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Abstract-We study the inipaet of cheating nodes in 
application-level niulticast overlay trees. We focus on selfish 
nodes acting independently. cheating ahout their distance mea- 
surements during the control phase huilding or maintaining the 
tree. More precisely, we study, through simulations, the impact 
of simple cheating strategies in four protocols. representatives of 
different application-level multicast protoml “faniilies”: HBM (a 
protoeol hased on a centralized approach), TBCP (a distributed, 
tree fin1 protncnl), NICE (a distrihuted. tree first protocol hased 
on clustering) and NARADA (a mesh first protocol). We evaluate 
the impact of cheats on the performance of the overlay trees as 
perceived hy their nodes and the underlying network. 

I .  INTRODUCTION 
Application-level multicast [7]. a technique whereby hosts 

or end-nodes are organized into an overlay distribution tree 
without requiring any specific support from the network (i.e. 
hased on normal unicast routing and forwarding). has been 
proposed mainly as a way to palliate to the lack of deployment 
of native IP multicast in production networks [GI. Application- 
level multicast represents a trade-off between the efficiency of 
1P multicast and the ease o f  deployment of group cornmunica- 
tions as a single source replicating the data sequentially, using 
unicast. to a group of receivers. 

Although there is no question about the superiority of IP 
multicast for data distribution to large groups. application- 
level multicast may still prove a cheaper solution for com- 
munications within small groups (groups whose membership 
is in the order of tens of receivers). Also. some systems and 
applications need to establish relations and communications 
requiring a semantics richer than that provided by IP. Levels 
of control of the communication patterns and reliability of 
the communication structure may be needed, that cannot be 
provided by IP multicast. For example. because the group 
members are the nodes of the overlay application-level multi- 
cast tree. these nodes can interpret and modify the distributed 
content “en route”. something not possible in native multicast 
where application nodes are always leaf nodes of the tree. 

For these reasons. we believe that application-level multicast 
is complementary to IP multicast and will remain a useful 
group communication tool if and when IP multicast is de- 
ployed ubiquitously. 

Application-level multicast is based on the collaboration of 
g o u p  members with each other. Indeed. as group members 
(i.e. receivers) are the nodes of the overlay tree. they rely on 

each other to distribute the data. However, there is an intrinsic 
imbalance of roles in an overlay tree: non-leaf nodes must 
take part in the burden of replicating data along the tree. while 
nodes which are. on the uee, closer to the source (the source 
is often the root of the tree) observe lower propagation delays. 
Also, the closer to the source a node is. the lower the loss rate 
observed (since in normal data transfer from root to leafnodes. 
losses “accumulate” as data travels down the tree branches). 
The collaboration is also extended to the control of the overlay 
tree which is often built based on distance measurements 
taken by the receivers amongst themselves. Whether a full 
measurement matrix is required prior to the construction of the 
tree. or the matrix can be populated overtime while improving 
the tree. or partial group and measurement knowledge is 
enough. is entirely dependent on the protocol used. As a rule 
of thumb. the better the knowledge of the group membership 
and distances between members. the better the performance of 
the tree can be tuned. but the least scalable the corresponding 
application-level multicast protocol is. 

The important point here is that lhere is an opportunity for 
receivers to try and improve their position on the overlay 
uee by “manipulating” distance measurements. in order to 
be positioned closer to the data source while limiting, to a 
minimum. their replication burden. In the rest of the paper. we 
will refer to such receivers as “cheats”. and the consequences 
of their actions is the focus of this paper. 

If we consider the very popular round-trip time ( R l T )  dis- 
tance measurements used in many application-level multicast 
protocols. a cheat could delay a probe received from another 
receiver to artificially increase their measured distance in order 
to try and reduce its replication burden (since the further 
away another receiver is. the more likely that receiver will be 
connected to another (closer) node). For scalability reasons. 
most of the existing application-level multicast protocols re- 
quire that each node measures its distance to other nudes in 
the overlay tree and reports these distance measurements to 
other nodes and/or uses these for decision making. A cheat 
can therefore lie outright ahout its distance messurements. in 
order to try and improve its position in the tree. 

It is important to note that the cheats considered in this 
paper do not attempt to disrupt the flow of data along the 
overlay tree or even to break the protocol used to build the 
tree. they simply try and improve their position in the tree. 
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In other words. we are not interested in disruptive behaviour 
such as denial of service: once in the tree. although the cheats 
can keep lying about measurements. they otherwise follow all 
other protocol rules. 

In some controlled environments. cheating is almost im- 
possible. For instance. this is the case when application-level 
multicast is used to provide a group communication service 
in an IPSec virtual private network (VPN) environment [l]. 
Here the gateways of the various sites connected through the 
VPN are fully secured and remotely controlled by the VPN 
operator. However, such a situation belongs to a very specific 
application domain. 

Nevertheless. although the problems of cheats in 
application-level structures (and overlay trees in particular) 
has often been mentioned, we are not aware of any quantitative 
study of their effects on application-level multicast protocols. 
as well as on the underlying network. We believe that 
understanding such effects is critical i f  the benefits offered 
by application-level multicast are to be reaped in application 
domains where the receivers do not pertain to the same, 
tightly controlled. administrative domain (e.g. corporation), 
as is the case in gaming. video distributioniwehcasting. etc. 

