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Abstract

Multivariable Proportional-Integral-Plus (PIP) control methods are applied

to the nonlinear ALSTOM Benchmark Challenge II. The approach utilises

a data-based combined model reduction and linearisation step, which plays

an essential role in satisfying the design specifications. The discrete-time

transfer function models obtained in this manner, are represented in a Non-

Minimum State Space (NMSS) form suitable for PIP control system design.

Here, full state variable feedback control can be implemented directly from

the measured input and output signals of the controlled process, without

resort to the design and implementation of a deterministic state reconstruc-

tor or a stochastic Kalman filter. Furthermore, the non-minimal formulation

provides more design freedom than the equivalent minimal case, a charac-

teristic that proves particularly useful in tuning the algorithm to meet the

Benchmark specifications. The latter requirements are comfortably met for

all three operating conditions by using a straightforward to implement, fixed

gain, linear PIP algorithm.

Keywords

ALSTOM Benchmark Challenge; identification; control system design;

model-based control; proportional-integral-plus
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1 Introduction

This paper applies multivariable Proportional-Integral-Plus (PIP) control to

the nonlinear ALSTOM Benchmark Challenge II. The PIP controller can

be interpreted as a logical extension of conventional PI/PID algorithms, but

with inherent model-based predictive control action [1, 2]. Here, multivari-

able Non-Minimal State Space (NMSS) models are formulated so that full

state variable feedback control can be implemented directly from the mea-

sured input and output signals of the controlled process, without resorting

to the design of a deterministic state reconstructor (observer) or a stochastic

Kalman filter.

Over the last few years, such NMSS/PIP control systems have been suc-

cessfully employed in a range of practical and simulation studies [e.g. 3, 4, 5],

including the 1998 Gasifier Challenge [6]. The latter research was based on

the same pilot integrated plant for an air blown gasification cycle, as that

utilised in the present study [7, 8]. However, the 1998 challenge considered

a high order linearised version of the gasifier simulation. Here, a discrete-

time PIP algorithm satisfied all of the performance requirements for both the

100% and 50% load operating conditions. This solution involved a very sim-

ple design procedure, with just one weighting term used to straightforwardly

tune the closed loop response [6].
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The present paper follows on from this earlier research by now apply-

ing the NMSS/PIP methodology to the nonlinear simulation, requiring an

appropriate linearisation step. In fact, the research utilises the Simplified

Refined Instrumental Variable (SRIV) algorithm [9, 10] to estimate multi-

input, single-output, linear Transfer Function (TF) models for the system,

i.e. a combined model reduction and linearisation exercise.

For clarity, the notation used throughout the paper is reviewed below.

The model includes 5 actuators, all flow rates with units of kg/s: char ex-

traction (WCHR), air mass (WAIR), coal (WCOL), steam mass (WSTM)

and limestone mass (WLS). However, the specifications require that WLS is

always set to 10% of the value of WCOL, effectively leaving 4 controllable

inputs to decouple the 4 outputs. These outputs include: fuel gas calorific

value (CVGAS, MJ/kg), bed mass (MASS, tons), fuel gas pressure (PGAS,

bars) and fuel gas temperature (TGAS, K). The units listed here are used

consistently in all the figures below. Full details and performance tests are

described in the introductory paper to this special issue [8].

Section 2 of the paper briefly reviews the multivariable NMSS/PIP ap-

proach to control system design. Appropriate linear transfer function models

are identified for the gasifier system in Section 3. This is followed in Section 4

by the standard benchmark performance tests while, finally, the conclusions

are presented in Section 5.
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2 NMSS/PIP Control

Multivariable PIP control can be applied to systems represented by either

discrete-time, backward shift [11] and delta (δ) [12] operator, or continuous-

time (derivative operator) models. However, backward shift methods are

employed for the research described below since they are so straightforward,

yet are found to yield very good control of the ‘stiff’ gasifier system, which

includes an array of fast and very slow dynamic modes. In this case, consider

the following p-input, p-output, left Matrix Fraction Description,

y(k) =
[

A(z−1)
]

