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ABSTRACT

The polarization dynamics of a vertical cavity surface emitting laser is investigated as a nonlinear stochastic
dynamical system. The polarization switches in the device are considered as activation processes in a two
dimensional system with a saddle cycle; the optimal way of switching is determined as the solution of a boundary
value problem. The theoretical results are in good agreement with the numerical simulations.
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1. INTRODUCTION

Vertical Cavity Surface Emitting Lasers (VCSEL) are a novel class of semiconductor lasers which are having great
success in many applications requiring high speed, precision and efficiency. VCSELs promise to revolutionize fibre
optic communications by improving efficiency and increasing data speed. Nowadays VCSELs allow computer
networks transmit reliably data at rates of up to and beyond 10Gb/s. Other successful applications of VCSEL
are in the realization of proximity sensors, encoders, laser range finders, laser printing, bar code scanning, optical
storage.

Among the many benefits of VCSEL compared to over edge-emitting diodes, VCSELs are cheaper to man-
ufacture in quantity, they are easier to test, and they are more efficient. Moreover, the VCSELs require less
electrical current to produce a given coherent energy output. VCSELs emit a narrow, more nearly circular beam
than traditional edge emitters; this makes it easier to get the energy from the device into an optical fiber. It is
expected that in the nearest future, VCSEL will be one of the most popular laser diodes for the majority of the
applications.

The main feature in VCSEL design is the cylindrical symmetry of the active cavity: this allows one to
fabricate two dimensional arrays of lasers and reduces dramatically the astigmatism of the beam. Unfortunately
the applicability of VCSEL is limited by the presence of different instabilities in the polarization dynamics.
Consider for example a VCSEL emitting in the fundamental transverse mode; due to the circular design of the
active medium, no well defined directions for the polarization are expected. Nevertheless, there is experimental
evidence that, for the majority of the cases, the VCSEL emission just above threshold is with a well defined
linear polarization.1 Increasing the pumping current, the direction of the polarization changes from the first
mode to the orthogonal one.2 For intermediate pumping current, both linear polarized states are stable, and
the VCSEL is observed to perform spontaneous transitions between the two modes.3 For very high values of the
pumping current, both modes lose their stability4–6 and higher order transverse modes appear. We stress that
all these features are intrinsic in the VCSEL due to the geometry of the device and that they have to be properly
understood in order to move toward a generation of VCSELs that are more efficient and reliable.

Different attempts to control the polarization emission have been done by breaking in a controlled way the
symmetry of the device, for example with non-symmetrical growth of the active medium, or using “local burn-
ing”7 or “hot spot” techniques.8 A different approach to the polarization control have been attempted using
optical injection in a master-slave configuration9 or optical feedback.10

From a theoretical point of view, a big effort has been made in order to understand how the presence of
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anisotropies in the mirrors and cavity,4 axial magnetic field, and polarization dependent saturation affects the
polarization of the emitted light.
A very promising model that allows a full nonlinear description of the VCSEL emission was introduced in 1995
by San Miguel, Feng and Moloney (SFM).11 Although clear and realistic, the SFM model is still too complicated
to allow a simple solution; many different ways have been been attempted to decouple the polarization dynamics
from that of the internal medium, including the use of normalized Stokes components12 and polarization angles.6

In this last approach, the dynamics of the angles is described by a set of two nonlinear coupled differential
equations and the spontaneous emission of photons is described by introducing two stochastic terms. In the
bistability regime, the system presents two stable points corresponding to the two polarization modes whose
basins of attraction are separated by an unstable limit cycle. The presence of spontaneous emission allows the
system to move away from the stable states and explore different states of polarization. When the noise intensity
is small, the system spends the majority of the time in the vicinity of one of the stable states, but, occasionally,
an exceptional noise burst can drive the system to the basin of attraction of the other polarization state and a
polarization transition is observed.
The small fluctuations in the vicinity of the steady states have been carefully investigated in the linear regime.6, 13–15