Therefore. in this paper. we will study the effects of simple 
cheating strategies on four application-level multicast proto- 
cols. These cheating strategies will he simple. but targeted to 
the respective protocols: the cheating will he slightly different 
depending 1x7 the protocol considered. For this reason. it  is 
important to note that our goal is not to compare the relative 
ability of the protocols considered to deal with cheats. but 
rather we seek to extract possible common consequences 
and trends created by the presence of cheats in application- 
level multicast overlay trees. Also. the protocols studied in 
this paper were chosen as being representatives o l  different 
application-level multicat protocol “hmilies”. and because 
simulators were readily available for these. 

Furthermore. although there may exist more sophisticated 
cheating strategies. in this paper we deliberately look at simple 
ones. where selfish cheats act independently of each other and 
make no attempt tn evade possible detection. 

In section 11. we brieHy review the different families of 
application-level multicast protocols. In section 111. we de- 
scribe in more details the workings of the protocols chosen 
for this study. and we describe the simple cheating strategies 
used. Section IV presents our simulation study. while section V 
concludes with a summay of our observations and some 
recommendations. 

11. APPLICATIOS-LEVEL MULTICAST 
I11 this section. we give a brief overview of  application-level 

multicast protocol families. 

A. Cmtraliz?rl .4 lgui-irhrris 
The ALMI protocol [IO] and HBM [I?]  are examples of a 

centralized approach to application-level multicast. They have 
a session controller node which gathers distance information 
from all of the group nodes and calculates the overlay tree 
which i t  uses to inform each node of its neighbours. 

B. Di.strihirted Algorittrms 

f )  Mex/i-Fint A[gorif/ inu: Narada [4] is an example of 
a mesh-first application-level multicast protocol where nodes 
arrange themselves into a well connected mesh on top of which 
a routing protocol similar to DVMRP is run. to build per- 
source overlay trees. The quality of the mesh. and therefore the 
overlay trees are improved incrementally over time by nodes 
adding and dropping mesh l i n b  based on a decentralised 
utility function. SCATTERCAST [ 3 ]  is another protocol taking 
the same approach. 

2 )  i”-wFirsr: The NICE [2] protocol uses hierarchical 
clustering techniques to build overlay trees whereby group 
members arrange themselves into clusters with nodes closest 
to themselves. 

TBCP [91 and HMTP [IS] build an overlay tree by having 
receiver nodes recursively choose better parents to connect 
to, in a distributed fashion. These protocols are said to use 
a “limited scope approach”. because. at each step of the 
recursion. a node only measures its distance to the children 
of its current parent. 

3) Courtlinate S\.steriis: The protocols presented in this 
section use the notion of coordinates in various virtual ge- 
ometrical spaces. 

In the Delaunay triangulation method [SI. each receiver 
is assigned coordinates i n  a Euclidian plane and the tree 
is computed via a distributed application of the geometric 
process known as Delaunay triangulation. 

Application-level multicast based nn CAN [ l  I]  splits a 
mutli-dimensional virtual torus into adjacent regions and uses 
a snrt of broadcast method to Hood a data packet to all the 
regions in a controlled way. 

Finally. SCRIBE [I31 exploits the properties of a peer-to- 
peer network system to build application-level multi 
by merging peer-to-peer “search” paths to form a tree. 

111. THE PROTOCOLS IN OUR STtiDY 

In this paper. we chose to concenuate on four protocols: 
HBM as a representative of the centralized approach: TBCP 
as a representative of distributed. tree first. limited scope 
approach: NICE as presentative of the method based on 
clustering technique d NARADA as a representative of the 
mesh-lirst approach. 

A. HBM 

1 )  Principles: In HBM. the consuuction and maintenance 
of the overlay tree is under the control of a single host. 
the render-vous point (RP) or controller. Periodically and 
asynchronously. each group member measures its distance 
to all the others (or a subset of them) and reports these 
to the UP which thus knows the identity of each group 
member and the communication costs between them. The UP 
is then responsible for the overlay topology calculation and its 
dissemination among the group members. 

Although HBM is a general protocol that does not restrict 
the properties of its overlay topology. the topology used in 
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this study is a degree-bounded shared tree of minimum cost. 
based on RTT distance metrics. 

2 )  Simple Cheating ibfethod: An HBM cheat always reports 
a distance of zero to the source. and adds I O  seconds to the 
KIT distances it measured to the rest of the group. An HBM 
cheat also delays by I O  seconds any measurement probes it 
receives from any other group member. This probe delaying 
action is mandatory since otherwise the RP could easily 
detect cheats hy comparing the A B and B - A RTT 
mensurements. I f  they differ significantly. the RP could easily 
conclude that one of A and B has a suspect behaviour. Then. 
after cross-checking with other metrics evaluations where A 
and B are implicated. the RP could easily determine which 
node is cheating. 

A cheat is thus aiming to become one of the source’s 
children. while having no children at all. 