−1
B(z−1)u(k)

y(k) = [y1(k), y2(k), . . . , yp(k)]
T

u(k) = [u1(k), u2(k), . . . , up(k)]
T (1)

A(z−1) = I+A1z
−1 + . . .+Anz

−n

B(z−1) = B1z
−1 + . . .+Bmz

−m

Here, y(k) and u(k) are vectors of system outputs and control inputs respec-

tively, Ai(i = 1, 2, . . . , n) andBi(i = 1, 2, . . . ,m) are p by pmatrices of model

coefficients, while z−1 is the backward shift operator, i.e. z−iy(k) = y(k− i).

For the gasifier simulation with p = 4, y(k) consists of the CVGAS, MASS,

PGAS and TGAS variables, while u(k) is similarly formed from WCHR,

WAIR, WCOL and WSTM.
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Equation (1) is formulated from linear TF models identified for each

input-output pathway of the multivariable system, as discussed in Section 3.

The NMSS representation is subsequently defined as follows,

x(k) = Fx(k − 1) +Gu(k − 1) +Dyd(k)

y(k) = Hx(k)

(2)

Here, the non-minimal state vector is given by,

x(k)=[y(k),y(k − 1), · · · ,y(k − n+ 1),

u(k − 1), · · · ,u(k −m+ 1), z(k)]T
(3)

where,

z(k) = z(k − 1) + [yd(k)− y(k)] (4)

The latter is called the integral-of-error vector, in which yd(k) is the reference

or command input vector, each element being associated with the relevant

system output. Inherent type 1 servomechanism performance is introduced

by means of the state variables in z(k). If the closed-loop system is stable,

then this ensures that steady-state decoupling is inherent in the basic design.

The state transition F, input G, command D and observation H matrices

of the NMSS system are subsequently defined below,
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G =

[

B1 0 0 · · · 0 Ip 0 0 · · · 0 −B1

]T

D =

[

0 0 0 · · · 0 0 0 0 · · · 0 Ip

]T

H =

[

Ip 0 0 · · · 0 0 0 0 · · · 0 0

]T

(5)

The state variable feedback control law takes the usual form,

u(k) = −Kx(k) (6)

where K is the PIP control gain matrix.
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2.1 Control structure

The final control system can be structurally related to more conventional

designs, such as multivariable PI/PID control, as illustrated in Fig. 1. Here,

the control gains are represented by,

L(z−1) = L0 + L1z
−1 + . . .+ Ln−1z

−n+1

M(z−1) = M1z
−1 + . . .+Mm−1z

−m+1

I = kI/(1− z−1)

(7)

while S and N represent the nonlinear gasifier simulation and the linear

NMSS model respectively. Finally, z−1 is the backward shift operator.

Note that Fig. 1 illustrates both the forward path structure and the more

conventional feedback form of PIP control. The former utilises output from

the nonlinear simulation S to provide the necessary integral action, with

the reduced order linear model N generating an appropriate signal for the

L(z−1) controller dynamics. By contrast, the feedback structure only utilises

the nonlinear output (in practice, the plant output).

Such control structures have important consequences, both for the robust-

ness of the final design to parametric uncertainty, and for the disturbance

rejection characteristics. In particular, while the feedback form is gener-

ally more robust to uncertainty in the estimated system dynamics, the unity

feedback aspect of the forward path form offers disturbance rejection char-
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acteristics that are usually superior, since they are similar in dynamic terms

to those associated with the designed command response [13].

However, preliminary closed-loop experiments with the nonlinear gasifier,

suggest that both forms of PIP control are sufficiently robust to changes in

the load operating condition and coal quality. Rather, it is the disturbance

response that requires most attention in order to meet the specifications.

For these reasons, the forward path structure is employed for all the results

discussed below. Note that, whichever PIP structure is chosen, it is always

converted into the equivalent incremental feedback or incremental forward

path form of the algorithm [3]. This provides an inherent means of avoid-

ing integral windup when the controller is subjected to constraints on the

actuator signal, as in the present example.

