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ABSTRACT

The response of a noisy FitzHugh-Nagumo (FHN) neuron-like model to weak periodic forcing is analyzed. The
mean activation time is investigated as a function of noise intensity and of the parameters of the external signal.
It is shown by numerical simulation that there exists a frequency range within which the phenomenon of resonant
activation occurs; resonant activation is also observed in coupled FHN elements. The mean activation time with
small noise intensity is compared with the theoretical results.
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1. INTRODUCTION

It is well known that living tissue, including nerve fibers in animals, is very sensitive to external forcing.!™
Furthermore, biological signal processing takes place in a fluctuating environment. So it is important, and of
interest, to try to understand the statistical properties of stochastic neuronal systems and, in particular, to
investigate the mutually cooperative influence of noise and external driving on the behaviour of the neurons.
This is a problem that has been the subject of intensive research, both for single and coupled neuron-like
elements.* 12  One of the most intriguing phenomena, that of stochastic resonance,'®'° has been observed in
the case of simultaneous action of noise and weak (subthreshold) periodic driving on the system. It has been
demonstrated that the response of neurons to the external driving can be optimized in this case by the presence
of a particular level of noise. It has also been shown that noise can substantially modify the dynamical properties
of the system even in the absence of external driving, leading to the occurrence of the well-known phenomenon
of coherence resonance.'% ' It can thus be seen, even from this brief description, that noise plays a significant
role in optimization of the detection, transmission and encoding of signals in neurons.

Despite the broad interest of this problem, however, an understanding of the role of fluctuations in nerve
cells still remains elusive, which is why investigation of the different parameter-dependent characteristics for
both single neuron-like elements, and ensembles of them, in the presence of various external perturbations is of
particular importance.

Recently very substantial progress has been made towards the understanding of fluctuation-induced escape
from a metastable state, and of activated processes in general, by using the path-integral concept.?’ 24 In the
present paper we attempt to apply this technique for the examination of our numerical results. We examine the
stochastic FitzHugh-Nagumo (FHN) model in the presence of weak periodic forcing with the aim of shedding
new light on the response of neurons to an external signal in the presence of noise. We will investigate the
mean activation time in a single FHN element (section 3) and two coupled elements (section 4) as functions
of noise intensity and of the parameters of the external periodic signal. It will be demonstrated that resonant
activation?® 27 occurs in both cases. For coupled units, the influence of the coupling factor on this effect will
be illustrated. The mean activation time found in numerical experiments will be compared with the theoretical
prediction.
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2. MODEL AND METHODS OF INVESTIGATION

We consider the following FHN neuron-like model:

i = Fi(x,y) + Asin(wt) = x — 2% /3 — y + Asin(wt) (1)
y=Fo(a,y) + &) = ez + 1) +£(0),

where: £(t) is white Gaussian noise with correlation function (£(¢)¢(t + 7)) = Dd(7); and € and I are the system
parameters (¢ = 0.05 is a small parameter, and I = 1.05). The curve Fj(z,y) = 0 has an N-like form, while
Fs(x,y) = 0 is a straight line. In the absence of both external driving and noise there is only one steady state of
the system (1) corresponding to the point of intersection A(z°,y%) of the curves Fy(z,y) = 0 and Fy(z,y) = 0 in
the zero-noise limit. It has coordinates 2° = —I,y° = —I + I3/3. In this perturbation-free case all trajectories
of the system (1) will be attracted to A(x?,y"). In our simulations we assumed that the voltage-like variable
x is subjected to a subthreshold periodic drive of amplitude A and circular frequency w. Subthreshold driving
means that the external signal alone is not of sufficient amplitude to produce a response from the neuron (i.e.,
to generate a spike).

2.0

1.54

1071

y0.5*
0.0

24
-0.5 (b)
0 100 200 300 400 500 600 700

t

-1.0

Figure 1. (a) Phase diagram for the system (1). Dashed lines correspond to nullclines of the unperturbed deterministic
case: © = —I and y =  — 23/3. The deterministic stable ellipse-like curve is shown by the solid closed line. An enlarged
version of the phase diagram in the vicinity of the stable state is shown in the inset. (b) An example of a stochastic
trajectory of the system (1). The activation time Tj is calculated as the time to the first crossing of the boundary x = 0
as shown in the figure.

Subthreshold periodic driving in the absence of noise leads to the establishment of periodic motion in the
configuration space {x,t} whose projection on the plane {x} = {z,y} looks like a limit cycle: see inset of Fig.