R. TBCP 
1) Principles: In TBCP. each node chooses individually 

the maximum iiumber of children (i.e. the fanout) that i t  will 
accept. This fanout is strictly enforced and must have a value 
of at least one. TBCP has been designed to operate with 
minimum knowledge of the group memhership and. associated 
measurement matrix. It is a recursive algorithm where. starting 
at the tree root (which is considered to be the source) as a 
potential parent. a newcomer measures the distance between 
itself and the potential parcnt. along with the distance between 
itself and all ~i its poirntial siblitigs (i.e. the potential parent’s 
current children). These distaiices are reported to the potential 
parent who. thanks to-the rncasurcrnciits prcviously reported 
hy.its existing children. has coinplcic knowledge nf the mea- 
stuement matrix for the “local” full mcsh comprising itself. its 
children and the newcomer. The poientiul parcm then considers 
all the local contigurations for the acceptance of the newcomer 
in the tree (i.e. con’siders the newcomer as a child i f  there 
is room. considers sending the newcomer as a child of one 
of its current children. considers keeping the newcomer as a 
child while sending one of its existing children as a child 
of the newcomer. and considers keeping the newcomer as 
child while sending one of its existing children as a child 
of one of its existing children). evaluating the “goodness” 
of each local configuration with a score function. The best 
local configuration (according to the score function) is chosen 
and the appropriate node directed to its “next” potential 
parcnt where the algorithm starts again. It is important to 
note that when choosing amongst several equivalent local 
configurations. TBCP always favours those resulting in the 
newcomer “moving”. to provide stability for already joined 
receivers. 

TBCP has a maintenance method where nodes periodically 
%-join” one of its known ancestors chosen at random. but 
for the purpose of this study. all nodes will always “re-join” 
at the root, as we expect this to be the behaviour chosen by a 
cheat who is trying to get as close as possible to the root. 

2) Sbnple Cllearing Mrfliod; A TBCP cheat will always 
report a distance of zero to its potential parent. As all receivers 

start joining the tree at the root. this provides the cheats with 
an opportunity to try and stay as close as possible to the root. 

Because cheats want to minimize the work they do for the 
rest of the group. a cheat will choose the minimum allowed 
fanout value (i.e. I) .  However, to try and avoid having a child, 
cheats also lie about their distance to other receivers: a cheat 
always delays a received probe by a tixed amount of time (10 
seconds) and always adds a fixed amount of time ( I O  seconds) 
to the distance it reports from other receivers. 

C. NICE 

1 )  Principlrs: In NICE. nodes arrange themselves into a 
hierarchy of clusters whereby clusters belong to layers and 
nodes belonging to a cluster are close to each other in relation 
to some given cost metric[2]. At the highest layer of the 
hierarchy is a single cluster whose cluster members are each 
the leader of a single cluster in each of the subsequent lower 
layers. All nodes belong to a cluster in the lowest layer of the 
hierarchy but cluster leaders are also members of a cluster in 
their next-higher layer. 

A node joins the group by first contacting a Rendez-vous 
Point (RP) to discover members belonging to the highest-layer 
cluster. The joining node then probes each of these cluster 
members to discover the closest to itself with whom it  makes 
a request to join. The closest. highest-layer cluster memher 
replies to- the joining node with a list of cluster members in 
the next-lower layer to who it is the cluster leader. The joining 
node then probes each of the cluster members in the next- 
lower layer and the algorithm continues recursively until the 
new node joins the cluster closest to itself in the Iowcst-layer 
of the hierarchy. 

Members of a cluster periodically exchange heo~-rDeor mes- 
sages with each other containing an estimate of the distance 
from themselves to each of the other cluster members. When- 
ever membership of a cluster changes (i.e. if a new node joins 
or leaves) the cluster leader. using this cluster member distance 
information. checks if it is still the center of the cluster and 
thus the most appropriate leader. transferring leadership to 
another cluster member if necessary. 

The cluster leader periodically checks the size of its cluster 
and splits the cluster if its membership exceeds an upper 
bound. Likewise, if the cluster size falls below a lower bound 
the leader merges its cluster with the closest cluster belonging 
to the next-higher layer. 

2 )  Simple Clleafing Method: A NICE cheat sets out to join 
a cluster in the highest layer possible in order to minimise its 
distance to the data source. Note that. although NICE supports 
any-source. application-level multicast routing through a bi- 
directional overlay tree. in this study we consider only the 
optimal case o f a  single source at the root. For a cheat to join a 
cluster in the next-higher layer it must become the leader of its 
highest-layer cluster and so tries to achieve leadership through 
quoting. in its heartbeat messages. only a fraction of the actual 
distances to the other cluster members. On recalculating which 
node is closest to all of the other nodes the current cluster 
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leader will likely transfer its leadership to the cheat which. in 
effect. geu: pushed up to the next-higher layer. 

Once a cheat has gained leadership of a cluster it will make 
sure never to  transfer leadership from itself to any other cluster 
members, by reporting a distance of zero to all other cluster 
members in its regular heartheat messages. 

