
Supporting Service Discovery, Querying and Interaction

in Ubiquitous Computing Environments

Adrian Friday1, Nigel Davies1,2, Nat Wallbank1, Elaine Catterall1 and
Stephen Pink2

1Computing Department
Lancaster University
Lancaster
LA1 4YR
U.K.
({adrian,nat,elaine}@comp.lancs.ac.uk)

2Department of Computer Science
University of Arizona
Tucson
Arizona 85721
USA
({nigel,steve}@cs.arizona.edu)

Abstract. In this paper, we contend that ubiquitous computing environments
will be highly heterogeneous, service rich domains. Moreover, future applications
will consequently be required to interact with multiple, specialised service location
and interaction protocols simultaneously. We argue that existing service discovery
techniques do not provide sufficient support to address the challenges of building
applications targeted to these emerging environments.

This paper makes a number of contributions. Firstly, using a set of short ubi-
quitous computing scenarios we identify several key limitations of existing service
discovery approaches that reduce their ability to support ubiquitous computing
applications. Secondly, we present a detailed analysis of requirements for providing
effective support in this domain. Thirdly, we provide the design of a simple extensible
meta-service discovery architecture that uses database techniques to unify service
discovery protocols, and address several of our key requirements. Lastly, we examine
the lessons learnt through the development of a prototype implementation of our
architecture.

Keywords: Distributed Systems, Mobile and Ubiquitous computing, Service Dis-
covery, Service Interaction, Middleware

1. Introduction

With the advent of wireless networks and mobile devices, modern com-
puter networks are becoming increasingly dynamic places. The need to
simplify the administration and interconnection of networked devices
has led to the development of a number of ‘service discovery’ protocols,
such as the Service Location Protocol (SLP [13]), Home Audio/Video

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

"MobiDE Journal".tex; 28/02/2003; 11:28; p.1



2 Friday, Davies, Wallbank, Catterall, Pink

Interoperability (HAVi [15]), Universal Plug and Play (UPnP [24]) and
Sun’s Jini Connection Technology [29].

Researchers have also demonstrated how similar techniques can be
applied to aspects of mobile and ubiquitous computing [2],[16]. We
believe that this trend is set to continue and that future service envir-
onments will be characterised by a heterogeneous mix of services and
protocols. Crucially, we believe that devices, applications and users
will need to interact with multiple, potentially specialised, service loc-
ation and interaction technologies simultaneously in order to construct
successful ubiquitous computing applications.

In section 2 we examine the four of the key contributions to provide
background in the area of service discovery and interaction. We present
a set of short illustrative scenarios in section 3, that help us identify
some important ways in which current protocols could be enhanced
to better support ubiquitous computing applications. In section 4, we
build on these scenarios to present a more detailed analysis of what,
in our opinion, are the main requirements for supporting such applica-
tions. Section 5 reports on our work toward developing an integrative
meta-service discovery framework that utilises database techniques to
provide a uniform API across multiple service discovery protocols. We
demonstrate how in a prototype implementation of our architecture we
have been able to bridge the UPnP and SLP protocols. We examine
the merits of our approach and identify the lessons and transferrable
concepts from developing our prototype. Lastly, in section 6, we present
our concluding remarks.

2. Prevalent Service Discovery Protocols

The desire for zero-configuration networks in which devices can join
the network and dynamically discover the services that they need has
motivated the development of a number of service discovery and inter-
action protocols, including Jini [29], HAVi [15], SLP [13], UPnP [23],
Salutation [31], Cooltown [21] and academic research initiatives [16].
We begin by briefly describing the key architectural features of four of
the most commonly deployed protocols.

2.1. Universal Plug and Play

“Universal Plug and Play (UPnP) is an initiative to bring easy-to-
use, flexible, standards-based connectivity to consumer networks,
whether in the home, in a small business, or attached to the global
Internet.”[23]

"MobiDE Journal".tex; 28/02/2003; 11:28; p.2



Supporting Service Discovery, Querying and Interaction in Ubicomp Environments 3

From a technology standpoint, UPnP is a suite of protocols and system
services that in concert provide service discovery and control in small
to medium size IP networks.

Service Advertisement. In home networking installations, where cent-
ralised network management is undesirable, the developers of UPnP
anticipate that AutoIP [32] will be used to assign IP addresses to
UPnP devices. Once configured, devices periodically advertise them-
selves using the HTTP like service announcements (the Simple Service
Discovery Protocol, SSDP [11].)

Discovery. SSDP clients interested in accessing services run a UPnP
‘control point’ which passively waits for service announcements or act-
ively probes by sending a multicast search request (M-SEARCH). M-SEARCH
forces devices and services matching the specified search criteria to
respond with directed unicast service advertisements1. Control points
are independent of each other and are not aware of the search requests
made by other clients (we will return to this point in section 4.)

Interaction. Once the client has obtained a URL for the service from
the SSDP advertisement, it retrieves an XML ‘description’ of the device
and the services it offers. A device may offer multiple services; for ex-
ample, a video recorder might contain a timer service in addition to its
recording and playback services. The service description includes a URL
to an XML description of the state variables and methods associated
with the service and a URL to the ‘presentation web page’ that allows
human interaction with the device.

Attributes. UPnP devices have a set of associated state attributes
which reflect the underlying state of the device. Clients can invoke
operations using the Simple Object Access Protocol (SOAP) [27] to
invoke services and adjust the service attributes. For example, a ser-
vice representing a networked digital camera might have an attribute
called ‘auto-focus’ with possible states ‘on’ and ‘off’; clients that wish
to change the camera’s auto-focus mode would simply change the value
of the auto-focus attribute.