2.2 Control tuning

The feedback gain matrix K that minimises the Linear Quadratic (LQ) cost

function below, as determined by the steady state solution of the ubiquitous

discrete-time matrix Riccati equation [e.g. 14], is utilised for all the results

in this paper.

J =
∞
∑

i=0

{x(i)Qx(i) + u(i)Ru(i)} (8)
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Here Q and R are symmetric positive semi-definite and symmetric positive

definite weighting matrices, respectively.

It is worth noting that, due to the special structure of the non-minimal

state vector, the elements of {Q,R} have particularly simple interpretation,

since the diagonal terms directly define weights assigned to the measured

variables and integral-of-error states: see equation (3). This contrasts with

minimal state space models that represent the same system in a less intu-

itive manner, requiring each state to be formed from various, often rather

abstract, combinations of the input and output signals. In this manner, the

non-minimal formulation provides more design freedom than the equivalent

minimal case, as discussed by [2].

As will become apparent below, good control of the benchmark system

can be achieved by straightforward adjustment of the diagonal elements of Q

andR, with zero off-diagonal elements. In this regard, the notation described

in more detail by a number of earlier papers on multivariable PIP control

will again be utilised: see e.g. [6]. Here, only the total weightings assigned to

(all the present and past values of) each input and output variable, denoted

yw1 . . . yw4 and uw
1 . . . uw

4 respectively, together with the integral-of-error state

weightings, zw1 . . . zw4 , are selected by the designer. For example, selecting

yw1 = 10 implies a total weighting of 10 on CVGAS and all it’s past sampled

values. In the default case, each of these parameters is set to unity.
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3 System Identification

The identification of an appropriate linear control model plays an essential

role in meeting the gasifier design specifications. Of particular importance

is the model structure chosen; the load operating condition and coal quality

disturbance for which it is obtained; and the nature of the input excitation

utilised to generate the necessary time series data. The main difficulty en-

countered is that, while the long term gasifier dynamics dominate the open

loop step response, it is the rapid response modes that are of most importance

to the specified control objectives.

The choice of sampling rate is, therefore, very important. In fact, open

loop experiments indicate that, while the PGAS variable exceeds its allowed

limit of 10 kN/m2 within 2 seconds of the specified step disturbance, the

new steady state conditions are not reached for approximately 24 hours.

Nonetheless, a sampling rate of 0.25s is utilised for all the results below,

since this offers an adequate description of the short term dynamics and

ensures a rapid response to the disturbances.

The research utilises the Simplified Refined Instrumental Variable (SRIV)

algorithm [9, 10] to estimate multi-input, single output (MISO) linear Trans-

fer Function (TF) models. For each output variable: y1(k) (CVGAS), y2(k)

(MASS), y3(k) (PGAS) and y4(k) (TGAS), these take the form,
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yi(k) =
Bi,1(z

−1)

Ai(z−1)
u1(k) + · · ·+

Bi,4(z
−1)

Ai(z−1)
u4(k) (i = 1, . . . , 4) (9)

Here yi(k) and ui(k) are the output and input variables respectively, while

Ai(z
−1) and Bi,j(z

−1) are appropriately defined polynomials in the backward

shift operator: see Tables 1 and 2 (i, j = 1, . . . , 4). Note that it is a straight-

forward step to convert such TF models into the Matrix Fraction Description

given by equation (1).

Finally, for a given physical system, an appropriate model structure first

needs to be identified, i.e. the order of the various polynomials. The two

main statistical measures employed to help determine these values are the

coefficient of determination R2
T , based on the response error, which is a sim-

ple measure of model fit; and the more sophisticated Young Identification

Criterion (YIC), which provides a combined measure of fit and parametric

efficiency, with large negative values indicating a model which explains the

output data well, without over-parameterisation [10].

3.1 Benchmark Challenge

Conceptually, the Benchmark Challenge offers three broad options for system

identification:

12



1. Treat the nonlinear gasifier model as a previously developed and val-

idated simulation as, of course, it really is. For NMSS/PIP design,

equation (1) is then obtained from a data-based combined model reduc-

tion and linearisation exercise, conducted on the high order nonlinear

simulation model. By contrast, other approaches may directly utilise

the known equations of the simulation for analytical linearisation.