In an attempt to preserve its resources, a cheat will never 
merge its clusters in the lower layers if their size falls below 
a lower bound and will also delay cluster join requests from 
other nodes by I O  seconds to reduce the likelihood of these 
joining the clusters. Note that. whilst a cheat will try to avoid 
having large clusters in all of the layers it occupies. the cheat 
will be required to forward d S a  to members of its clusters in 
each of the lower layers which could potentially result in a 
high node ianout inr the cheat as described in [2]'. 

D. NARADA 
I )  Principles: Narada is a mesh-first. application-level mul- 

ticast protocol whereby nodes organise themselves into a well 
connected mesh through the addition of links to other group 
members. termed their 1nesh-ne~phhoitrs[4]. Nodes exchange 
routing tables with their rseslt-nrighboirrs allowing per-source 
data delivery trees to be constructed on the mesh using well- 
known reverse-shortest-path routing techniques as in DVMRP 
[SI. Narada therefore supports multi-source. application-level 
multicast but group size is limited by the need ior nodes to 
have complete knowledge of all other group members. 

On joining the mesh. a node selects. at random. a hand- 
%I of nodes to add as niesh-neighboitrs from il subset o i  
currently active mesh members obtained using some out-of- 
band bootstrap mechanism. As a result of adding these random 
mesh links. the recently,joined node's position in the mesh is 
likely to he suh-optimal in rclation to the given cost metric. 
However. once connected a node is able to improve its position 
in the mesh by periodically pr'obing random members. learned 
of through gossipping membership update messages with its 
rriesh-neiphborrrs. When a node is probed. i t  returns a copy of 
its routing table to the probing node who then calculates the 
utility of adding a mesh link to the probed node. A mesh link 
is deemed to he good if it improves the cost of a number of 
paths in the probing node's routing table such that the number 
of improved paths is greater than some threshold parameter. 

In order for nodes to keep adding better mesh links. it is 
necessary for them to 'drop' their least useful links. where use- 
hlness when considering to drop a mesh link is approximated 
by how many other members can he reached on shortest-paths 
through the mesh link. 

Consequently. the overall mesh quality imprnves over time 
with respect to the given cost metric. resulting in more efficient 
data routing paths on the per-source overbay trees. 

2 )  Sirrrple Clieuting Merhofl: On discovering the identity 
of a data source in the mesh. through either receiving a data 
packet or through out-of-band mechanisms. a Narada cheat 

'Note that. in this study we do not consider thz NICE prolocot exlention 
whcrchy cluslsr lender's delqate somz of lhcir data forwarding rzsponrihility 
to their highest~layzr clusldr members. 

will set out to add the source as a mesli-neiphboirr and so 
receive dara directly from the source. 

However. to reduce the likelihood o f a  cheat being dropped 
as a mesh-neiphhorrr to the source when the source eventually 
discovers that i t  is not very useful. a cheat makes sure to 
establish at least one mesh link to another node through which. 
by lying to the source about the cost of shortest-paths in 
routing update messages. it misleads the source to believe 
that i t  can deliver data to all of the other group members 
at a fraction of the actual costs (this is achieved by the cheat 
reporting route costs to other nodes that are a small fraction 
of their actual values). Once attached to the source. a cheat 
is likely to be dropped by its other rriesh-neighboiirs and so 
in the same way. as with the source. misleads them as to its 
benefit for reaching other members of the group. 

Narada is susceptible to partitioning when the degree of 
mesh nodes is small. so in order not to break the protocol 
whilst preserving resources, a cheat maintains three mesh links 
and no more (by setting its maximum out-degree - fanout - 
to the appropriate value). 

IV. EFFECTS OF CHEATING I N  APPLICATION-LEVEL 
MULTICAST 

A.  Peiforrrinncr hidiccrtors 
Several indicators are widely used to evaluate the per- 

formance of application-level multicast protocols. Two such 
classical performance indicators are the link sri-ess and the 
.streri.li. 

The link stress (or stress. in short) is a measure of the 
network efficiency of the application-level multicast protocols 
and is defined as the number of redundant copies of a data 
packet carried on a network link. The maximum stress is 
therefore the maximum number of duplicates seen by any 
single network link. while the average suess is the sum of 
duplicates divided by the total number of network links making 
up the branches of the tree. A ma.ior goal of all applicalion- 
level multicast protocols is. of course, to keep the value 
of these stress indicators as small as possible. since higher 
network suess levels (especially maximum stress) indicate 
hipher risks of network congestion. 

The stretch. or relative delay penalty (RDP). is a measure 
of the penalty paid by a receiver for receiving data on an 
application-level wee rather than directly from the source. 
It is defined as the ratio 'TDjLiD. where TD is the tree 
delay. that is the latency from the source to the receiver 
observed along the tree; and UD is the unicast delay, that 
is the networked delay resulting from direct communication 
from the source to the receiver. The average stretch (over 
all the receivers) and maximum stretch (i.e. worse penalty) 
axe therefore good indicator of the tree efficiency of the 
application-level multicast protocols. 

