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Abslrczc-The 3-dimensional finite-difference time-domain 
method in non-orthogonal co-ordinates (non-standard FDTD) 
is used to calculate the frequencies of resonators. The 
numerical boundary conditions of the method are presented. 
The influences of boundary conditions and discrete meshes on 
the numerical accuracy are investigated. We present the non- 
standard FDTD method using the boundary-orthogonal mesh 
and equivalent dielectric constant so that the error is reduced 
from 8.6% to 3.0% for the cylindrical cavity loaded by a 
dielectric button. 

I. INTRODUCTION 

The resonant frequency is always an essential parameter 
when 3dimensional microwave or RF cavities, such as 
oscillators, filters and accelerators, are designed. The 
accurate study of resonant frequencies has been an active 
area in computational electromagnetics. Many algorithms 
have been developed to calculate the Inodes of cavities [1]- 
[3]. Over years finite-difference time-domain method on 
orthogonal Yee's mesh (standard FDTD) has been used 
successfully to work out the frequencies of resonant 
structures [4]-[6]. When standard FDTD method employs 
rectangular or cylindrical staircase mesh, the coniplicated 
boundaries of physical domain can not be fitted by the 
discrete mesh, especially if the boundary has small radii of 
curvature. In this case we have to refine the discrete mesh to 
ensure the numerical accuracy of FDTD method. 

Recently an FDTD algorithm in non-orthogonal co- 
ordinates (non-standard FDTD) has been developed to 
investigate the scattering problems and resonant frequencies 
of dielectric-loaded cavities [7]-[ 111. The regions with 
curved segments can be discretized well by non-orthogonal 
numerical cells in non-standard FDTD method. Working on 
fewer computing cells, the method has a potentiality of 
saving memory and CPU time. However, the boundary 
conditions of electromagnetic fields in non-orthogonal 
coordinate are more complicated than those in orthogonal 
coordinate. The simple treatment on boundary conditions 
may cause some extra errors. In this paper we discuss the 
boundary conditions of the non-standard FDTD algorithm. 
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Discrete components of electromagnetic fields are obtained 
on the curved electric wall and magnetic wall. According to 
the discussion, we introduce the boundary-orthogonal mesh 
and equivalent dielectric constant on the interfaces of media. 
Comparing our results with Harms' [ l l ] ,  we find that the 
error is reduced from 8.6% to 3.0% for the cylindrical cavity 
loaded by a dielectric button. The modes in resonators and 
filters are also calculated on boundary-orthogonal mesh 
(BOW and on general non-orthogonal mesh respectively. 
On BOM the errors of frequencies at which the electric field 
is stronger near the boundary are reduced by a factor about 
1%. Our results show good agreements with the theoretical 
and numerical results. 

11. FDTD METHOD IN NON-ORTHOGONAL CO-ORDINATES AND 
ITS NUMERICAL BOUNDARY COOOOOONDITIONS 

In this section the non-standard FDTD method is briefly 
described, and then the boundary conditions are investigated 
on the electric wall, magnetic wall and interface between 
dielectric regions. The numerical components of electro- 
magnetic fields are given on the boundaries to satisfy the 
implement of finite difference method. 

A .  The Brief Description of Non-Standard FDTD Method 

In the isotropic and lossless media Maxwell's curl 
equations with source-free can be written as 

V x H = 8D/dt , (1) 

V x E = - d B / d t ,  (2) 
where D=EE, B=pH. Equation (1) and (2) can be discretized 
by the central difference in a non-orthogonal discrete cell, 
shown in Fig. 1, in accordance with the curvilinear co- 
ordinate theory. We define the covariant components of the 
electric field E as the tangential components at the centre of 
the cell's edges, and define the contravariant components of 
the magnetic field H as the normal components at the centre 
of the cell's surfaces (see Fig. 1). Although the discrete cells 
are irregulx and non-orthogonal, we can numerically 
transform them into the cubic cells with the unit increment 
so that the implement of non-standard FDTD method 
becomes easy. Then the time domain [O,T] is divided into N 
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The similar procedure is applied to give the covariant 
components of magnetic field. Permuting indices and 
substituting all covariant components into (4) and (9, we 
can formulate the iterative equations of non-standard FDTD 
method, in which the critical time step is as follows [ 101 

ktmmax(c c c ( g J m g , - g j n g h ) )  7 (8) 

Fig. 1. The non-orthogonal discrete cell. J 1  J 

where i, 1 = 1, 2, 3, (i, j ,  k), (1, m, n) cycle. 