However, the investigation of the large fluctuations (involving a full nonlinear treatment) and, in particular, of
the polarization switches in the devices is far from being completed.
A possible way to approach the problem comes from the study of activation problems in stochastic nonlinear sys-
tems.16 The main result achieved is that, in the limit of zero noise intensity, the polarization switch is expected
to take place in a ballistic manner along a most probable transition path (MPTP) that can be obtained from an
auxiliary Hamiltonian system.17–24

In this paper we consider a VCSEL emitting in the fundamental transverse mode in the bistable polarization
regime. The dynamics of the polarization is described using the polarization angles.6 Polarization switches are
investigated in the regime of small noise intensity. The MPTP and the activation energy are found for different
values of the pumping parameters.

2. THEORY

2.1 VCSEL emission

In this section we summarize the theory for the polarization dynamics of the VCSEL. The SFM model11 ap-
proximates the band structure of the active medium as a two-level system. The upper level (conduction band)
is populated by electrons having total angular momentum J = 1

2
∗ and projection in the axis direction Jz = ± 1

2
.

The lower level (heavy holes band) is populated by electrons having total angular momentum J = 3
2
and pro-

jected angular momentum Jz = ± 3
2
.

In the dipole approximation two independent electronic transitions are involved: + 3
2
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2
(and the inverse)

and − 3
2
−→ − 1

2
(and its inverse). Due to the conservation of angular momentum, two separate classes of circular

polarized photons are involved in the two transitions. The two families of electrons are coupled by a large num-
ber of different relaxation processes,11 for example interaction with static scatterers25 or electron-hole exchange
interaction.26 All these processes are summarized in the SFM model introducing a phenomenological spin-flip
rate. The two families of photons are directly coupled by the presence of amplitude and phase anisotropies in
the cavity or in the mirrors.4 Including all these effects, the following rate equations11 for the emission of the
VCSEL are obtained

Ė± = − (γl + iωl)E∓ + k (1− iα) (D ± d− 1)E±
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ḋ = −γJd−
[(

|E+|
2 − |E−|

2
)

D −
(

|E+|
2 + |E−|

2
)

d
]

. (1)

Here E± represent the slowly-varying components of the clockwise and anti-clockwise electric fields; D is the
average insertion population of the two families of electrons and d indicates half the difference in the inversion
population. Different parameters are present in the model, describing the effect of anisotropies and dissipation
processes in the active media (and in the mirrors): γl and ωl are the absorptive and dispersive linear anisotropies;

∗All angular momenta are given in units of h̄



γ|| is the decay rate of the inversion population and γJ is the spin-flip rate measuring how often electrons
spontaneously move from one family to the other. Λ is the dimensionless pumping factor normalized at the
threshold, α is the linewidth enhancement factor and κ is the average lifetime of a photon in the cavity. The
dimensionless parameter Γ = γJ

γ||
measures the relative importance of the spin-flip and the relaxation. A small

value of Γ indicates that the electrons behave mainly as two separate families and the coupling between the two
polarization mode take place mainly through anisotropies. On the other hand, a large value of Γ indicates that
the electrons behave as a single reservoir for the two circular polarized modes and the two modes are strongly
coupled even with very small anisotropies. It is an experimental result that typical values of Γ for a standard
VCSEL exceed 100.
The stationary polarization modes of the VCSEL can be obtained from (1) introducing a trial-solution of the
form

E+ = ±E− = A exp [−iωt] (2)

D = D0 (3)

d = 0. (4)

The mode with E+ = ±E− corresponds to x̂-polarized light, while E+ = −±E− correspond to ŷ-polarized light.
Substituting (2-4) in (1), the following relations are obtained

A =

√

1

2

Λ ∓ γl

κ

1± γl

κ

(5)

D0 = 1±
γl
κ

(6)

ω = ±ωl ± αγl (7)

It is clear that the two linearly polarized modes have slightly different frequencies; therefore, intensities and
gains differ slightly in the two modes. In particular, it is possible that for small pumping currents, only one of
the modes is steadily lasing. In what follows, we consider the pumping to be big enough to allow lasing in both
modes.