2. For the purposes of the benchmark challenge, treat the nonlinear model

as a surrogate for the real plant. In fact, this is the approach suggested

by the organiser [7]. Analytical linearisation is not possible. Further-

more, any open loop experiments for the identification of an appropriate

control model, should be conducted by choosing realistic input signals

that would not, in practice, damage the system. In particular, it is

clear that the bedmass variable should be regulated during such an

experiment, to ensure stability.

3. As for option 2 above, but assume that the plant is not available for

planned experiments, i.e. time series data should be collected during

the normal operation of the plant. An existing control system, such

as the multiple-loop PI algorithm suggested [7], should be utilised to

regulate all four output variables.
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The three cases above require notably different approaches to system

identification. For option 1, the underlying dynamics are best identified by

temporarily removing the complication of actuator constraints. Furthermore,

since this is a deterministic simulation, a small amplitude pulse signal can be

successfully utilised to estimate linear TF models. Such an approach ensures

that the benchmark system responds with small perturbations close to the

specified operating point, without activating the nonlinearities.

By contrast, in the case of options 2 or 3, it is clear that the input

constraints must remain in place. The specified rate limits for the gasifier

system would then preclude use of pulse signals. Furthermore, in these cases,

it would be more realistic to include a stochastic measurement noise com-

ponent, so as to prevent use of unrealistically small input variations. Here,

the plant should be sufficiently excited to overcome the measurement noise

signal and so reveal the underlying linear dynamics (for a specified operating

condition), whilst still minimising any nonlinear distortions: see e.g. [15].

However, using SRIV methods, simulation experiments quickly reveal

that all three options yield satisfactory models appropriate for PIP control

system design, testifying to the robustness of the approach. For example,

Section 3.2 below considers the case when the deterministic simulation is

perturbed by a sequence of steps of varying magnitudes.
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3.2 Linear models

To demonstrate the modelling methodology, the gasifier simulation is per-

turbed by the input signals shown in Fig. 2, with the corresponding output

response illustrated in Fig. 3. Here, each input variable takes a form similar

to a Pseudo Random Binary Signal (PRBS) but where the levels are chosen

randomly from a Gaussian distribution centred about the steady state 100%

load operating point. These signals are then modified by the Benchmark rate

and level constraints.

In this case, the SRIV algorithm, coupled with the YIC and R2
T iden-

tification criteria, suggest that the gasifier is well represented by four 3rd

order MISO models. These typically yield R2
T > 0.99, i.e. over 99% of the

nonlinear simulation response is explained by the linear models. In fact, the

linear response also plotted in Fig. 3 (thin trace), is almost indistinguishable

from that of the nonlinear simulation (points).

One particular input realisation yields the models given by Tables 1 and 2.

Relatively large input variations are utilised here since these are found to

yield low order transfer function models and good closed-loop performance.

However, the final control design is not particularly sensitive to this choice of

input signal, nor the magnitude of the step sizes, as long as SRIV methods are

used, the control weights are re-tuned using the parameter estimates actually
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obtained, and the load operating condition is approximately maintained for

the duration of the open-loop experiment (as is the case here: see Fig. 4).

4 Performance Tests

The present section of the paper considers the standard performance tests

specified by [7, 8]. Consider in the first instance, a PIP controller based on

TF models obtained from open-loop experiments at the 100% load operat-

ing condition. By first converting the TF models given by Tables 1 and 2

into MFD form (1), it is a straightforward exercise to develop the equivalent

24th order linear NMSS representation (2). Solution of the LQ cost func-

tion (8), subsequently yields a fixed gain PIP control agorithm (6), suitable

for implementation in the forward path form of Fig. 1.