1(a).
2.1. Numerical simulation

The presence of noise leads to the generation of a response in the system. Our numerical simulations are based
on a noise generator producing Gaussian, normally distributed, deviations of zero mean and unit variance, and
we use a modified midpoint method?® for the integration of (1). We will focus on one of the characteristic time
scales, choosing that known as the mean activation time. It is obtained as the average of first passage times
across the boundary = = 0:

1 N
T==-S "1, 2
N; (2)

where T; is the activation time for i-th realization, Fig. 1(b).



2.2. Path-integral based technique for obtaining the mean activation time

It is known that many statistical characteristics of stochastic motion for the system (1) can be obtained by
making use of the Fokker-Plank equation (FPE)%:

dip(x,t) = —5D;0;{QY p(x, t)] + [ Fi(x, t)p(x, 1), (3)

where: the notation means 0; = %7 0; = %7 aza] = #23’], p(X7 t) is the probablhty density which completely
specifies the system dynamics in the presence of noise; Q = (Q%) is the diffusion matrix, whose elements are
Q?*? =1,QY =0fori+#2or j # 2, in our simulation. F; are the right-hand deterministic parts of the Langevin

equations (1): Fy =z —23/3 —y + Asin(wt), Fr = e(x + I).

In the small-noise limit, the probability density p(x,t) of the stochastic process x(¢) can be written in the
WKB-like approximate form?30:3!:

p(x,t) ~ Z(Xat) exp{fS(x,t)/D}, (4)

where Z(x,t) is a prefactor, and the action function S(x,t) plays the role of a non-equilibrium potential.?
Substituting Eq. (4) into the FPE (3), and expanding in powers of D, allows one to obtain the equations for the
action and prefactor3? 31,3335 in the leading and next-to-leading orders of approximation. It follows from this
expansion that the function S(x,t) satisfies the Hamilton-Jacobi equation for a classical action of form:

8:S(x,t) + H(x,VS) = 0, (5)

where H(z;,p;) = %Qijpipj + F;(x,t)p; is the Hamiltonian function that must be chosen equal to zero to
provide a proper description of exponentially slow escape from the metastable state.?* This suggests a classical
mechanical interpretation of the function S(x,t) and allows one to calculate it as an action integral taken along
the trajectories of an auziliary Hamiltonian system. The corresponding Hamilton’s equations take the form:

i’i = E(Xa t) + Qijpj
pi = —p;0i k.

(6)

These equations must be solved simultaneously with the equations for the action function and prefactor in the

form39:

S(Xv t) = pii'i —H= Di [Fz (Xv t) + Qijpj]a (7)

3xt) =~ | 5QUA0S 0, 1) + 0E (1) Z0x.1) ®)

We note that the equation for the prefactor (8) involves an unknown Hessian matrix (S;; = 0;0;5). The system
of equations (6)-(8) must therefore be closed by adding an equation for the time evolution of the Hessian matrix
itself. The latter can be obtained?* by differentiation of the Hamilton-Jacobi equation with respect to position
and momentum along the trajectories of (6):

0’H 0’H
S iyS iy — Sk — S,
1YY al'japk Jik axlapk 5]

Si=—-QwW r — 0;0;H 9)

Finally, simultaneous integration of the system of coupled ordinary differential equations (6)-(9) allows one to
calculate the action function and prefactor, and hence the probability density (4). To obtain the mean first
passage time (MFPT) let us rewrite the FPE (3) in the following form:

Op(x,t) = —divG, (10)

where
G = 7§Dgrad(Q p(X, t)) - F(Xat)p(xat) (11)



is the probability density current. The MFPT of escape from the basin of attraction 2 of a metastable state A

of the system (1) via the basin boundary 9 is thus given by the following formula2®:36:
[ p(x,t)dx
T=-% 12
] (o) d(0) 12

[219)

where n is the vector of the unit outer normal for the basin of attraction 2. Thus, knowing the current values
(i.e. the probability density) on the boundary 92 allows us to obtain the mean activation time.

The separatrix 9f is a solution of (1) in the absence of noise, separating the deterministic trajectories that
are attracted to the right and left-hand stable branches of the slow-motion curve y = z — 23 /3 (Fig. 2).
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Figure 2. Phase portrait of the system (1) in the absence of noise. Dashed lines correspond to the nullclines as explained
in Fig. 1. The separatrix is shown by the bold solid line. Deterministic trajectories of the system are shown by the solid
lines with arrows.

