrinkage
effect of the random effects is reduced by the additional
information in the covariates. This is further illustrated in
Figure 3f, which shows box plots of the estimated mean
number of events per year for all fitted models. Model 3
overestimates quite considerably the mean number of events,

especially in those years in which the observed number of
events was high.
[59] Figure 4 shows QQ plots of the interevent integrated

intensities under each of the three process models. Models 4
and 5 appear to have a better fit than the simpler Model 3,
since the points in the QQ plots lie almost exactly on a
straight line under these two models. Further autocorrelation
functions (not shown) of the interarrival times for these
models showed them to be independent.
[60] Following these investigations, we suggest that

Model 4 provides the best model for this data set. Finally,
Figure 5 shows a plot of the estimated random effects under
this best model. There appears to be some pattern to these
estimates; in particular the random effects in the period
1960–1990 seem to behave differently to those in the rest
of the study period. This is probably because we are missing
a covariate which would explain the change in behavior
between 1960 and 1990, although we are not sure what this
would be.

7. Conclusions

[61] We have reviewed two types of model for annual
counts of flood events, one based on the Poisson distribution
and the other on the negative binomial distribution. It turns
out that the both of these models are a consequence of the
asymptotically motivated Poisson process model for the
event times. The Poisson distribution is a consequence of
assuming that the Poisson process is homogeneous. The
negative binomial distribution is a consequence of a Poisson
process in which the rate parameter is allowed to vary
stochastically from year to year.
[62] A number of models have also been proposed for

the process of event times. In order to incorporate the time
variability in the rate parameter, these are all based on an
inhomogeneous Poisson process. The simplest such model is
a regression model, in which the (log of the) Poisson mean is
taken to be a linear function of covariates. A more sophisti-
cated family of models, referred to as mixed models, allows
the inclusion of unobserved covariates. These are modeled as
random variables and referred to as random effects. The time
scale of these unobserved covariates must be specified. In
this paper we have illustrated the methods using annual
random effects, mostly because we are interested in obtaining
improved estimates for the annual counts in order to estimate
the distribution of the size of the annual maximum flood. In

Table 2. Estimates of Regression Coefficients for Models 3–5a

Covariate Model 3 Model 4 Model 5

Intercept �6.82 �7.25 �7.20
(�6.60, �7.06) (�6.96, �7.53) (�6.95, �7.41)

Three-month average
rainfall

0.664 0.793 0.786
(0.496, 0.823) (0.587, 0.984) (0.593, 0.962)

Baseflow 0.0132 0.0160 0.0157
(0.0112, 0.0150) (0.0137, 0.0184) (0.0134, 0.0181)

aA log-link was used in all cases.

Figure 4. QQ plots for integrated intensities from Models (left) 3, (middle) 4, and (right) 5.
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theory, random effects can be included at multiple time
scales, within the same model.
[63] The negative binomial model is a special case of the

mixed model with IID random effects and no covariates. We
have also suggested that it might be beneficial to allow year-
to-year dependence in the random effects. This has a similar
effect on the random effects as a nonparametric smoother, but
has the benefit that it can be used for prediction.
[64] The various models have been illustrated by a case

study using data from the River Thames at Kingston. Catch-
ment averaged precipitation was unavailable for the duration
of the series and so baseflow and a three-month average point
rainfall were used as covariates. Parameter estimates, esti-
mated annual counts, and QQ plots of integrated intensities
were used to compare the fit of five models. Evidence was
found of a significant positive relationship between both
covariates and the rate at which flood events were observed to
occur. From the estimates of a, there was evidence to support
the inclusion of random effects and against the use of the
geometric distribution for Ni. The estimates of r provided
evidence of a first-order dependence structure in the random
effects only when covariates were not included in the model.
The mixed model with independent random effects was
selected as the best model for the data, although it was noted
that an extra covariate might be necessary to explain a change
in the behavior of the estimate random effects after 1960.
[65] A natural extension of this work would be to use

similar techniques to model the sizes of the event flow peaks.
As noted in section 2while the sizes of the event peaks appear
to be independent, at least in the case study shown here, this
does not imply that they are identically distributed. Addi-

tional information and predictive power could be gained by
allowing random effects for size and rate of events to be depen-
dent. This seems a reasonable step given that the rate and size
of events are determined by similar covariates (for example,
intensity and duration of rainfall and soil conditions).