Events. The architecture requires that when the state of a service
changes it generates an event using the Generic Event Notification
Architecture (GENA). Clients register for these events in order to
ensure all clients maintain a consistent view (e.g. to ensure consistency
between the camera’s front panel and a remote application controlling
the camera).

1 A search request is sent during the initialisation of the in-built UPnP control
point in the most recent Windows Operating Systems.

"MobiDE Journal".tex; 28/02/2003; 11:28; p.3



4 Friday, Davies, Wallbank, Catterall, Pink

It is worth noting that UPnP compatibility is defined in terms of
the on-the-wire protocol and is totally architecture, operating system
and language agnostic.

2.2. Service Location Protocol

The Service Location Protocol (SLP) [13] provides the capability to
discover, select and utilise network services in IP networks with little
or no prior configuration. As identified in version 2 of the specification:

“This is especially important as computers become more portable,
and users less tolerant or able to fulfil the demands of network
system administration.”

In contrast with UPnP, the scalability of the protocol has been a
primary design goal of SLP.

Discovery. In an SLP network, a client (or user agent) seeking
some service, sends a multicast search request (SrvRqst). Any service
agents that represent services matching the requirements specified in
the SrvRqst respond with a unicast reply (SrvRply). The user agent
makes use of a technique called ‘convergence multicast’ to discover all
the services available on the network.

Convergence multicast requires that the client sends successive search
requests (perhaps of increasing network scope (TTL)) and aggregates
each set of responses it receives to form the final result set. Each suc-
cessive request contains a list of previous responders, so that successive
requests should only solicit replies from as yet unknown services.

Scalability. In larger networks, one or more directory agents can be
instantiated to function as caching nodes. Service agents register with
their local directory agent (SrvReg/SrvAck), the directory agent (if
present) will respond to the user agents’ requests on behalf of the service
agent (obviating the need for the convergence multicast searches). Both
the user and service agent must ‘discover’ the directory agent during
initialisation. This process is achieved either actively using the normal
service discovery process (a multicast SrvRqst), or passively when one
of the directory agents periodically advertises itself.

Services may be placed into administratively assigned ‘scopes’. A
scope is an arbitrarily assigned string that groups a number of services
into a collection to aid scalability. Clients may be assigned one or more
scope identifiers that act as filters, limiting the client to detect only
services within those scopes.

Naming. SLP services are classified into types defined by naming
authorities (the default authority being IANA). A printer for example,
might be represented by the URL ‘service:printer:lpr://hostname’;
describing both the type of service, and in this instance, the protocol

"MobiDE Journal".tex; 28/02/2003; 11:28; p.4



Supporting Service Discovery, Querying and Interaction in Ubicomp Environments 5

required for contacting the service. Service requests (SrvRqst) may be
further specialised by the inclusion of a predicate (based on LDAPv3
search filters) describing the attributes that the set of matching services
must comply to (attributes are arbitrary name value pairs assigned by
the service’s administrator).

Attributes. The attribute request (AttrRqst) search provides a mech-
anism for user agents to discover which attributes apply to a given
service type2.

Interaction. Interaction with a specific service (and thus handling of
changes in internal state of the service), is assumed to be handled by
the specific interaction protocol (lpr in the case of the printer example)
and is not included as part of the SLP specification.

2.3. Jini

Jini [29] is a distributed systems platform developed by Sun that sup-
ports discovery of Java based services. Interaction with Jini services
is achieved by the instantiation of a local ServiceTemplate object
representing a given service (the interaction protocol between the ser-
vice’s representative and the entity it represents is not defined by Jini,
though Java’s RPC mechanism (JavaRMI ) or JavaSpaces platform [28]
is normally assumed.)

Discovery. In order for a client to be able to discover a service it
must first find a nearby lookup service using the Jini discovery and
join protocols. The client instantiates a ‘multicast response’ service
then issues a search for available lookup services using the multicast
request protocol. Available lookup servers will respond to the client’s
multicast using the unicast discovery protocol. This protocol may also
be used by clients to contact a lookup service if its’ Jini URL is known
a priori. Lookup services beacon multicast announcements to clients
periodically to advertise their availability.

Attributes. Services in Jini are represented by serialised objects en-
capsulated to form an ‘entry’ stored in the lookup service or JavaSpace.
Each entry provides simple comparison functionality to allow the ser-
vice to be matched against a search template. Attributes for the service
and search template are simply specified as object member variables.

Events. Clients may register an interest with the lookup service to
look for the ‘change’ events generated as new services register (or old
services revoke their service offers). Services themselves may act as
event sources to provide notifications of change of internal state via
the Jini distributed event protocol (events are synchronously delivered
to interested parties via RPCs). Jini provides support for transac-

2 Support for this kind of search is only compulsory for directory agents.

"MobiDE Journal".tex; 28/02/2003; 11:28; p.5



6 Friday, Davies, Wallbank, Catterall, Pink

tional grouping of operations and event notifications to allow fail safe
semantics to be built into service interactions.

Scalability. Service objects are leased to clients using the distributed
leasing specification [30]. Client’s wishing to use a service they have
discovered apply to the server for a lease. The lease (encapsulated by a
lease object) specifies a duration in relative or absolute time for which
the client may continue to use the service (although says nothing about
the guarantee of service offered to the client). The distributed leasing
scheme is one of the key attributes of Jini that is used to promote
reduction of protocol traffic and hence enhance scalability (e.g. if a
service does not renew its lease with the lookup service, the service is
assumed to be no longer available).

2.4. Home Audio Video Interoperability

The Home Audio Video Interoperability (HAVi) architecture [15] is
designed to facilitate the construction of multimedia applications in
home AV networks. HAVi is based on a IEEE-1394 bearer network that
provides guaranteed bandwidth reservation for multimedia streams and
run-time reconfiguration capabilities.