Outside the linear regime, the set of equations (1) is very complicated and it requires further simplification in
order to achieve an understanding of the polarization dynamics. It is a well known result that the polarization of
the radiation can be described as a flow on the unitary sphere in the space of the normalized Stokes component
si where
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(8)

Here I represents the intensity of the radiation, and the two angles χ and φ represent the ellipticity and the
direction of the polarization respectively. The two linearly polarized stable solutions of (1) corresponds to
s1 = ±1, s2 = s3 = 0. The differential equations satisfied by the angles χ and φ can be obtained by substitution
of (8) into the rate equations (1). As a result, the following system is obtained

χ̇ = ωl sin(2φ)− 2κγd sin(2χ) cos(2χ) + γl sin(2χ) cos(2φ). (9)

φ̇ = −ωl

sin(2χ)

cos(2χ)
cos(2φ)− γl

sin(2φ)

cos(2χ)
+ 2ακd. (10)

İ = −2γlI cos(2χ) cos(2φ) + 2κ (D − 1) I + 2κdI sin(2χ) (11)

Ḋ = −γ||D + γ|| (Λ + 1)− γ|| [ID − I sin(2χ)d] (12)

ḋ = −γJd− [I sin(2χ)D − Id] (13)
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Figure 1. (Left) The topology of the space of the angles. The sides of the square have to be identified according to the
arrows. In particular, φ = 0 and φ = π are identified as a cylinder, whilst χ = −π/4 and χ = π/4 are identified as
a Moebius Stripe. The result of this is a Klein Bottle. The states with χ = 0 are the linearly polarized states. The
polarization angle φ defines the the direction of the linear polarization.The circles indicate the stationary solution of
Eq.(15) and (16). (Right) The “Escape Energy” for the escape problem as a function of the parameter θ. The global
minimum of the action corresponds to the MPTP.

The dynamics of the polarization couples with the dynamics of the intensity and the internal dynamics of
the medium through the average difference in the inversion population. Introducing some approximations, the
dynamics of the angles can be fully decoupled from the other dynamical variables. In the limit of large values of
Γ, the dynamics of d can be adiabaticaally eliminated to give

d = −
I

Γ
s3 = −

I

Γ
sin(2χ). (14)

Moreover, for small values of pumping and dichroism, the intensity of the radiation can be considered to be
constant. Introducing these approximations, the final result for the dynamics of the angles χ and φ is obtained:

χ̇ = fχ (χ, φ) = ωl sin(2φ)−
2κΛ

Γ
sin(2χ) cos(2χ) + γl sin(2χ) cos(2φ); (15)

φ̇ = fφ (χ, φ) = −ωl

sin(2χ)

cos(2χ)
cos(2φ) + γl

sin(2φ)

cos(2χ)
−

2ακΛ

Γ
sin(2χ). (16)

where the effects of radiation intensity are included in the so-called non-linear anisotropies: γn = 2κΛ
Γ

and
ωn = αγn. They are the nonlinear absorptive anisotrpy and nonlinear dispersive anisotropy. It is clear that they
depend explicitly on the pumping parameter Λ i.e. on the number of photons present in the active medium.
Eq. (15) and (16) completely describe the dynamics of the polarization of the VCSEL emission. Their solution
is a smooth flow on the angle space −π/4 < χ < π/4 and 0 < φ < π which is diffeomorph to a Klein Bottle as
shown in figure 1. The flows admit two stationary points χ = 0;φ = π/2 and χ = 0;φ = 0 ≡ π corresponding
to ŷ-polarized and x̂-polarized linear modes. The stability of the two modes is obtained by linearisation of
Eq.(15) and (16) about the stable points.6 The stability of the modes depends on the interplay of linear and
nonlinear anisotropies; for a device with small enough dicrohism, both modes are stable even for small values of
the pumping parameter Λ. In this bistability regime, the basins of attractions of the two modes are separated
by a saddle cycle. The shape of the cycle is determined by the interplay of all the anisotropies in the system.