The above mentioned performance indicators are used to 
characterize the intrinsic performace of application-level mul- 
ticast protocols. However. in this paper. our focus is not on 
benchmarking the performance of the protocols, but rather 
to study the impact of cheats on their performance. In our 
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study. we therciore use the following performance indicators 
which are the above mentioned metrics normalized to the 
performance of the protocol without cheat. used as a reference: 

stress-ratio = stress/stressrer. where st,ressrer is the 
corresponding stress observed when a11 receivers behave 
in an honest way. 
We will be interested in the maximum stress ratio as a 

. measurement of the impact of cheats on the underlying 
physical network. Indeed. maximum stress represents the 
highest load created by an application-level overhy tree 
on any network link. and thus the maximum stress ratio 
gives a good idea about the way risks of congestion 
evolve in the presence of cheats. Note that a stress ratio 
smaller (resp. greater) than 1 represents an improvement 
(resp. deterioration) compared with the case without any 
cheat. . s t re tchra t io  =.stret,cti/stretcti,,r, where 'stretch,,f is 
the stretch of a receiver observed when-all receivers 
behave in an honest way. Note that since the unicast delay 
is dictated by the physical topology and routing in the un- 
derlying network. i t  is independent of whether a receiver 
cheats or not, and we therefore have s t re tchrat io  = 
(TD/UD)/(TD,,r/IJD,,r) = TD/TD,,r. since UD = 

To have a hetter view of the inhence  of cheating in 
application-level multicast: we will segregate the re- 
ceivers in a group of cheats and a group of honest 
receivers. and measure average. minimum and maximum 

-stretch ratios in each group. This will allow us to not only 
study the impact of cheats on the performance observed 
by honest nodes. but also study the effects independent, 
selfish cheats have on each others. Note that as the overall 
goal is always to try and minimize stretch. a stretch ratio 
smaller (resp. greater) than I represents an improvement 
(resp. a deterioration). with a minimum ratio therefore 
representing the best improvement and a maximum ratio 
representing the worst deterioration. 

'JDref. 

B. Siinirlation Setup 
We.have studied the effects of cheats in application-level 

multicast on an Internet topology of 600 routers generated 
by GT-ITM [14]. We have tested 25 groups of 20 receivers 
and 25 groups of 100 receivers. Each group was tried with 
respectively 5%. 10%. 20% 30%. 40%. 50%. 75% and 100% 
of cheating receivers. It is worth noting that all the protocols 
were studied with the same groups and the same cheats within 
these groups. while nodes hosting application-level multicast 
agents were always connected to edge routers ofthe topology'. 
to achieve a realistic set-up. Trees of maximum fanout of 2, 
3. 4 and 5 were built for each of these groups3. 

'For ssch trial. the total number of simulated nodes was therefore either 
621 or 701. comprising the rmters. the source and ths rzccivsrs. 

'More precisely, the parametdr controlling the maxlmum numbdr of chil- 
dren was set to these values. It  is imponant to note that some protocols. NICE 
in particular in our study. do not enforce the fanout value at all times. but 
rather use it as a taqct  value for stable trees. 

For protocols that improve the quality of their overlay trees 
over time (e.g. NARADA and NICE), simulations run for 1000 
seconds in order to ensure stabilisation of these trees. 

As a comparison point. beside the case where the protocols 
were run with all receivers hehaving in an honest way. we also 
h i l t  random trees for each of the groups, where the receivers 
joined in random order and simply randomly connected to one 
of the nodes in the tree (i.e. the source or an already existing 
receiver), whose maximum fanout had not been attained yet. 
These random trees are used as representatives of "bad' 
application-level multicast trees. 

The cheating techniques described in section 111 were imple- 
mented in the HBM simulator that was used in [12], the TBCP 
simulator used in [91, and the NAKADANICE simulator' used 
in [?I. 

C. Network Stress Ratios 
We study the stress ratio in order to assess the overall 

impact of cheats in application-level multicast on the network. 
Figures 1 to 4 depict the maximum stress ratio ohserved during 
the simulations 

501ch_, 

Fig. 1. Maximum link strzss mt ia  in HBM 

n 
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Fig. 4. .Maximum link st re^^ m t m ~  in NARADA 

We see that the effects of cheats are quite different in the 
various protocols. In HBM (figure 1)  the maximum stress 
ratio progressively increases with the percentage of cheats 
because the centralized algorithm creates a shared tree using a 
distance database that is less and less related to the reality. As 
a consequence the resulting overlay topology is less and less 
efficient. However. we also observe that the maximum link 
stress ratio is hetter when most or all of the receivers cheat 
than when the cheats are in smaller numbers. This is because 
of the complete distance knowledge at the RP: when most of 
the receivers cheat. the vast majority of distances advertised to 
the RP are merely the real values shifted by a constant (except 
of course for the distances to the source which are advertised 
as zero. and therefore introduce some degree of randomness at 
the top of the tree). We have also observed that HBM almost 
always produces an overlay tree whose maximum stress is 
smaller than that of a random overlay tree. This is again due 
to the fact that HBM always strives to make the best usage 
out of its complete distance knowledge. 