Device classification. HAVi Devices are partitioned into four dis-
tinct classes according to the level to which they implement the HAVi
framework, these are:

Full AV devices offer full support for HAVi and the ability to control
other HAVi devices in the network.

Intermediate AV devices act as controllers for some types of HAVi
device.

Basic AV devices are controllable via HAVi, but do not control other
devices.

Legacy AV devices do not support HAVi, just the underlying IEEE-
1394 network.

Non-IEEE-1394 devices must have proxies in order to join a HAVi
network.

Discovery. In order to discover a service in the network, the client
device must communicate with the HAVi ‘Registry’ processes — an
instance of which runs on every full and intermediate AV device. This
process is achieved using the HAVi ‘messaging system’ (as IEEE-1394
is not an IP network, HAVi provides it’s own transport abstractions
for inter-device synchronous and asynchronous messaging.)

Service Registry. The registry maintains a list of all local HAVi soft-
ware components resident on its node. These components may include:

"MobiDE Journal".tex; 28/02/2003; 11:28; p.6



Supporting Service Discovery, Querying and Interaction in Ubicomp Environments 7

− Device control modules providing a software interface for con-
trolling the physical properties and functionality of the HAVi device
(this may include a number of separate functional component mod-
ules (FCMs), e.g. a TV device might have separate tuner and
display components.) Java applications can be written by applic-
ation developers and installed in the registry; these applications
can be thought of as device control modules that control software
state rather than an underlying physical device.

− A Stream manager responsible for the establishment of paths for
delivery of isochronous data (point to point or point to multipoint)
between HAVi devices.

− A Resource manager for negotiating the reservation of local re-
sources, particularly with respect to multimedia streams. The re-
source manager provides the mechanism for resolving conflicts
where resource reservations cannot be accommodated.

− The registry may also include references to ‘Havlets’. Havlets are
Java applications that execute on full AV devices and provide user
interfaces for controlling HAVi devices. A Havlet may provide a
customised Java user interface or contain a ‘Data Driven Inter-
action’ (DDI) specification that is used to generate a basic user
interface automatically.

A ‘web proxy’ FCM has been defined to allow HAVi devices to re-
trieve information from Internet based sources. Recent work has demon-
strated that other IP based service discovery protocols (e.g. UPnP and
Jini) can be bridged onto a HAVi network [7], [14].

2.5. Summary

By examining the prevalent service discovery and interaction technolo-
gies it is evident that they share a number of transferable concepts. For
example, Jini, SLP and the Secure Service Discovery Service [16] all use
IP multicast for device discovery. In addition, most can use some form of
directory service to reduce the overhead of service discovery in networks
comprising many services. However, despite the apparent similarity of
these protocols, each offers functionality targeted to specific application
domains. Each technology has its own way of providing representa-
tions for devices and services; the scoping of service advertisements;
interaction with devices and notification of events.

One of the reasons for such heterogeneity is that each technology has
needs dedicated features to support the intended applications — SLP

"MobiDE Journal".tex; 28/02/2003; 11:28; p.7



8 Friday, Davies, Wallbank, Catterall, Pink

is highly scalable and intended to serve enterprise networks; UPnP
targets home and small office environments; while HAVi focuses on
interoperability in home AV networks and motivating the inclusion of
multimedia streaming and resource reservation functionality.

An in-depth comparison of these architectures can be found in [3]
and [22]. Given the divergence of purpose in service discovery proto-
cols, it is reasonable to assume that in emerging ubiquitous computing
environments many such protocols will be in use simultaneously. In our
opinion, future applications will need to utilise services across multiple
domains simultaneously — this is a key motivation for the development
of the platform we describe in section 5.

3. Application Scenarios

In this section we present a series of simple ubiquitous computing
scenarios that highlight some of the important shortcomings in cur-
rent service discovery protocols when applied to ubiquitous computing
applications. We elaborate on these issues in section 4.

3.1. Efficiently finding ‘Stateful’ Devices

Bob is a security guard who is patrolling an empty office building
late at night. Bob’s new hand-held computer vibrates suddenly,
drawing his attention to a proximity map which illustrates the
status of all the door and window locks in a nearby corridor — the
map shows him that the first door to the left has not been locked.
The display has not shown that any movement has been detected,
so he locks the door and continues on his rounds.

Consider developing the above application using current service dis-
covery protocols. Each lock or movement sensor could be represented by
a network service. To build the application efficiently, the programmer
needs an programming interface that allows her to query the availability
of these services based on both location (to determine proximity) and
the value of specific state variables (the state of the locks or movement
sensors.)

In current systems, this operation could be very heavyweight — the
client would need to obtain references to all of the services of type ‘lock’
in the network (possibly scoped by geography if the system supports
attributes or name/value pairs in service advertisements) and then poll
each of these services to determine their current status. In mobile envir-
onments (e.g. on Bob’s hand-held) power and network constraints are
likely to be adversely effected by this extraneous and time consuming

"MobiDE Journal".tex; 28/02/2003; 11:28; p.8



Supporting Service Discovery, Querying and Interaction in Ubicomp Environments 9

communication. Careful design of the discovery protocol to facilitate
searches based on state information would dramatically reduce the
search time and bandwidth requirements.

3.2. Discovering ‘The Most Appropriate’ Service

Alice is attending a meeting in an unfamiliar office building. She
remembers that she has forgotten to print an important document
and needs to find a printer urgently. She takes out her laptop and
starts her service browser. The browser returns a list of printers
ordered by proximity. Thoughtfully, someone has annotated the
description of the printer second from the top of her list as being
the one just outside her meeting room. She selects that printer and
prints out her document.