2.2 The fluctuations: solution of the boundary value problem

The system of equations (15) and (16) is purely deterministic. In order to describe a real device satisfactorily,
the spontaneous emission has to be taken into account. In this talk, we describe the spontaneous emission of



photons in the laser cavity phenomenologically: two stochastic terms ξχ and ξφ are introduced in Eq.(15) and
(16). The full system describing the polarization dynamics including noise is

χ̇ = fχ(χ, φ) + ξχ(t) (17)

φ̇ = fφ(χ, φ) + ξφ(t) (18)

〈ξχ(t)〉 = 〈ξφ(t)〉 = 0 ∀t (19)

〈ξχ(t)ξχ(s)〉 = 〈ξφ(t)ξφ(s)〉 = ǫδ(t− s) 〈ξφ(t)ξχ(s)〉 = 0 ∀t, s (20)

here fχ(χ, φ) and fφ(χ, φ) are the drift field introduced in Eq.(15) and (16); ξχ(t) and ξφ(t) are two uncorrelated
Gaussian processes with intensity ǫ describing the spontaneous emission in the system. Due to the presence of
the noise, the system has a certain non-zero probability of exploring regions of the angle-space (i.e. polarization
states) different than the stable ones. The probability distribution ρ(χ, φ, t) for (17) and (18) satisfies the
Fokker-Planck equation

∂ρ

∂t
= −

∂fχρ

∂χ
−

∂fφρ

∂φ
+

ǫ

2

(

∂2ρ

∂χ2
+

∂2ρ

∂χ2

)

(21)

In the limit of small noise intensity, (21) can be solved to different orders using the WKB approximation.17, 19, 21–23, 27–31

Introducing a trial-function of the form

ρ = Ze−
S
ǫ (22)

in (21), and considering the leading order ǫ−1, the following Hamilton-Jacobi equation for the potential S(χ, φ, t)
is obtained
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where H (pχ, pφ, χ, φ) =
p2
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φ

2
+ pχfχ + pφfφ and p = ∇f . The Hamilton equations associated with (23) are

χ̇ =
∂H

∂pχ
= fχ + pχ (24)
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= fφ + pφ (25)
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ṗφ = −
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and the potential S evolves along the trajectories according to

Ṡ =
1

2

(

p2χ + p2φ
)

(28)

According to (22), in the limit of ǫ → 0, the probability of observing a polarization transition can be expressed
by calculation of the potential S along a trajectory solution of (24-27) that leave the initial stable state and
reaches the saddle cycle. It is well known27, 32–34 that there are many solutions of (24-27) that emanate from
the initial state and reach the limit cycle, each of them with a different value of S. According to (22), when
ǫ → 0, only the trajectory with the least S contributes to the transition; all other trajectories are exponentially
disadvantaged. The trajectory that minimizes S is the MPTP.
It is well known22, 35 that the MPTP is an heteroclinic trajectory leaving the initial steady polarization state
for t → −∞ and reaching the saddle cycle asymptotically for t → ∞. From the topological point of view, the
trajectories emanating from the initial state t → −∞ form its unstable Lagrangian manifold Mu; in the same
way, the trajectories converging to the saddle cycle for t → ∞ form its stable manifold M s. The MPTP lies on
the intersections of the two manifolds.

The key step to find the MPTP among all other trajectories emanating from the initial state is a proper
characterization of the Lagrangian manifold in the vicinity of the initial state. In a small neighborhood of the



initial state, the unstable manifold is a plane in the phase space. The equations describing the shape of Mu can
be obtained by linearisation of the Hamiltonian equations (24-27) around the stationary point

d
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where δχ and δφ represent the displacements from the stationary states and the partial derivatives are evaluated
in the steady states. The unstable manifold is spanned by the two expanding eigenvalues ~vu1 and ~vu2 of the
system. A generic point on Mu can be written as ~v = α1~v

u
1 + α2~v

u
2 where α1,2 are complex coefficients.