TBCP (figure 2) shows a smaller maximum stress ratio. that 
is somewhat independent of the group size and the number 
of cheats. This is explained hy the facts that, in TBCP. the 
cheats have the luxury to ensure their own maximum fanout 
is reduced to 1. thus shifting the stress from the edge of the 

network (i.e. access links) towards link? inside the network. 
as the tree growths in "lengrh" (with long branches of cheats 
dangling from the root) rather than in "width". In other words. 
in TBCP. the effects of cheats is to shuttle data packets several 
times across the network, while cheats do the minimum data 
replication they can. 

Because ofthe way TBCP overlay trees grow in "length' in 
the presence of cheats. the maximum stress ratio was always 
worse for random overlay trees than for TBCl? This is because 
random overlay trees tend to concentrate mnre traffc towards 
the edge of the network (as receivers limit their fanout to the 
same value as honest receivers in TBCP - and random trees 
therefore grow "wider" than TBCP trees with cheats). while 
still producing the shuttling effects of data packets across the 
network. 

In NICE (figure 3). the situation is opposed to the one 
observed for TBCP. Indeed. NICE does not strictly enforce its 
fanout at all times (see section In-C.1) and therefore allows 
clusters to form whose membership is greater than dictated by 
the fanout value (in particular near the tree root). resulting in 
some cluster heads serving more children than "they should". 
As a result. we see that for small groups. the maximum stress 
ratio is small as most cheats would have occupied a position 
close to the root if they had not cheated anyway. thus resulting 
in an overlay tree very similar to a tree of honest receivers. For 
larger groups. the maximum stress ratios can show the greatest 
values we observed. hecause cheats creilte large clusters near 
the root. thus increasing the stress on the access links of 
nodes near the top of the overlay tree (including the root). 
We therefore see that NICE has actually a tendency to grow 
its overlay "too wide". 

No surprisingly. the maximum stress ratio was almost 
always better for random trees than for NICE. hecause the 
fanout is strictly enforced in the random trees. 

In NARADA (figure 4). we make the interesting observation 
that fewer cheats have a greater effect on the network effi- 
ciency of the protocol than when cheats are present in larger 
numbers. This is because the more cheats are present. the 
fewer the opportunities that exist for a cheat to create "forced" 
mesh links to nodes near the source. as the utility (see section 
lI1-D.1) associated with each cheat decreases. This decrease 
in utility is caused by the fact that. as the number of cheats 
increases. honest receivers and cheats alike are fooled into 
thinking that they are close to more and more members of the 
group. in essence choosing cheats as mesh-neighbours with 
equal prohahility. In other words. through the combination 
of enforcing a strict degree for all nodes in the mesh and 
the use of the notion of utility for the construction of the 
overlay tree. NARADA forces the cheats to share the profits 
of cheating. As a result. hecause cheats also report distances 
to other receivers as a fraction of the real values (this strategy 
is actually chosen to "beat" the utility function (see section 
Ill-D.2). the more cheats in the group. the more NARADA 
brings the mesh "back" to what it is when all receivers are 
honest (to the exception of the "lucky" cheats who connect 
directly to the root). This behaviour. although also observed 
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in HHM. is much more prominent with NARADA. 
Figure 4 also shows that NAKADA just does not cope 

very well with srnall tree fanout (or mesh degree) values, as 
reported in L41. 

Not surprisingly given &e discussion above. we found 
that NARADA produces stress ratios that a e  w m e  than 
those produced by a random overlay tree. when there is a 
small number of cheats. However. as the number of cheats 
increases. NARADA outperforms random trees as far as stress 
is concerned. 

I). S1rm.h Rotios 

There are basically two ways to grow an overlay tree: in 
length and in width. Growing an overlay tree in length results 
in lower network stress levels at the expense of higher stretch 
levels (as receivers are pushed away from the sourcelroot and 
thereiore observe longer delays along the tree). The opposite 
holds true for an overlay tree grown in width. Therefore. when 
considering average stretch levels over all receivers in the tree. 
we would observe that the application-level protocols that were 
showing the smaller stress ratios show the higher stretch ratios. 
and vice versa. To have a better understanding of-the effects 
of cheats on the stretch levels of receivers in an application- 
level overlay uee. we will therefore focus separately on the 
e k t s  of cheats on hiinest receivers and amongst the cheats 
themselves. 

Figures 5 to  8 shr)w llic a\'erage stretch ratio for honest 
receivers i n  the presence iir clicii~s. 

, w.. 
I 

%echm, ,  

Fip. 5. Awmps stretch ratios far honzst receivers in HBM 

We see that in I-IBM (figure 5). the average stretch ratio 
for honest receivers rapidly increases. even with a small 
percenuge of cheats. This is due to the fact that honest 
receivers are immediately moved away from the source. and 
this is particularly uue with trees having a small fanout. We 
also ohserve that the average stretch ratio for honest receivers 
tend to stabilize as the number of cheats increases. because. 
as explained in section IV-C_ the more cheats are present. 
the more accurate the RP's neighbour selection becomes (and 
therefore honest receivers end up in the "correct" pan of the 
tree). 