To implement the above scenario, most service discovery protocols
provide facilities for simple annotation using attributes and scopes.
While attributes could be used to provide useful information about the
capabilities of the service, where it is located or to whom it belongs,
they are typically statically assigned by whomever deployed the service.

It would be helpful to Alice if when she browses available services
of type ‘printer’, she could view and search comments about the cap-
abilities of nearby printers that have been added by other users or
earlier visitors, e.g. “this printer jams frequently”, “this is the nearest
printer to visitors in meeting room C29”, “this is the printer most
frequently accessed from this location”, and so on. Support for attrib-
uting meta-data concerning the usage history, access profile and user
experiences of a given service is not supported by any of the current
service discovery protocols. We believe that no mechanisms currently
exist for automatically integrating, authoring and collating additional
meta-data for service location protocols in a general cross-platform way.

3.3. Interacting With Heterogeneous Protocols

When Alice returns home, she’s tired from her meeting and just
wants to sit down in front of a good film. She reaches for the remote
control, scrolls through her catalogue of favourite films and presses
‘play’. The blinds adjust themselves to remove the last rays of sun
from the screen, the hifi adjusts to ‘cinema mode’ and the film
starts playing from her collection.

In the final scenario, Alice is using her home ‘remote control’. Yet,
to realise this behaviour would require controlling a number of devices
in concert, irrespective of the particular discovery and interaction pro-
tocols used to control each of the devices. The AV devices are likely to

"MobiDE Journal".tex; 28/02/2003; 11:28; p.9



10 Friday, Davies, Wallbank, Catterall, Pink

be controlled using HAVi and will expose HAVi APIs allowing fine
grained control of the media stream; the television system may be
using UPnP, which provides control and event support; the lighting
and blinds might be activated via X.10, which only provides a very
simple control interface.

So, even in such a simple scenario we require the remote control
application to have bindings across several platforms; processing events,
service announcements and requests from different disjoint protocols.
Interworking between these protocols is difficult to achieve using cur-
rent approaches — requiring bespoke application development. No com-
mon API is available that allows such interworking to occur transpar-
ently.

4. Analysis

Existing approaches to service location and device interaction provide
a solid foundation for building distributed service based applications.
However, by examining scenarios such as those presented above, we can
see that as their usage becomes more prevalent, a number of practical
limitations will become apparent. In the classic case, where a client loc-
ates and interacts with a small number of services, many of the existing
service discovery and interaction technologies work effectively. However,
where a large number of clients interact with many services, issues
of scalability and selection of the most appropriate services becomes
significant. We believe a crucial issue in terms of scalability, utility and
performance, will be the ability for applications to reason about service
selection and interaction on behalf of lightweight (potentially mobile)
clients. In the following sections we consider these points in more depth.

4.1. Interoperability

Given the existence of multiple heterogeneous service discovery and
interaction technologies, one of the key issues for application developers
will be how to deal with the diversity of device representation. UPnP
defines XML schemas to represent devices, SLP uses defined URL syn-
tax [12], HAVi uses device control module software elements and Jini
utilises serialised Java objects (placing stringent base requirements on
client applications, especially for mobile devices). Moreover, UPnP’s
GENA, HAVi’s Event Manager and the Jini distributed event model
provide incompatible mechanisms for monitoring device state changes.
SLP, does not provide any such mechanism.

If one is to create an application that is to interact with more
than one of these service mechanisms simultaneously, the application

"MobiDE Journal".tex; 28/02/2003; 11:28; p.10



Supporting Service Discovery, Querying and Interaction in Ubicomp Environments 11

developer will face significant challenges. In our opinion, a unified mech-
anism for locating, interacting with and representing services is needed.

4.2. Scalability

As the number of clients and services in an environment increases, so
the burden due to dynamic service discovery and interaction escalates.
The Windows Me UPnP client, for example, attempts to locate all the
local network services at initialisation. If the multicast search yields n

service advertisements then n TCP based HTTP interrogations follow
to gather the XML service descriptions (the user would then initiate a
further n interactions to get the presentation pages for each device). In
the simple case of one root device with one service type we have found
that, according to the UPnP specification, 12 packets are generated
(4 packets each sent 3 times to avoid problems with packet loss) each
refresh interval (normally 30 minutes).

As a client joins or roams into the network, it issues an ssdp:all

M-SEARCH request (3 times for reliability). Every service must respond
to each M-SEARCH by unicasting its service advertisement to the client
(again 3 times per response). A single search yields a total of 36 re-
sponse datagrams (if no packets are lost). As the number of clients and
services grow, networks will be significantly impacted by UPnP service
announcement traffic.

Scalability should clearly be a prime consideration in the design of
service location protocols. However, we believe that even with efficient
protocols, further savings in bandwidth and consequent improvements
in scalability can be achieved by providing directory services that ag-
gregate service advertisements and cache queries from clients. In many
current systems, seeking a service biased toward the client; it is the
responsibility of the client to enumerate through candidate services by
discovering and then interrogating each service in turn if the state of
the service is important in the selection process (as illustrated by the
security guard scenario in section 3.1).

A second client, seeking the same service or entering the same do-
main (e.g. the second security guard following the first along the same
corridor) will, using existing techniques, be required to conduct exactly
the same search procedure as the first client, despite the fact that
the procedure will be almost identical. A network based intermediate
agency (similar to the Jini lookup service or SLP directory agent) could
be augmented to cache the results or partial results from the previous
client interaction, reducing consumption of network bandwidth and the
time taken to locate services by exploiting the commonality between
clients. This technique is already a well accepted approach to minim-

"MobiDE Journal".tex; 28/02/2003; 11:28; p.11



12 Friday, Davies, Wallbank, Catterall, Pink

ising traffic over low-bandwidth networks and has been employed in
distributed systems such as Rover [20].