Separating the angles and the momenta, the following relations are obtained
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Using standard linear algebra techniques, the linear relation between x and p is obtained in the form p = Mx
where the matrix M is defined as

M =

(

v1pχ
v2pχ

v1pφ
v2pφ

)(

v1χ v2χ
v1φ v2φ

)−1

. (30)

Because the relationship between coordinates and momenta is known (the matrix M in Eq.(30)), it is enough to
provide a characterization of the trajectories in the coordinate space.
For a two-dimensional continuous system such as (15-16), the trajectories emanating from the initial stable point
are a one-parameter family on the phase space. A possible choice for the parameterisation in the vicinity of a
stable point can be the following: consider a small circle of given radius r around the stable point (r should be
small enough for the application of Eq.(30)). The initial conditions for the trajectories are taken on this circle
and the corresponding initial momenta are calculated using (30). In this way the unstable manifold is completely
parameterised. From the topological point of view, the parameters space is diffeomorph to a circle S1.
The activation energy can now be calculated as a function of the initial conditions (i. e. of the parameter θ)
S : S1 −→ R.
According to the discussion above, the minimum of the function S in the parameter space corresponds to the
initial conditions defining the MPTP.

3. POLARIZATION TRANSITIONS

The activation energy as a function of the parameters can be plotted as an action plot, as in figure 1(right). The
main feature of the graph is the presence of many discontinuities corresponding to local minima. The presence
of degenerate minima are a consequence of the central symmetry in the set (24-27): for every possible value of
the noise intensity, the polarization transition occurs with the same probability along two centrally symmetrical
paths. The absolute minimum of the action corresponds to the MPTP.

In order to show the agreement of the theory, in figure 2 (left) the MPTP calculated using the minimisation
technique is plotted together with a numerical solution of (17-18). Close agreement between them is evident. It
should be noted that, in the vicinity of the saddle cycle, the numerical trajectory diverges from the theory due
to finite noise diffusion. This effect can be included in the theory expanding the Fokker-Planck equation (21) at
the next-to-the-leading order in order to include finite noise contributions.36

We now consider a typical VCSEL, and we vary the pumping current. According to the equations (15-16), this
induces a change in the nonlinear anisotropies, while the linear anisotropies are left unchanged. We consider a
standard device having birefringence ωl as its dominant anisotropy and we calculate the activation energy for
different values of γn (i.e. different values of the pumping rate Λ). The activation energy is plotted for different
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Figure 2. (Left) Comparison between theoretical MPTP and a realization of the transition calculated via numerical
simulation. The agreement between the two paths is excellent. The divergence of the experiment from the theory is due
to finite noise diffusion.(Right) The dependence of the activation energy on the nonlinear dichrohism. The maximum
of the activation energy corresponds to an exponentially stable polarization. The crosses are the results of numerical
simulations. For small values of γn there is an almost linear dependence of S on the pumping parameter.

values of γn in figure 2 (right). The main feature of the activation energy is its non-monotony: for small above
threshold values of γn, the stability of the mode increases with pumping; but for higher pumping rates, the
dependence inverts and the injection of more current into the system reduces the polarization stability.
The dashed line in figure 2 (right) represents the regime where the dynamics of the two fast-rotating Stokes
components s2 and s3 can be averaged out reducing the system to a double-well potential. The actual activation
energy is then smaller than that calculated using the simplified double-well model. From the physical point of
view, the behavior of the activation energy can be justified as follow. When the system is close to the threshold
and the nonlinear anisotropies can be neglected, an increase in the pumping current means an increase of the
photons in the lasing mode according to Eq.(5) To induce a polarization switch in this regime, a fluctuation
should suddenly damp the photons in one mode and at the same time produce photons in the other. It is clear
that such an event is disadvantaged by the presence of many photons in the lasing mode. On the other hand,
when the pumping current is big enough, it starts affecting the stability of the lasing mode. In this regime
an increase of the pumping reduce the stability of the modes and the fluctuation are strongly amplified. As a
consequence, the activation energy is reduced by an increase in the pumping because the stability of the mode
decreases. This particular shape of the activation energy suggests that the driving current can be used to control
the stability of the polarization modes and eventually favorite the stability of one of the modes on the others.