B. The Numerical Boundary Conditions of Non-Standard 
FDTD Method 

intervals, i.e. At=T/N. If we denote any function of discrete 
space and time as 

F(iAu', jAu2,kAu3,nAt) , (3) 
the component forms of non-standard FDTD method can be 
formulated, such as 

In standard FDTD algorithm the tangential and normal 
components of electromagnetic fields can easily satis@ the 
boundary conditions of a closed domain, even when the 
magnetic wall coincides with the discrete cells. However, in 
non-standard FDTD method the boundary conditions 

-h  - ' (4) become complicated because of the non-orthogonality of .the 
discrete mesh. If the surface si on which coordinate u1 is 
constant, shown in Fig, 2, is an electric wall, the component 
Bi is equal to zero on the si for Bi is a normal component, 
and the tangential electric components can be written as 

= Ell:?J,k + ( A t / E ) ( ~ ~ ) l + ~ , J , k  

*(h3,1+t,J+t,k 3j+$,]-i,k h2.1+i,,,k+f + h2.1+f.~.k-f 

I (n- f )  

( 5 )  
- (At ' p ) ( d G ) l ,  J+i,k+: Hl.J+f,k+f - H1,J+f,k+f 

'(e3,1,~+l,k+i e3,1,J,k+f e2,1,J+i.k+l +e2,1,J+:,k 

l(n++) - 

(9) 
- - $4 ' e, = 0 ,  ek = O  . 

where i, j ,  k are integers, Aul, Au2, Au3 are the increments 
of the curvilinear coordinates and equal to 1, El ,  H1 are the 
contravariant components of the electromagnetic vectors, 
e,, hm (m = 1, 2, 3) are the covariant components of the 
electromagnetic vectors, dg is Jacobian transformation, the 
component gij of the tensor matrix is given by dot product of 
covariant base vector ai and a., i.e. g!,=a..a.. The other 
components can be obtained by permutahon of indices. 

It is found from (4) and ( 5 )  that the covariant components 
must be transformed into contravariant components to form 
self-consistent iterative procedure. By means of the vector 
operation the covariant component of a vector F is written as 

J ' 3  

Using (6) we get equations about contravariant components 
of electric field E on the surface Si 

(g@ 1 &)E' + &Ek + (gkr /&)E' = 0 . (lob) 
To eliminate the extra degree of freedom in (IO) we 
introduce BOM into the non-standard FDTD method so that 
the coordinate line U' is normal to the surface si. Thus gji 
and gki will disappear. Investigating the determination of 
the coefficient matrix of equation (10) 

we find that detlGl is always greater than zero because the 
differential surface element dsi is L = C ( g ,  /&IF' (i = 1,2,3)  9 (6)  

j=1,3 

where FJ is the normalized contravariant component. One ds, = ,/=du 'duk . (12) 

(13) 

boundary conditions on the electric wall. BOM and the 
general mesh are shown in Fig. 3. 

covariant component is related to three contravariant 
components in (6). However only one component of fields is 
set up at the discrete positions in Fig. 1. We have to use the 

Therefore, (1 1) has solutions, 
E' = O  , ? O  . 

interpolation to obtain unknown components, for example, The component Ek completely the 

si 

Fig. 2. The boundary surface si, 
at the point (i+1/2, j, k) . (7) 
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Fig. 3. (a) The boundary-otthogonal mesh. @) The general mesh. 

Similarly, if the surface si is a magnetic wall and coincides 
with the discrete cells we have equations about the 
contravariant components of magnetic field on the si, i.e. 

6,' + ( g j k  I & ) H k  +(g j ,  / & I H 1  = O  9 

( g ,  I & ) f f J  +&ffk + ( g ,  I&)H' = o .  

(14d 

(14b) 
When BOM is used, Id and Hk are equal to zero on the si. 
However, the positions of HI and Hk in the discrete cells are 
shifted half-cell from the magnetic wall (see Fig. 1). We use 
the interpolation to eliminate the components that exist in 
the iterative formulas and are beyond the domain, and have 

Hu'+u'12 - -HU,-u'12 ' Hu'+u'/2 = - H k  u ' -u ' l2  . (15) 
When non-standard FDTD method works, on the general 
mesh, numerical errors that depend on the E' component and 
its coefficient in (10) or the H1 component and its coefficient 
in (14), may be introduced. The use of BOM will make the 
boundary conditions be satisfied completely. 

On the interfaces between cells the equivalent dielectric 
constants consist of those which are different each other in 
four adjacent cells (Fig. 1). Here we present an area-weighted 
technique to obtain better approximation to the dielectric 
constant. The equivalent dielectric constant at the point 
(i+lRj,k) can be written as 

J - J  

''++.,,k = (Ar , j . k  +A1,J-l ,k + Ai,j-l,k-l +A~.],k-l) ' ( 4 A 1 . ] , k )  (16) 

A l , J , k  = S i + i , j + ; , k + f  + S r + i . j - i , k + i  + s l+ i ,J -L ,k - i  2 2 2  + ' r + i . j + ~ . k - i  ' 
where the area s can be worked out by the integration over 
the discrete cells, for example, 

S r + i , j + i , k + f  = ( d x ) z + + , ] + i , k + i  ' (17) 

So far we have investigated the boundary conditions of 
electromagnetic fields in a closed domain as well as the 
equivalent dielectric constant on the interface between cells. 