Fig. 6. Aversoe stretch ratios for honest recei\:ccs in TBCP 

Fio. 7. Avzrapc stretch ratios for honest rccerrcct in SICE 

We see that in TBCP (figure 6) .  the average stretch ratio for 
honest receivers increases steadily. with the rate of increase 
proportional to the group size. This is because. as cheats 
occupy higher positions in the overlay tree. the remaining 
honest receivers get pushed towards the bottom of the tree 
and thus see an increasing stretch. Also note that even a 
small increase in stretch, when more cheats (with a fanout 
of I) are added. can result in a more substantial increase in 
average stretch ratio for honest receivers. as this number of 
honest receivers decreases steadily (i.e. the increase in stretch 
is shared amongst fewer honest receivers). 

Expectedly. NICE (figure 7) shows little average stretch 
ratio for honest receivers. almost independently of the group 
size. This is again due to the fact that. during normal op- 
erations of the protocol. clusters are allowed to grow bigger 
than dictated by the maximum fanout. leaving more unaffected 
honest receivers by the presence of cheats than in  the other 
protocols. 

In NARADA (figure S). we see that the effects of cheats 
on the stretch of honest receivers stabilizes as the number of 
cheats increases. especially in small groups. This is because. 
as explained in section IV-C. NARADA operates in such a 
way that the actions of individual cheats tend to balance each 
other as the number of cheats increases. This effect is less 
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Fig. 8. Average slrctch ratios for honest receivers in NARADA 

noticeable for larger groups. though. as the overlay tree gets 
longer. and thus the effkcts on the stretch (of honest receivers) 
accumulate faster. 

Figures 9 to 12 show the average ratio in stretch for the 
cheats themselves. 

XI (I, a) 70.  

lidChU. 

Fig. 9. Auerase stretch ratios for cheats in HBM 

In all the protocols. we see a decrease in average stretch 
ratios for cheats when the number of cheats are small. This 
indicates that the cheats indeed get a better position near the 
source when cheating. However. as more and more cheats 
operate in an overlay uee. these compete with each other. and 
the rate of increase of the average stretch ratio for cheats give 
an indication of the ferocity of the competition. 

This is particularly visible with HBM (figure 9). Cheats 
experience an average benefit only if  the fmout enables them 
to be close to the source. Thereafter. the situation rapidly 
deteriorates because the additional cheats are located lower 
in the tree. beneath honest receivers. So when the number 
of cheats increases. honest receivers experience on average 
a slightly better stretch ratio than cheats. Yet this average 
hides a ma,jor discrepancy between cheats who succeeded to 
be directly attached to the source and others. 

Figure 10 shows that competition between cheats is the 
fiercest in TBCP. This is because cheats that have already 

Fig. 10. Avcraec stretch ratios for chcals in  TBCP 

Fig. 11. Average stretch ratios for chats in NICE 

found a place in the tree. do not relinquish their position to 
new cheats joining. the latter getting pushed down the tree. 
Further more. the rate of “descent” towards the bottom of the 
tree is exacerbated by the fact that cheats use a fanout of 1. 
leaving other cheats far further away from the source than in 
the reference overlay tree where all receivers iue honest. 

There is very little competition amongst cheats in NICE 
(figure 11) and NARADA (figure 12). NICE. however. offers 
better opportunities for cheats to better their positions in the 
tree. thus resulting in lower average stretch ratio values for 
cheats. 

Tables I to IV. indicate when the average stretch ratios 
for cheats become worse than in random trees. These tables 
show that. from the point of view of cheats, the collrcrive 
benefit of cheating always eventually disappears. leaving the 
“average” cheat in a worse position than i i  the tree was 
random. However. this observation should be contrasted by 
the fact that cheats are selfish and that some of the cheats 
always see a dramatic improvement in their positions in the 
overlay trees. as illustrated in figures 13 to 16. 

These tables show that NICE and NARADA provide more 
favourable conditions for cheats to collectively gain an ad- 
vantage over the honest receivers. in term of suetch. Table I1 
also confirms that competition amongst cheats is very high 
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100 3 40 - 50 
100 4 30 - 40 
100 5 20 - 30 

TABLE 111 
NICE CHE4TS VS R.ANDOM TREE: % OF CHEATS WHEN CHEATS ARE 

BETTER OFF BEIRG IS RASOOM TREE. 

Fig. 12. Average stretch ratios for cheats in NARADA 
group SEC fanout 7O of cheats 

20 2 40 - 50 

group size fanout 9% of cheals 
20 2 20 - 30 
20 3 30 - -10 
20 4 30 - 40 
20 5 40 - 50 

100 2 5 - 1 0  
100 3 5 - 10 
100 4 5 - 1 0  
100 5 5 - 10 

. TABLEI 
HBM CHE.%TS VS R.ANDOM TREE: ?? OF CHE.\TS WHEN CHE1TS A R E  

BETTER OFF BEING IK R:\SOO.M TREE. 

in TBCP as a small number of cheats makes these cheats 
collectively better ,oii in  a random tree. 

Figures 13 to 16 show that cheating in NICE and NARADA 
is potentially very rewarding for individual cheats. while the 
benefits of cheating for an individual are similar in HBM and 
TBCP. It should he noted that NICE gives more chances to 
more individual cheats to improve dramatically their position 
in the tree. then any other of the protocols studied in this paper. 