4. SUMMARY AND CONCLUSIONS

In this talk, we investigated the full nonlinear polarization dynamics of a VCSEL emitting in the fundamental
transverse mode. The system of Maxwell-Bloch equations for the laser emission is reduced to a two-dimensional
system describing the polarization state of the device. The presence of spontaneous emission in the system has
been treated introducing stochastic terms into the polarization dynamics. In the limit of small noise intensity,
the stochastic dynamics of the polarization has been mapped to a four-dimensional Hamiltonian problem, and
the calculation of the activation energy for a polarization switch has been obtained by minimisation of the
cost function along Hamiltonian trajectories. In order to perform the minimisation properly, the unstable
Lagrangian manifold of the steady polarization modes has been calculated using linear expansion, and the family
of Hamiltonian trajectories has been conveniently parameterised with one parameter θ. Taking the minimum of
the energy as a function of θ, the most probable transition path has been located. It is in a good agreement with
the results of simulations for different values of the system’s parameters.
The activation energy dependence on the nonlinear dichroism (i.e. pumping parameter) has been shown to
be nonmonotonic. In particular, the presence of a maximum in the activation energy suggests that the linear
polarized modes can be made exponentially more stable choosing a proper value of the external pumping.



REFERENCES

1. J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, “Lasing characteristic
of gaas microresonators,” Appl. Phys. Lett. 54, pp. 1400–1402, 1989.

2. C. J. Chang-Hasnain, J. P. Harbison, L. T. Florez, and N. G. Stoffel, “Polarization characteristics of
quantum-well vertical cavity surface emitting lasers,” Electron. Lett. 27, pp. 163–165, 1991.

3. K. D. Choquette, R. S. Jr., K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of
vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 1, pp. 661–666, 1995.

4. M. Travagnin, M. van Exter, A. K. J. van Doorn, and J. P. Woerdman, “Role of optical anisotropies in the
polarization properties of surface-emitting semiconductor lasers,” Phys. Rev. A 54, pp. 1647–1660, 1996.

5. J. Martin-Regalado, F. Prati, M. S. Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity
surface-emitting lasers,” IEEE J. Quantum Electron. 33, pp. 765–783, 1997.

6. M. P. van Exter, R. F. M. Hendriks, and J. P. Woerdman, “Physical insight into the polarization dynamics
of semiconductor vertical-cavity lasers,” Phys. Rev. A 57, pp. 2080–2090, 1998.

7. A. K. J. van Doorn, M. van Exter, and J. P. Woerdman, “Tailoring the birefringence in a vertical-cavity
semiconductor laser,” Appl. Phys. Lett. 69, pp. 3635–3637, 1996.

8. A. K. J. van Doorn, M. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation
of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, pp. 1041–1043, 1996.

9. S. Banyopadhyay, Y. Hong, P. Spencer, and K. A. Shore, “VCSEL polarization control by optical injection,”
J. Lighwave Technol. 21, 2003.

10. S. Sivaprakasam, S. Banyopadhyay, Y. Hong, P. Spencer, and K. A. Shore, “Polarization-resolved relative
intensity noise measurements of a vertical-cavity surface-emitting laser subject to strong optical feedback,”
IEEE Photon. Techno. Lett. , in press.

11. M. S. Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor
lasers,” Phys. Rev. A 52, pp. 1728–1739, 1995.

12. M. B. Willemsen, M. P. van Exter, and J. Woerdman, “Anatomy of a polarization switch of a vertical-cavity
semiconductor laser,” Phys. Rev. Lett 84, pp. 4337–4340, 2000.

13. M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, “Correlated fluctuations in the polarization modes
of a vertical cavity semiconductor laser,” Phys. Rev. A 60, pp. 4105–4113, 1999.