111. NUMERICAL RESULTS AND DISCUSSION 

The time-domain response of EM fields in' FDTD method 
should be transformed into frequency-domain results by 
Discrete Fourier Transformation @FT) to obtain the 
resonant frequencies. The spectrum can be extracted by 

N-l 

Fk(kAf)= A t ~ ~ ( i A t ) e x p ( - j 2 m k / N ) .  (18) 
i=O 

The running procedure of FDTD method is as follows 
(a) Set the components of electric field to zero in the 

(b) Calculate the magnetic field B at t=n+1/2, 
(c) Calculate the electric field E at t=n+l, and sample E, 
(d) Repeat (b), (c) up to the required iterative times, 
(e) Extract the resonant spectrum through DFT. 

domain, except on some grids, at t=O, 

The BOM can be generated by equation V2r = 0 [ 121. There 
are no limitations on the shape of computing domain if the 
domain can be divided into arbitrary hexahedrons. 

A. Cylindrical Cavity 

At first, the resonant frequencies of cylindrical cavity 
(radius=lOcm, length=lOcm) are calculated on the general 
mesh and BOM respectively (Fig. 3). The discrete cells are 
12x12~8. We have the iterative times N e i 4 ,  frequency 
definition Af=0.009GHz, time step At=1.37x 1 0 - l 1 s  on the 
general mesh. Using BOM, we have N=213, AeO.01 lGHz, 
At=2.18xlO-"s. The results are shown in Table I. The DFT 
spectrum is shown in Fig. 4. Comparing the results we find 
that the boundary orthogonality of mesh has an effect on the 
numerical accuracy when there is stronger electric field near 
the boundary. In this example the error is reduced from 1.9% 
to .5% for TMo11 mode when BOM is used. The numerical 
errors are less than 1.5% for the lowest five modes. 

TABLE I 
THE RESONANT FREQUENCIES OF THE CYLINDRICAL CAVlTY 

Theory General Mesh BOM 

Mode f(GHz) f(GHz) error(%) f(GHz) error(%) 
TMOlO 1.15 1.14 0.88 1.14 0.88 
T E l l l  1.72 1.74 1.16 1.70 -1.16 
TMllO 1.82 1.80 1 . 1 1  1.80 1 .11  
TMOll 1.87 1.90 1.60 1.88 0.05 
TE2ll  2.06 2.10 1.90 2.09 1.46 

a .a 

Fig. 4. The lowest resonant frequencies of the cylindrical cavity. 
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0 . O I  B. Cylindrical Cavity Loaded by Dielectric Button 

0.07 Secondly we calculate the resonant frequencies of the 
cylindrical cavity loaded by a dielectric button (Fig. 5 )  on the 
general mesh and BOM respectively. The discrete cells are 
14x 14x 12, shown in Fig. 6. In the case of the general mesh 

times N=2I49 time step At=l.3l~lO-'~s. When use BOM, we 
have Af%.OSGHz, N=214, At=1,59~10-'~s. The results are 

0.06 
6 
\ > 

0.05 we have the frequency definition Af%.09GHz, iterative - 
- 
N 0.04 - 
- 
h 
1 0.03  

X Ct 

shown in Table 11, and compared with the values given by 
mode-matching method (MM) in reference [ 11). The DFT 
spectrum is shown in Fig. 7. Comparing our results with 

- 
- 

0 .oa 
Harms' data that are also obtained by non-standard FDTD, 
we find that the error is reduced from 8.6% to 3.0% due to 
the introduction of BOM and equivalent dielectric constant. 

0.01 

The errors are reduced by a factor about 1% for HEll and 
HE12 mode that have stronger electric field near the metal 0.0 1.0 2.0 3 . 0  4 . 0  

0 .oo 

boundary after BOM is made. f (GHZ) 

TABLE I1 Fig. 7. The lowest resonant frequencies of cylindrical cavity loaded by a 
THE RESONANT FREQUENCIES OF THE CYLINDRICAL CAVITY LOADED BY A 
DIELECTRIC BUITON (a=0.86Mrm. b=1.29Scm, H4.762, LI-L2=0).381m, -35.74) 

MM FEM FDTD 
1111 PI 1111 

Mode (GHz) (GHz) (GHz) 
TEOl 3.44 3.51 3.53 
HEl l  4.27 4.27 3.90 
HE12 4.37 4.36 4.17 
TMOl 4.60 4.54 4.53 

FDTD 
general mesh 

( G W  
3.44 
4.18 
4.27 
4.46 

FDTD 
BOM error 

(GHz) (Yo) 
3.46 0.6 
4.23 0.9 
4.32 1.1 
4.46 3.0 

IV. CONCLUSION 

The boundary conditions of the non-standard FDTD 
method are presented. The boundary-orthogonal mesh and 
the equivalent dielectric constant are introduced. Compared 
with the data from other sources, the error is reduced from 
8.6% to 3.0% for the cylindrical cavity loaded by a dielectric 
button. The frequencies of resonators and filters are also 
calculated on boundary-orthogonal mesh and on general 
mesh. In our examples the error can be reduced by a factor 
about 1% for those modes that have stronger electric field 
near the metal boundary after the boundary-orthogonal mesh 
is made. The results show excellent agreements with 
theoretical values and numerical results. 

- b -; 
k a 4  

I L 2 f  

Fig. 5 .  The cylindrical cavity loaded by a 
dielectric button. for Fig. 5. 

Fig. 6. The discrete mesh 

dielectric button. 
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