Closed-loop experiments quickly reveal that WCOL is the most problem-

atic input variable for hitting the constraints. For this reason, the associated

LQ weighting is selected as uw
3 = 100, with all the remaining parameters set

to the default unity. This yields a PIP algorithm with an identical struc-

ture and similar gains to that previously obtained for the linear benchmark

system [6]. Nonetheless, when now applied to the full nonlinear simulation,

with appropriate input constraints, the results are either the same or im-

proved compared to those obtained before, as discussed below.
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4.1 PIP control optimised for 100% load

Tables 3 and 4 summarise the results. Here, the Integral of Absolute Error

(IAE) is determined at the three standard operating conditions, i.e. 100% (as

designed for), 50% and 0% load. Equivalent values for the multiple-loop PI

algorithm [7] are given in parenthesis. To illustrate these results, Fig. 5 shows

the response to a sine wave disturbance at 50% load, while the equivalent

step disturbance response is shown in Fig. 6. In these figures, the steady

state levels have been subtracted from the output variables.

All of the performance requirements at the 100% and 50% load operating

conditions, for both step and sine wave disturbances, are comfortably met

by the PIP algorithm with, in most cases, improved tracking of the set point

compared to the multiple-loop PI algorithm supplied by [7]. Even at 0% load,

the only limitation of the PIP design is that the PGAS variable exceeds its

allowed limit by 0.03 bar during the sine wave disturbance test. However, in

absolute terms, this is less than 2% of the 11.5 bar set point and even this

problem is straightforwardly solved in Section 4.2 below.

Furthermore, the 50–100% ramp test illustrated in Fig. 7, shows a smooth

transition between these operating levels. In this case, compared to the

multi-loop PI algorithm, PIP provides considerably improved control of the

bedmass variable, at the expense of a slower temperature response.
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Of course, if this latter result proves unsatisfactory in practice, then the

TGAS variable may be penalised in the cost function relative to the other

variables, as discussed below. In this regard, it should be stressed that control

of the load condition was not considered a design objective in this example,

although the latter variable is still graphed against its demanded level in

Fig. 7. Again, if indirect regulation of the load condition is later included in

the design specifications, this can be straightforwardly achieved by further

adjustment of the LQ weights.

Finally, the PIP algorithm proves robust to coal quality disturbances,

represented by percentage changes from the norm. In particular, none of

the output limits are exceeded for the step and sine wave disturbances when

the coal quality is ramped up to +8 or −7 at 100% load, or for even higher

magnitudes at 50% and 0% load. In fact, Fig. 5 illustrates the response

when the coal quality is ramped down to -10%, since these results are similar

to the case without such a disturbance. For larger coal quality variations,

the temperature variable sometimes exceeds its limit, although closed-loop

stability is maintained at all times.

Note that, when analysing the response to a coal disturbance, the simula-

tion is always solved for longer than the 300 seconds specified by the standard

tests. This is because the input variables often hit level constraints during

coal disturbances, which can result in an eventual drift of the outputs.
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4.2 LQ weighting matrices

Because of the special structure of the NMSS model, the LQ weightings

can be straightforwardly adjusted in order to meet other performance re-

quirements. For example, by increasing the error weighting on the TGAS

variable, tracking of temperature and load in the ramp test is improved in

comparison to Fig. 7, at the expense of the other variables.

Similar trial and error adjustment of the weighting terms so that uw
1 = 50,

uw
2 = 25, uw

3 = 100 and uw
4 = 25, yields a PIP algorithm that successfully

maintains the PGAS variable within the limits, even for the problematic 0%

load sine wave disturbance response, as illustrated by Fig. 8. For reference,

the equivalent step disturbance response is illustrated in Fig. 9. This lat-

ter PIP algorithm meets all the design specifications, although the overall

performance is arguably not as good as the earlier PIP design.

In particular, with these modified weights, some of the performance spec-

ifications (such as the maximum disturbance off-set or the IAE) are improved

in comparison to the initial design above, whilst others are poorer. The exact

differences between these two PIP designs varies for each disturbance type

and operating level; hence, for brevity, the details are omitted here.