4.3. Location-Based Services

Location-based applications (e.g. GUIDE [5]) represent a significant
class of mobile computing applications. However, in current systems,
constructing location-based applications is complicated by two factors.
Firstly, current service location protocols tend to offer simplistic scop-
ing models (e.g. based on arbitrary nomenclatures and attributes) such
as a network domain or administrative multicast based scoping (SLP).
Identifying a service that applies to a real world location (a room, or
building) not mapping onto such a topology is difficult.

Secondly, the location of a service in a network is not necessarily
indicative of the field of that service’s scope. For instance, a service
that offers weather reports for the specific geographical location in
which you are currently standing may be provided by a server physic-
ally located elsewhere — such a service has two apparent locations; a
physical location relating to where the service is located and a second
logical location that applies to the scope relating to the user’s context.
Researchers have begun to suggest solutions to this problem [19].

4.4. Time

Current service location protocols help clients establish which services
are available at the current instant or ‘in the present tense’. We believe
the temporal element (history, patterns of use etc.) could improve us-
ability. For instance, a user may wish to locate the printer that they
used the last time they visited a given environment, or the one they use
the most frequently. The trails and histories of device access are useful
from both an application context and an administrative point of view.
An administrator may be interested in which clients have accessed a
particular service and at what time, or what services were or were not
available during a particular time window.

Time may also be an important factor in the specification of actions
and events. In current service interaction schemes, no generic mechan-
ism exists for specifying the relative timing, ordering or relationship
between events and actions. Clients wishing to cascade an action (e.g.
turn the coffee maker on) from an event, such as an alarm signal, must
remain connected to the network at the time the event occurs to be
able to initiate the corresponding action. This is clearly a problem for
portable or battery powered devices.

We believe that the temporal element to service location is also
potentially valuable in ubiquitous computing applications in which the

"MobiDE Journal".tex; 28/02/2003; 11:28; p.12



Supporting Service Discovery, Querying and Interaction in Ubicomp Environments 13

application context needs to ‘live outside’ interaction with one partic-
ular device or end-system (e.g. to facilitate enacting a task that has
a lifetime longer than the use of just a single device.) As the user
picks up and utilises different services and devices, their usage profile,
possibly with respect to other contextual attributes, needs be main-
tained outside of a particular interaction and accessible from any device
they use. While we do not contend that support for these histories is
necessarily the role of the service discovery framework, such protocols
should facilitate the development of these mechanisms.

4.5. State

The current state of a device or service is an important component
of service location. A user seeking to print a document in a hurry is
probably only interested in printers that have both paper and a short
queue of pending print jobs. Existing service location architectures
provide facilities for the expression of state related information and the
notification of change of state events (e.g. UPnP device descriptions and
GENA). Reasoning about dynamic state is not typically part of the ser-
vice advertisement or discovery phases of the protocols. A client must
enumerate through candidate services, utilising both time and network
bandwidth, in order to identify the most appropriate service (illustrated
in the scenario in section 3.1.) The ability to find services based on their
state is desirable, especially where partial network connectivity or low
bandwidth is involved.

4.6. Security, Authentication and Access Control

Security is crucial to the successful adoption of service location pro-
tocols — can applications and users trust the services they find, and
can the services trust the clients they serve? Authentication and cer-
tification mechanisms are required to ensure a suitable level of trust.
Encryption and key distribution protocols are required to protect the
exchange of sensitive information (these issues are being explored in
the Ninja Secure Service Discovery Service [6]). SLP is one of the few
service frameworks that specifies the (optional) inclusion of authentica-
tion blocks with protocol messages, allowing the differentiation of valid
from bogus services.

Control is another important notion. The owner of a device might ex-
pect to be able to discover and control it and, ideally, prevent malicious
tampering. There are likely to be a rich set of rules governing access to
a given service, for instance, the social rules that bind a family together.
A parent will wish to be able to control their television, but may also
require that the system allows members of their family to control it,

"MobiDE Journal".tex; 28/02/2003; 11:28; p.13



14 Friday, Davies, Wallbank, Catterall, Pink

within certain parameters — a child might control the television while
their mother is in the room, or in a way that the her parents approve of
(e.g. not allowing a child to switch to an adult channel.) This level of
social, role and contextual control is almost certainly outside the scope
of a service location protocol, yet such protocols should provide the
fundamental mechanisms to facilitate the construction of appropriate
access control policies (access control lists, arbitration strategies and
assignment of limitations to service parameters on a per client basis.)

4.7. Meta-data

The underlying model of most service location and interaction strategies
reinforces the roles from existing distributed network infrastructures:
service providers or administrators establish services within the net-
work for clients to access. The implication of this ‘administrative’ role
is that the person or application that deploys the service controls
the service’s description and thus the attributes by which it can be
discovered and used.

If we consider the way people use services in everyday environments,
we observe that people ‘personalise’ them, e.g. “I find this printer the
fastest”, “this projector belongs to my research group” and so on. These
annotations are often subjective or role based, and may well change over
time (e.g. a printer will always print on a certain size of paper, but may
well move between rooms or be replaced by a faster model).

We believe that personalised, group and public meta-data will be
important to the utility of service location and interaction protocols.
We do not intend that everyone should be able to modify the service
description of a device (one must respect the administrative boundaries
and roles within organisations), rather we contend that service loca-
tion platforms should provide hooks for linking into meta-information
databases.