Appendix A

A1. Derivation of the GEV Distribution

[66] The derivation of the implied distribution for the
annual maximum under the Poisson model for annual counts
of equation (1) is as follows. For x > u,

G xð Þ ¼ Pr Mi � x½ �

¼
X1
n¼0

Pr Mi � xjNi ¼ n½ � Pr Ni ¼ n½ �

¼
X1
n¼0

Yn
j¼1

Pr Yij � xjYij > u
� 
 !

Pr Ni ¼ n½ �

¼
X1
n¼0

Pr Yi1 � xjYi1 > u½ �n Pr Ni ¼ n½ �

¼
X1
n¼0

1� 1þ x
x� u

y

� �� ��1=x
þ

 !n
expf�lgln

n!

¼
exp � 1þ x

x� u� y lx � 1

 �

=x

ylx

 !" #�1=x8<
:

9=
; if x 6¼ 0;

exp � exp � x� u� y logl
y

� �� �� 	
if x ¼ 0:

8>>>>><
>>>>>:

Figure 5. Plot of estimated random effects from Model 4. Circles show pointwise PMs and lines
pointwise 95% posterior intervals.
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The idea here is to average overall possible values for the
annual number of eventsNi. To get from the first to the second
line, note that if the annual maximumMi is below the level x,
then all the event peaks Yij j = 1, . . ., n must also fall below
this level and are also independent. The third line is a
simplification of the second line under the assumption that
the size of the event peaks is identically distributed. The
fourth line uses the assumed distributions (GP for event peak
sizes and Poisson for annual counts). To get the final result
merely requires algebraic manipulation.

A2. Derivation of the Extended GL Distribution

[67] The derivation of the implied distribution for the
annual maximum under the negative binomial model for
the annual counts of equation (3) follows in a similar man-
ner (some steps are therefore omitted). Let p = 1/(1 + la) and
r = 1/a, then

Hr xð Þ ¼ Pr Mi � x½ �

¼
X1
n¼0

1� 1þ x
x� u

y

� �� ��1=x
þ

 !n
G r þ nð Þ
G rð Þn!

pr 1� pð Þn

¼
pr 1� 1� pð Þ 1� 1þ x

x� u

y

� �� ��1=x !( )�r
if x 6¼ 0;

pr 1� 1� pð Þ 1� exp � x� u

y

� �� �� 	�r
if x ¼ 0:

8>>>><
>>>>:

A3. Mathematical Description of the Autoregressive
Process

[68] The first-order autoregressive process used to model
year-to-year dependence in the random effects is defined as
follows. Take Z1 � Normal(0, 1) and then for i = 2, . . ., k,

Zi ¼ rZi�1 þ �i; where �i � Normal 0; 1� r2

 �

;

where the residual series {�i} is independent and�1� r� 1
is a correlation coefficient. The marginal distribution of
this process is standard normal, that is Zi�Normal(0, 1) for
i = 1, . . ., k. To transform this process to have the required
Gamma(1/a, 1/a) marginal distributions the probability
integral transform is used, so that gi = F�1[F(Zi)], where
F(�) is the standard normal distribution function and F�1(�) is
the inverse of the Gamma(1/a, 1/a) distribution function.
[69] The vector of random effects g = (g1, . . ., gk) therefore

has a joint distribution function which depends on both the
dispersion parameter a and the dependence parameter r,

fg gja; rð Þ ¼ 1

2pð Þk=2jSj1=2

� exp � 1

2
F�1 F gjað Þð Þ0S�1F�1 F gjað Þ½ �

� 	

�
Yk
i¼1

f gijað Þ
f F�1 F gijað Þ½ �

 � ;

where f(�) and F(�) are the density and distribution functions
associatedwith theGamma(1/a, 1/a) distribution andS is the
covariance matrix with (i, j)th entry rji�jj. The final product in
the density function fg(�) comes from the Jacobian term due to

the change of variables from Z to g. For the likelihood, it
turns out that it is sufficient to write the joint distribution for g
as the product of the conditional distributions f(gijgi�1, a, r)
and the marginal distribution f(g1ja); therefore, only the
bivariate analog of the above distribution is required.
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