It is clear that any further fine tuning of the algorithm depends on more

detailed design specifications. In this regard, one technique for automatically
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mapping such objectives into elements of the weighting matrices, is multi-

objective optimisation in its goal attainment form [12]. Here, the designer

would benefit from knowledge of the relative importance of each output vari-

able; and whether it is the peak value, or the long term integral of absolute

error, of a given variable that has the most critical effect on the gasifier

performance.

The latter comment is particularly true of the 50–100% ramp test, where

Fig. 7 represents just one particular PIP realisation, not necessarily the op-

timal response in terms of the gasifier system. It is noteworthy, for example,

that the temperature constraint is ±1K, compared to a set point of over

1000K. If this proves to be a genuine requirement, then the LQ weightings

may be modified appropriately.

4.3 PIP control optimised for 50% load

The linear models in the discussion above are all based on data collected

at the 100% load operating condition, since this is the normal operating

state of the plant. However, since the performance tests cover the full range

0–100%, there is an argument for designing the controller at 50% instead,

i.e. in the middle of the operating range. In this case, the TF models take

a similar structure those in Tables 1 and 2, although clearly the parameters
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and hence control algorithm differ. Here, PIP control performance at the

lower operating conditions are improved, at the expense of a small reduction

in the performance at 100% load, as would be expected.

Since the latter performance degradation is minimal, these results poten-

tially suggest that utilisation of the 50% operating condition for the design of

a fixed gain PIP controller is the preferred option. However, this conclusion

requires a more detailed consideration of the control objectives than provided

for the purposes of the present challenge. For example, what percentage of

time is the actual system close to the 100% load condition? Again, however,

the flexibility of the NMSS/PIP approach emerges – changing the optimal

operating condition of the controller requires data collection from just one

open loop experiment similar to Fig. 3, followed by minimal tuning of the

LQ weights.

4.4 Modified input constraints

With regards to the coal quality disturbance, simulation trials suggest that

the WCOL and WCHR variables are particularly important. These represent

the coal input and char extraction flow rates respectively. For example, a high

quality coal input (disturbance +18%) naturally requires less char extraction

because it would be expected to have a low residual, hence WCOL and
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WCHR will inevitably approach the level constraints.

In this regard, whilst it is interesting to use advanced control theory in

an attempt to solve the benchmark specifications, from a practical point

of view, the gasifier problem becomes rather straightforward if the WCHR

and WCOL constraints are softened somewhat. Clearly the latter option

represents one particular (hardware) solution to this control problem.

5 Conclusions

This paper has discussed the application of Proportional-Integral-Plus (PIP)

control methods to the ALSTOM Benchmark Challenge II. The approach

is based on the identification of discrete-time transfer function models using

the Simplified Refined Instrumental Variable (SRIV) algorithm. Here, a

very straightforward design process is employed, requiring one open loop

experiment and automatic selection of a linear model. Adequate closed loop

PIP control responses are then obtained by manually tuning the intuitive

weighting parameters.

The design effort took less than 5 hours, although clearly the authors are

very familiar with the approach, have ready access to the necessary software

tools and had previously studied the linear challenge. Note also, that the

PIP controller considered here has a similar implementational complexity
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to conventional PI/PID designs, requiring only the addition of a multivari-

able structure and storage of additional past values. Of course, since this

is a discrete-time algorithm, these requirements are very straightforward to

program for a digital PC.

However, the PIP algorithm may be extended in various ways, albeit at

the cost of increasing complexity. For example, while the basic form utilises

an incremental structure to account for the input constraints, such an ad hoc

approach does not necessarily yield optimal control performance in other

applications. Although beyond the scope of the present paper, one research

area currently being investigated in this regard, exploits the advantages of the

NMSS representation within a conventional model-predictive control form.

Finally, one limitation of the discrete-time PIP algorithm, is that it takes

up to 1 sampling interval before the controller starts to respond to a dis-

turbance input. In simulation, this puts the approach at a disadvantage

against continuous-time designs such as [7]. In this context, it should also

be pointed out that all the SRIV/PIP methods discussed in the present pa-

per, are readily developed in continuous time, providing another avenue for

further research and potentially improved results.