4.8. Multiple Device and Service Reasoning

Current service discovery paradigms provide mechanisms for locating
specific services offering a particular type of functionality. Directory ser-
vices (as identified in section 4.5) could support queries across service
types, reducing the time and network bandwidth utilised to identify
services. A user in an active building might issue a query equivalent to
“All printers to which I am allowed access that is nearby has sufficient
paper and is not behind a locked door” by correlating attributes from
multiple services simultaneously (e.g. printer, door lock and location
tracking services.) Current service discovery technologies do not allow
for the construction of queries that are scoped by the consideration

"MobiDE Journal".tex; 28/02/2003; 11:28; p.14



Supporting Service Discovery, Querying and Interaction in Ubicomp Environments 15

of services of different types, forcing more communication intensive
resolution of such queries at the client application.

4.9. Wireless Access

In general there is a poor match between current platforms’ network
and end-system requirements and those found in mobile environments3.
For example, many of the platforms use IP multicast for service an-
nouncements and this is likely to lead to significant levels of unwanted
traffic between a mobile device and the fixed network. Moreover, many
of the protocols used are extremely verbose (especially in the case of
UPnP), further consuming network resources.

Finally, none of the existing systems offer any support for intermit-
tent connectivity, especially in the case where services are hosted by

mobile devices. If a mobile device offers a service to devices on the
fixed network there is currently no mechanism for maintaining state
information for that device when it is operating in disconnected mode.
Moreover, event based mechanisms designed for keeping clients in-
formed of internal state changes may not reach wireless or disconnected
clients and therefore do not support strong consistency.

5. Design and Implementation of a Prototype Meta

Service-Discovery System

The analysis presented in the preceding sections has highlighted a num-
ber of issues that affect the application of existing service discovery
techniques to ubiquitous computing settings. In an effort to address
these issues, we have developed a new system based on a common
structured query language (SQL) API. Our system acts as an integrat-
ive layer on top of existing approaches that offers a uniform expressive
API to applications4.

In this section we report on a proof of concept prototype developed
to investigate the efficacy of our approach. In our work we have made
the following design assumptions:

1. Services are based on a fixed (or statically deployed) network such
as Ethernet or IEEE 802.11.

3 One notable exception is the work of Hodes et al. [16] that focuses on service
access by lightweight mobile clients. Note that mobile clients are not peer entities
in this architecture and do not provide their own services to other clients.

4 Existing approaches based on device databases (e.g. COUGAR [4]) seek to
replace existing service location and interaction platforms. We seek to integrate and
extend these technologies to achieve our objectives.

"MobiDE Journal".tex; 28/02/2003; 11:28; p.15



16 Friday, Davies, Wallbank, Catterall, Pink

Figure 1. Design of the platform architecture. The service announces its presence on
the network. A service specific interpreter converts the announcements into a tuple
containing an INSERT query (A). A database component processes A and inserts
the service into its database. To find a service the client emits SELECT query (B).
All database components process B and emit matching services in a tuple (C). The
client removes C and obtains a handle to the service.

2. The fixed network supports IP multicast.

3. Clients are relatively impoverished devices with communication
limitations (e.g. power constraints) and wish to minimise protocol
interactions.

We discuss our implementation in more depth in the following sec-
tions.

5.1. Design and Operation

The design and operation of our system is illustrated in Figure 1.
The system is composed of three main entities:

1. Services. Services utilise service location protocols (currently SLPv2
and UPnP) and these services are not modified in our approach.

2. Service Interpreters. Service interpreters watch for service announce-
ments, convert them into SQL INSERT statements and emit them
into a shared dataspace. There is typically one interpreter per pro-
tocol per subnet (more than one could be used for load balancing
or robustness.) The UPnP interpreter subscribes to GENA events,
converting changes of state into UPDATE messages.

"MobiDE Journal".tex; 28/02/2003; 11:28; p.16



Supporting Service Discovery, Querying and Interaction in Ubicomp Environments 17

3. State Databases. The state database removes messages containing
SQL statements from the shared dataspace, executes the query on
its database and returns one or more new entries as a response.
Again, multiple database entities could be used to improve scalab-
ility and performance.

5.2. Intermediate Communication Layer

The system entities are linked together using a shared communication
layer. In our current implementation we use a distributed tuple space
platform called L2imbo [8] for this communication. L2imbo is an effi-
cient, fully distributed tuple space implementation based on Scalable
Reliable Multicast principles [9]. Although the use of a tuple space is
not essential to our system, the use of a shared dataspace abstraction
does offer us a number of desirable properties. Since producers and
consumers are decoupled in both space and time [10], the system easily
supports:

1. Run time configuration and reconfiguration — entities may be star-
ted, stopped, relocated and replicated transparently.

2. Failure resilience — the system copes well with failed or unavailable
services (e.g. due to communications outages) as the queries persist
in the dataspace until the service is restarted (or the request is
handled by a redundant replica.)

3. Low configuration overhead — our platform entities are effectively
self discovering.

4. Evolution — providing the interface to the dataspace remains con-
stant, new services and applications may be introduced without
affecting the existing entities (as state is explicitly passed via or
intermediated by the dataspace.) For example, we could introduce
and lpr printer monitor service to augment SLP with dynamic
attributes without modifying other entities in our system.

Note that, although L2imbo uses a number of techniques to reduce
network load, the platform does generate traffic in addition to that
already present from the service discovery protocols. However, since
the state of the services is maintained across and between interactions,
we believe the overall burden on the network is reduced, as services
no longer have to respond directly to client search requests. We would
not, however, suggest that this is the optimal solution for situations

"MobiDE Journal".tex; 28/02/2003; 11:28; p.17



18 Friday, Davies, Wallbank, Catterall, Pink

where services are located on low-bandwidth networks. Examining the
performance of our system is a subject for future work.