In what follows we assume that the separatrix does not change in the presence of external driving. This is a
strong assumption that will be analyzed in more detail elsewhere.

2.2.1. Without periodic driving

Let us now analyze in detail the integral in the denominator of the (12). In what follows this integral will be
denoted as J. We note that, in our particular case, the separatrix 92 is defined by the condition (n,F) = 0.
Taking this into account, the integral J can be rewritten as:

J= %/ {gz_j Py} exp {~Smoa/ D}(n, ey)dl(z) (13)
o0

where e, is a unit vector in the y-direction. The integration in (13) is taken along the separatrix. Spmeq =
S — DlIn Z is a modified action function.

It can be seen from Fig. 3(a) that Sp,.4 is a non-monotonic function of position on the separatrix and has
minimum at & = Zin. The integral J we can calculate numerically over the whole separatrix.3® However, for
investigation of the effect of periodic driving a more detailed analysis is required. Therefore, we evaluate the
integral (13) using a steepest descent technique, expanding the modified action function in Taylor series in a
small vicinity of the point Z.,in:

j:

1/Doz 27D
2\ Z oy Py

eXp{_Smod/D} S//i . (14)

modqq

T=Tmin

The results of these calculations are compared with numerical simulations in Fig. 3(b).
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Figure 3. (a) Action function (dashed line) and modified action function (solid line) as a function of the variable x
(without periodic driving); (b) The MFPTSs found in the numerical simulations (filled dots) are compared with theoretical
predictions based on Eq. (14) (triangles).

3. INFLUENCE OF SUBTHRESHOLD DRIVING ON THE MEAN ACTIVATION
TIME FOR A SINGLE FHN ELEMENT

In the presence of noise, the additional subthreshold periodic driving can induce a substantial decrease of the
mean activation time T', Fig. 4(a). Furthermore, there exists an optimal frequency for which the MFPT takes a
minimum value, corresponding to the phenomenon of resonant activation.3”

The results obtained by numerical investigation of resonant activation in our system are summarized in Fig. 4.
It can be seen that a change in the amplitude of the external driving has a pronounced effect on the escape rates.
Fig. 4(a) shows a deepening and broadening of the resonance curve as the amplitude A of the drive is increased.
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Figure 4. Numerical calculations of the mean activation time as a function of driving frequency: (a) for different
amplitudes of the external signal with D = 3.5-107°; and (b) for different noise intensities with A = 0.01.

3.1. Theoretical analysis considering the influence of periodic driving

Periodically driven nonlinear oscillators under non-adiabatic conditions in the presence of noise were analyzed by
Dykman and Smelyansky.?® In our present studies we try to adapt their technique to the analysis of the non-
adiabatic driving of excitable systems. We therefore assume3® 39 that the dominant effect of resonant activation



is a field-induced variation of the action function. This is of course a simple consequence of the fact that the
effect of varying the action is exponentially strong. It is also clear that the smaller the noise intensity is, the
better becomes the corresponding approximation function, since the action in the exponent is divided by the
small parameter D. It is also important to bear in mind that the approximation suggested by Dykman et al3® 3°
is valid only in the region of parameters where the change in the action function is linearly proportional to the
change in the amplitude of the driving force. Finally, we note that we have adopted in this paper the next-
to-leading order of the WKB-approximation. The latter requires that the noise-induced changes of the action
must be much smaller then the value of action in the zero-noise limit. Having in mind the above restrictions we
proceed as follows. The Hamilton’s equations of motion of the auxiliary Hamiltonian system for a singled out
stochastic FHN model (1) take the following form:

i=F+ Q% =2 —23/3 —y+ Asin(wt + ¢o),
y=F+Q"%p; =e(+1)+py,

15
Dz :7(17m2)pm7€py7 ( )
py = Px-
Correspondingly, equations (7), (8), and (9) take the form:
§ = [r —a®/3—y+ Asin(wt +¢o)lp. + [l + 1) +p,p,;
Z = _[%S,yy +(1-2%)]z2, (16)
S,ij = —3SiyS,jy — g—QS,m — 9L S ik + 2up26i10j1,

where i, j, k = x,y.