Nonetheless, the discrete-time, linear PIP algorithm considered here, suc-

cessfully satisfies all the control specifications for all three operating condi-

tions, even with significant coal disturbances.
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Table 1: Denominator polynomials.

Output i Ai(z
−1)

CVGAS A1(z
−1) = 1− 2.9502z−1 + 2.9009z−2 − 0.9507z−3

MASS A2(z
−1) = 1− 2.7001z−1 + 2.4169z−2 − 0.7168z−3

PGAS A3(z
−1) = 1− 1.7028z−1 + 0.5964z−2 + 0.1133z−3

TGAS A4(z
−1) = 1− 1.6440z−1 + 0.4625z−2 + 0.1815z−3
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Table 2: Numerator polynomials.

Output i Input j Bi,j(z
−1)

CVGAS WCHR B1,1(z
−1) = 0.0017z−1 − 0.0017z−2

CVGAS WAIR B1,2(z
−1) = −2.2586z−1 + 4.4468z−2 − 2.1881z−3

CVGAS WCOL B1,3(z
−1) = 1.5498z−1 − 3.0291z−2 + 1.4793z−3

CVGAS WSTM B1,4(z
−1) = −2.1201z−1 + 4.3281z−2 − 2.2079z−3

MASS WCHR B2,1(z
−1) = −0.0283z−1 − 0.0012z−2 + 0.0252z−3

MASS WAIR B2,2(z
−1) = −0.0053z−1 + 0.0033z−2

MASS WCOL B2,3(z
−1) = 0.0232z−1 + 0.0002z−2 − 0.0210z−3

MASS WSTM B2,4(z
−1) = −0.0006z−1 − 0.0014z−2 − 0.0011z−3

PGAS WCHR B3,1(z
−1) = 0.0017z−1 + 0.0017z−2

PGAS WAIR B3,2(z
−1) = 1.0733z−1 − 1.1540z−2 + 0.1441z−3

PGAS WCOL B3,3(z
−1) = 0.4770z−1 − 0.3654z−2 − 0.0772z−3

PGAS WSTM B3,4(z
−1) = 1.1725z−1 − 0.7965z−2 − 0.2628z−3

TGAS WCHR B4,1(z
−1) = 0.0012z−1 + 0.0015z−2

TGAS WAIR B4,2(z
−1) = 0.1562z−1 − 0.2828z−2 + 0.1286z−3

TGAS WCOL B4,3(z
−1) = −0.0183z−1 + 0.0159z−2

TGAS WSTM B4,4(z
−1) = −0.0743z−1 + 0.1256z−2 − 0.0517z−3
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Table 3: IAE for sine wave.

Load CVGAS MASS PGAS TGAS

100% 0.14 0.09 5.45 49.30

(PI) (0.76) (2.07) (9.18) (66.15)

50% 0.28 0.10 6.60 61.16

(PI) (0.87) (2.52) (11.45) (73.80)

0% 1.07 1.33 16.84 105.59

(PI) (1.03) (3.00) (18.93) (79.14)

Table 4: IAE for step disturbance.

Load CVGAS MASS PGAS TGAS

100% 0.03 0.01 0.66 78.55

(PI) (0.03) (0.80) (0.39) (32.52)

50% 0.03 0.04 0.30 18.95

(PI) (0.03) (0.42) (0.47) (38.53)

0% 0.06 0.06 0.50 49.90

(PI) (0.04) (0.66) (0.60) (38.49)
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Figure 1: Multivariable PIP control implemented in forward path (top) and

feedback (bottom) form.
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Figure 2: Input variables for open-loop experiment.
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Figure 3: Output variables for open-loop experiment.
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Figure 4: Load for open-loop experiment.
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Figure 5: Sine wave disturbance, 50% load, coal quality variation -10%.
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Figure 6: Step disturbance, 50% load, coal quality variation 0%
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Figure 7: Load 50–100% ramp test.
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Figure 8: Sine wave, 0% load, revised LQ weights.
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Figure 9: Step disturbance, 0% load, revised LQ weights.
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