14. M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semi-
conductor lasers,” Phys. Rev. A 58, pp. 4191–4205, 1998.

15. H. F. Hofmann and O. Hess, “Polarization fluctuations in vertical-cavity surface-emitting lasers: a key to
the mechanism behind polarization stability,” Quantm Semiclass. Opt. 10, pp. 87–96, 1998.

16. V. I. Mel’nikov, “The kramers problem: fifty years of development,” Phys. Rep. 209, pp. 1–71, 1991.

17. D. Ludwig, “Persistence of dynamical systems under random perturbations,” SIAM Rev. 17, pp. 605–640,
1975.

18. M. Freidlin and A. D. Wentzel, Random Perturbations in Dynamical Systems, Springer, New York, 1984.

19. R. S. Maier and D. L. Stein, “Effect of focusing and caustics on exit phenomena in systems lacking detailed
balance,” Phys. Rev. Lett. 71, pp. 1783–1786, 1993.

20. R. S. Maier and D. L. Stein, “How an anomalous cusp bifurcates in a weak-noise system,” Phys. Rev. Lett.

85, pp. 1358–1361, 2000.

21. M. I. Dykman, M. M. Millonas, and V. N. Smelyanskiy, “Observable and hidden features of large fluctuations
in nonequilibrium systems,” Phys. Lett. A 195, pp. 53–58, 1994.

22. V. N. Smelyanskiy and M. I. Dykman, “Topological features of large fluctuations to the interior of a limit
cycle,” Phys. Rev. E 55, p. 2516, 1997.

23. R. S. Maier and D. L. Stein, “A scaling theory of bifurcations in the symmetrical weak-noise escape problem,”
J. Stat. Phys. 83, pp. 291–357, 1996.

24. J. Lehmann, P. Reimann, and P. Hanggi, “Surmounting oscillating barriers: path-integral approach for weak
noise,” Phys. Rev. E 62, pp. 1639–1642, 2000.

25. R. Ferreira and G. Bastard, ““Spin”-flip scattering of holes in semiconductor quantum wells,” Phys. Rev B

43, pp. 9687–9691, 1991.



26. M. Z. Maialle, E. A. de Andreada e Silva, J. Shah, and L. J. Sham, “Exciton spin dynamics in quantum
wells,” Phys. Rev. B 47, pp. 15776–15788, 1993.

27. M. V. Day, “Recent progress on the small parameter exit problem,” Stochastics 20, pp. 121–150, 1987.

28. A. J. McKane, “Noise-induced escape rate over a potential barrier: Results for a general noise,” Phys. Rev.

A 40(7), pp. 4050–4053, 1989.

29. M. I. Dykman, “Large fluctuations and fluctuational transitions in systems driven by colored gaussian
noise–a high frequency noise,” Phys. Rev. A 42, pp. 2020–2029, 1990.

30. S. J. B. Einchcomb and A. J. McKane, “Escape rates in bistable systems induced by quasi-monochromatic
noise,” Phys. Rev. E 49, pp. 259–266, 1994.

31. R. S. Maier and D. L. Stein, “Oscillatory behaviour of the rate of escape through an unstable limit-cycle,”
Phys. Rev. Lett. 77, pp. 4860–4863, 1996.

32. V. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, 1978.

33. R. Graham and T. Tel, “Existence of a potential for dissipative dynamical systems,” Phys. Rev. Lett. 52,
pp. 9–12, 1984.

34. H. R. Jauslin, “Nondifferentiable potentials for nonequilibriumsteady states,” Physica A 144, pp. 179–191,
1987.

35. R. S. Maier and D. L. Stein, “Limiting exit location distributions in the stochastic exit problem,” SIAM J.

Appl. Math. 57, pp. 752–790, 1997.

36. A. Bandrivskyy, S. Beri, and D. G. Luchinsky, “Noise-induced shift of singularities in the pattern of optimal
paths,” Phys. Lett. A 314, pp. 386–391, 2003.