Finally. for HBM. TBCP and NARADA. we have observed 
that the maximum stretch ratio for honest receivers can be in 
the order of several hundreds (i.e. one of the honest receivers 

group size fanout "U of cheats 
20 2 10 - 30 

20 4 '  2 0 -  30 
20 5 40 - 50 

100 2 0 - 5  
100 3 5 ~ I 0  
ion 4 5 - 10 
100 5 10 - 20 

20 3 ' 30-40 

TABLE I1 
TBCP C H E h r S  VS R.ANDOM TREE: % O F C H E I T S  WHEN C H E I S  I R E  

BETTER OFF BElSG IN RANDOM TREE. ' 

20.  4 20 - 30 
20 5 20 - 30 

100 2 10 - 20 
LOO 3 10 - 20 
IW 4 0 - 5  
100 5 10 - 20 

TABLE IV 
NARADA CHEATS VS RANDOM TREE: % OF CHEATS WHEN CHE.ATS .ARE 

BETTER OFF BEIUG IN R.ANDGM TREE. 

is several hundred times further away from the source than 
it was in the reference tree). These situations occur when the 
honest receiver is actually physically close to the source and 
therefore gets displaced relatively very Far by the cheats. The 
noticeable exception is of course that in NICE. the honest 
receivers are relatively undisturbed by the cheats and the 
observed maximum stretch ratio for honest receivers are small 
(usually less than 10). 

V. DISCUSSIONS 

In this paper. we have studied the impact of simple cheating 
on the performance of application-level multicast overlay trees. 

I 
a R I ,  7, 111, 

PdthlPl l  

Fig. 13. Minimum stretch ratios for cheats in HBM 
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Fis. 14. Mirumum stetch ratio iw cheats in TBCP Fig. 16. Mitimum stretch ratio for chcats in NARADA 

Fig. 15. .Minimum slrrrch ratio fw chcats in NICE 

We have shown that simple cheating strategies always have 
negative impact. either on the performance of the tree as 
perceived by its nodes (both cheats and honest receivers), or 
on the underlying physical network, or on both. 

We have also witnessed a range of responses to the cheating 
strategies from the studied protocols. However. none of the 
studied protocols coped well. in the presence of cheats, for 
all the performance aspects described. Actually. none of these 
protocols were explicitly designed to deal with cheats. and all 
showed. at various point of the study. that their performance 
could quickly degrade to be worse than the performance 
exhibited by a random tree. 

Although the simple cheating techniques used in this study 
were tailored to the specific protocols. it is worth noting that 
they 1111 exploited the fact that the protocols relied on receivers 
to take their own distance measurements and either make 
independent decisions based upon these measurements or ad- 
vertise these to other nodes. In the case of the distance metric 
used in this study (the RTT). detection of a cheat advertising 
dramatically reduced distances seems rather straightforward: 
the node which the cheat claims to be close to. can always 
check its distance to the cheat_ with tamper-proof probes (e.g. 
probes that do not contain any timestamp information or that 
have undergone a cryptographic modification such as hashing). 

However, in order not to jeopardize scalability by increasing 
the measurement overhead too much. such distance checks 
should probably he carried out as a periodic sampling process 
that eventually detects cheats. Note that such an approach is 
only applicable for metrics whose values are independent of 
the point of measurement (which is the case for the R T I  
between two points and measured at either point. but certainly 
not for the delay between these points). The sampling methods 
should probably also make use of statistical methods to help 
cope with natural variations in the measured values. 

Nevertheless. it is not clear at all how effective such simple 
distance sampling methods would be in the presence of several 
cooperating cheats, since at the very least. the actual distance 
between these may never be reliably verified. In such a case. 
correlating the distance measurements taken among several 
application-level multicast nodes may be a way ahead. but 
doing so in a distributed fashion without requiring complete 
knowledge. at all nodes. of the group and its measurement 
matrix is a challenging problem. 

On the other hand. it is probably impossible to ever detect, 
or prevent. a cheat which delays measurement probes system- 
atically. in order to artificially increase measured disrances. 
Such an "attack" can even easily be implemented by putting a 
proxy in front of the node which desires to cheat. As a result. 
cheat detection methods may just provide a "high-pass filter" 
on measurement matrices (i.e. a method to weed out artificially 
low distances but not artificially high ones). We will study the 
impact of such detection methods on the performance of the 
resulting overlay uees in the presence of cheats in our future 
work. 

Designing general cheat detection andlor prevention tech- 
niques for various types of metrics is. we believe. an open 
research challenge. Indeed. there is always the danger that 
such techniques be designed on an ad-hoc basis. depending 
on the metric and cheating methods used, resulting in some 
kind of "cat and mouse" situation with cheats. 

This paper was only concerned with selfish cheats operating 
independently. The case of cooperating cheats. maybe using 
evolutionary cheating strategies. is an open research challenge. 
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As iuture work we will also study the effects of simple 
cheating on coordinate-based methods. and the application- 

t protocols built on top of peer-to-peer systems 
(sec section 11). For such protocols. the cheats will not only 
have the opportunity to lie about their distance to other nodes. 
hut they will also he able to carefully "choose" their place in 
the corresponding virtual geometric space. 
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