To describe the initial conditions, we linearize34:49:41

of the driving force to obtain:

equations (15) near the stable point A in the absence

8 = (1 — I?)dz — 6y,

0y = €0z + py,

. 17
pxz—(l—IQ)px—pr, ( )
py = Pz-

A generic point on the unstable manifold is written in this case as v(t) = ajv} exp)‘175 +avy eXp’\2t where aq 2
are complex coefficients and A\; and Ao are two positive eigenvalues corresponding to the unstable eigenvectors
v} and v¥. Accordingly, the connection between the momenta and coordinates on the unstable manifold of the
linearized system can be written as:

-1
(px):/\/l<x), where M:(U”’f UQ”’)(UM UQ”) ) (18)

Dy Y Uip, V2p, U1y U2y
Equations (18) provide the choice of proper initial conditions for the integration of equations (6)—(9). Indeed,
in the vicinity of the stable point (2°,y"), the action can be approximated in the form S(x) = % T Mx. The
matrix M therefore defines the curvature of the action surface in the vicinity of the stable state and the prefactor

according to the approximation (4).

An iterative analysis of (16) shows that the variation of action 65 (w, ¢g) takes the form:
38(w, po) = AW + O(4%), (19)

where §5(w, o) is the correction to the action S|a—¢ that was obtained without periodic driving in the limit of
zero noise intensity; W is the work done by a unit force along the optimal trajectory of the unperturbed system
(6).

For finite noise intensity, we adopt a similar approximation but with the following modifications. The role
of the most probable escape path is taken by the path that provides a minimum of the modified action at the
boundary at x = %, and the upper limit of integration is not finite but, rather, is defined by the condition
that the modified most probable escape path crosses the boundary.



Consequently, the integral in the denominator of (12) must be averaged over one period of the external
driving, and will take the following form:

1 /DOZ 2nD
J= lﬂ (Ea_y Py) P Smoa/ Dy g

modgq

] /eXp{*5S(w, ®0)/D}dpo (20)

These theoretical results for the mean activation time are compared with the results of numerical simula-
tion in Fig. 5. It should be mentioned here that, the smaller the noise intensity D, the bigger becomes the
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Figure 5. Mean activation time as a function of the frequency of the periodic signal. The theoretical results (solid lines)
are compared with numerical calculations (circles) for D = 2.5 - 1075 with: (a) A = 0.0075; and (b) A = 0.005.

relative decrease of the mean activation time, Fig. 4(b). This occurs because the pre-exponential factor in
27+D [ exp{—8S(w, o) }dpo is inversely proportional to D.

4. INFLUENCE OF SUBTHRESHOLD DRIVING ON THE MEAN ACTIVATION
TIME FOR TWO COUPLED FHN ELEMENTS

In this section we consider co-operative dynamics in a system of two coupled FHN elements:

i = a1 —23/3 — y1 + Asin(wt) + p(xy — 21),
g1 =¢e(z1+ )+ & (1),
By =9 — 73 /3 — y2 + Asin(wt) + p(x1 — 2),
U2 = e(xe + L) + & (1),

(21)

where I; are parameters of the partial element; p is the coupling coefficient; & 2(t) are the independent compo-
nents of a two-dimensional Gaussian white noise with correlation functions (£;(0)&;(t)) = DJ;;6(¢t). Further, the
dependence of the mean activation time on the driving frequency was investigated for cases when both elements
have identical initial conditions I1 = I» = 1.05 (Fig. 6(a)), and I; = I = 1.1 (Fig. 6(b)).

As we can see from Fig. 6, different tendencies exist here for the influence of coupling strength on the
mean activation time for periodically and noisily perturbed FHN-elements. The activation of one element for
subthreshold driving leads to a decrease of the mean activation time T for the second (non-activated) element.
But if both elements are non-activated, and the response to the driving force is small, the mean activation time
T of each element is increased due to the coupling because, for large coupling strength, fluctuational forcing of
both elements must be correlated to procure their synchronized activation. The tendency for decreasing T is
stronger with weak coupling strength when close to the bifurcation point where I = 1, Fig. 6(a). The tendency
for increasing T is stronger for strong coupling or far from bifurcation point, Fig. 6(a,b). It is interesting to
note that, while strong coupling hampers activation for all frequencies (Fig. 6(a),(b)), there exists a region in



parameter space where weak coupling leads to an increased activation rate for certain frequencies of external
forcing near the resonant frequency and, on the contrary, to an increased mean activation time for frequencies
of external forcing that are far from resonance (p = 0.1 on Fig. 6(b)).
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Figure 6. Activation time as a function of the frequency of external periodic forcing for various coupling strengths p in
the cases of: (a) I = 1.05 for both elements; and (b) I = 1.1 for both elements.
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