L2imbo is based on SRM-like distributed caches that reach eventual
consistency by continuously monitoring a set of underlying IP multic-
ast groups. Caches use a ‘repair’ mechanism to service missed tuples.
For low power (e.g. hand-held or embedded) devices, we separate the
platform into two components: the platform API, which runs on the
mobile device, and the dataspace manager, which may run anywhere
on the network (typically the mobile’s point of presence.) The API
communicates with the manager using UDP; so only API requests,
rather than full cache maintenance traffic, need be propagated over the
wireless link.

L2imbo provides limited support for peer bridging and filtering between
dataspaces [33], allowing federation into sub-domains. Additional work
is required to improve the performance and bandwidth efficiently of
this facility.

5.3. Heterogeneous Test Environment

As part of the development programme we have deployed a limited
service test-bed in our office environment. The test-bed includes a mix
of traditional networked devices, off the shelf components [17], [1] and
novel networked services5 and appliances ([25]).

Protocol heterogeneity is a key aspect of our test-bed. Our current
services are based on the Microsoft and Intel UPnP toolkits and the
OpenSLP [18] reference implementation.

5.4. Qualitative Results

In this section we discuss the lessons we have learnt by building our test-
bed and evaluation system. Our implementation work has explicitly
addressed the following issues:

Interoperability. We have demonstrated that clients can discover and
access services across both UPnP and SLP protocols.

Programming Interface. SQL has proved to be a highly tractable
common programming interface for locating networked services,
with rich query semantics.

Scalability. Our approach is fully decentralised and highly reconfig-
urable, offering good prospects for scalability. Work is required to

5 Including a Dallas Semiconductor 1-wire bus weather station based on the
TMEX 1-wire drivers (supplied by Dallas Semiconductor), our own driver software
and a UPnP wrapper developed using the Microsoft UPnP toolkit.

"MobiDE Journal".tex; 28/02/2003; 11:28; p.18



Supporting Service Discovery, Querying and Interaction in Ubicomp Environments 19

optimise the interactions between the dataspace manager and the
client end-system.

State. SQL offers the ability to query for services based on any service
types or attributes. In future versions we may be able to offer
compensate for protocols that do not offer dynamic attributes (e.g.
SLPv2) by developing service monitors that use device specific
interaction protocols (such as LPR in the case of a printer). Our
dataspace intermediator would make this process transparent to
the end-user.

Meta-data. Our service state table can be updated by any tuple space
client, allowing the addition of meta-data using simple ‘JOIN’ op-
erations on the service database. The introduction of personalised
meta-data is not currently supported in our existing implementa-
tion.

Multiple Device and Service Reasoning. Querying across services
is the default behaviour in our system and has been shown to work
effectively. We have yet to address how service protocol specific
mappings occurs (e.g. how to reconcile attributes with different
names or behaviours such as UPnP’s DoubleSidePrint reconciling
with SLP’s DoubleSide.)

Wireless Access. This issue is only partially addressed in our im-
plementation. By placing the platform API on the mobile client,
we are able to minimise interactions with the service discovery
protocols and reduce the requirement to use the network. However,
we do not yet efficiently support the offering of services by mobile
end-systems.

Our implementation work has yet to address the issues of time, se-
curity and heterogeneous interaction, that we identified in section 4. We
believe we may be able to address some of the temporal issues by using
temporal extensions to the query language, such as TSQL2 [26]. Client
software is currently required to support all the interaction protocols
for services they wish to interact with. Control, device interaction and
transaction support using our paradigm is one of the topics for future
development.

One area we are particularly keen to investigate is the concept of a
distributed service transaction. Existing service location protocols do
not provide any support for regulating access (c.f. locking), checkpoint-
ing of service state or rollback behaviour. In the future many services
will correspond to physical devices with tangible as well as networked

"MobiDE Journal".tex; 28/02/2003; 11:28; p.19



20 Friday, Davies, Wallbank, Catterall, Pink

‘virtual’ user interfaces; consequently we suspect that a strong trans-
action may be impossible to achieve. However, the notion of being
able to control sets of devices in an atomic and predictable fashion
is certainly alluring and we aim to see what is possible using existing
service location and interaction paradigms.

6. Concluding Remarks

In this paper we have examined the four most commonly deployed
service discovery protocols and, together with a set of illustrative scen-
arios, identified a number of significant areas in which we believe such
protocols can be improved to better support ubiquitous computing
applications. We presented the design and implementation of a pro-
totype meta-service discovery architecture that uses a set of protocol
specific interpreters together with database techniques to provide a
unified interface across service discovery protocols; addressing some of
the key vulnerabilities we have identified. We have observed that SQL
does offer us a strong starting point for providing a succinct and efficient
cross-paradigm API.

References

1. Axis Communications: 2002, ‘AXIS Network Camera’.
2. Bahl, P. and V. Padmanabhan: 2000, ‘RADAR: An In-Building RF-Based User

Location and Tracking System’. In: Proceedings of IEEE INFOCOM 2000,
Vol. 2. pp. 775–784.

3. Bettstetter, C. and C. Renner: 2000, ‘A Comparison of Service Discovery Pro-
tocols and Implementation of the Service Location Protocol’. In: Proceedings
of EUNICE 2000.

4. Bonnet, P., J. Gehrke, and P. Seshardri: 2000, ‘Querying the Physical
World’. IEEE Personal Communications, Special Issue on Smart Spaces and
Environments.

5. Cheverst, K., N. Davies, K. Mitchell, A. Friday, and C. Efstratiou: 2000, ‘Ex-
periences of Developing and Deploying a Context-aware Tourist Guide: The
GUIDE Project’. In: Proceedings of MobiCom 2000. Boston, U.S., pp. 20–31.

6. Czerwinski, S., B. Zhao, T. Hodes, A. Joseph, and R. Katz: 1999, ‘An Architec-
ture for a Secure Service Discovery Service’. In: Proceedings of ACM Mobicom
1999. Seattle, Washington, U.S.

7. Dara-Abrams, A. and K. Hofrichter: 1999, ‘HAVi-UPnP Brdiging from the
HAVi Perspective – Principals, Approach and Arhitectural Sketch – draft
version 1.0’. Technical report, Sony Research Labs.

8. Davies, N., S. Wade, A. Friday, and G. Blair: 1998, ‘L2imbo: a tuple space
based platform for adaptive mobile applications’. ACM Mobile Networks and
Applications (MONET): Special Issue on Protocols and Software Paradigms of
Mobile Networks 3(2), 143–156.

"MobiDE Journal".tex; 28/02/2003; 11:28; p.20



Supporting Service Discovery, Querying and Interaction in Ubicomp Environments 21

9. Floyd, S., V. Jacobson, S. McCanne, C. Liu, and L. Zhang: 1995, ‘A Re-
liable Multicast Framework for Light-weight Sessions and Application Level
Framing’. In: ACM SIGCOMM. Cambridge, MA, pp. 342–356.

10. Gelernter, D.: 1985, ‘Generative Communication in Linda’. ACM Transactions
on Programming Languages and Systems 7(1), 80–112.

11. Goland, Y., T. Cai, P. Leach, Y. Gu, and S. Albright: 1999,
‘Simple Service Discovery Protocol, Version 1.0.3’. IETF Internet-Draft.
http://www.ietf.org/internet-drafts/draft-cai-ssdp-v1-03.txt.

12. Guttman, E., C. Perkins, and J. Kempf: 1999, ‘Service Templates and Service
Schemes’.

13. Guttman, E., C. Perkins, J. Veizades, and M. Day: 1990, ‘Service Location
Protocol, version 2’.

14. Harpe, H.: 1999, ‘Phillips, Sony, Sun collaborate to bridge HAVi and Jini
network architectures’.

15. HAVi Consortium: 2000, ‘HAVi Specification, version 1.0’.
16. Hodes, T., R. Katz, E. Servan-Schreiber, and L. Rowe: 1997, ‘Composable

Ad-Hoc Mobile Services for Universal Interaction’. In: Proceedings of ACM
Mobicom’97. Budapest, Hungary, pp. 1–12.

17. IETF, ‘IETF Zero Configuration Networking (zeroconf) Working Group’.
18. IETF: 2002, ‘OpenSLP 1.0.9a 15th May 2002’.
19. Jos, R. and N. Davies: 1999, ‘Scalable and Flexible Location-Based Ser-

vices for Ubiquitous Information Access’. In: Proceedings of 1st International
Symposium on Handheld and Ubiquitous Computing, HUC’99. Karlsruhe,
Germany.

20. Joseph, A., A. de Lespinasse, J. Tauber, D. Gifford, and M. Kaashoek: 1995,
‘Rover: A Toolkit for Mobile Information Access’. In: 15th ACM Symposium
on Operating Systems Principles. pp. 156–171.

21. Kindberg, T., J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty, G.
Gopal, M. Frid, V. Krishnan, H. Morris, J. Schettino, B. serra, and M. Spaso-
jevic: 2000, ‘People, Places, Things: Web Presence for the Real World’. In:
Proceedings proceedings 3rd IEEE Workshop on Mobile Computing Systems
and Applications, WMCSA 2000. Monterey, California, U.S., pp. 19–30.

22. McGrath, R.: 2000, ‘Discovery and Its Discontents: Discovery Proto-
cols for Ubiquitous Computing’. Technical Report UIUCDCS-R-99-2132.
http://choices.cs.uiuc.edu/2k/.

23. Microsoft Corporation: 1999, ‘Universal Plug and Play: Background’.
24. Microsoft Corporation: 2000, ‘Universal Plug and Play Device Architecture

Reference Specification, Version 1.0’.
25. Schmidt, A., M. Strohbach, K. van Laerhoven, A. Friday, and H.-W. Gellersen:

2002, ‘Context Aquisition using Load Sensing’. In: Proceedings of the 4th An-
nual ACM/IEEE Internation Conference on Ubiquitous Computing (Ubicomp
2002). Göteburg, Sweden, pp. 333–350.

26. Snodgrass, R.: 1995, The TSQL2 Temporal Query Language. Kluwer Academic
Publishers.

27. SOAP: 2000, ‘Simple Object Access Protocol (SOAP 1.1), 8th May 2000’.
http://www.w3.org/TR/SOAP.

28. Sun Microsystems Inc.: 1999a, ‘The JavaSpaces Specification’. White paper,
Sun Microsystems Inc.

29. Sun Microsystems Inc.: 1999b, ‘Jini Architectural Overview’. White paper,
Sun Microsystems Inc.

"MobiDE Journal".tex; 28/02/2003; 11:28; p.21



22 Friday, Davies, Wallbank, Catterall, Pink

30. Sun Microsystems Inc.: 1999c, ‘The The Jini Distributed Leasing Specification’.
White paper, Sun Microsystems Inc.

31. The Salutation Consortium: 1999, ‘Salutation Architecture Specification (Part
1), Version 2.0c’.

32. Troll, R.: 1999, ‘Automatically Choosing an IP Address in an Ad-Hoc Ipv4
Network’. IETF Internet-Draft. http://www.ietf.org/internet-drafts/draft-ietf-
dhc-ipv4-autoconfig-04.txt.

33. Wade, S.: 1999, ‘An Investigation into the use of the Tuple Space Paradigm in
Mobile Computing Environments’. Ph.D. thesis, Lancaster University, U.K.,
Computing Department, Faculty of Applied Sciences, Lancaster University,
Bailrigg, Lancaster, LA1 4YR, U.K.

"MobiDE Journal".tex; 28/02/2003; 11:28; p.22


