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SOME SELF-ADJOINT QUANTUM SEMIMARTINGALES

ALEXANDER C. R. BELTON

1. Introduction

The following quotation [21, Introduction], with which we agree strongly, refers to
the Hudson–Parthasarathy theory of quantum semimartingales [10].

Examples of symmetric quantum semimartingales are easy to find, but
essentially self-adjoint quantum semimartingales have, in general, proved
elusive. This is not unexpected since a quantum semimartingale is in some
sense an indefinite integral of a family of unbounded operators, and strong
conditions are required to ensure that the sum of even two unbounded
self-adjoint operators is self-adjoint.

The vacuum-adapted theory makes a striking contrast to this: the gauge integral
preserves self-adjointness. More precisely, if H is a vacuum-adapted, self-adjoint
process then

Us := R+ � t �→ I +
∫ t

0

(
eisH (r) − I

)
dA◦

r (1.1)

is a unitary process for all s ∈ R and (Us(t) : s ∈ R) is a strongly continuous,
one-parameter unitary group for all t � 0; unitarity is a simple consequence of
the multiplicativity of the vacuum-adapted gauge integral. (It seems necessary to
impose conditions on H in order to ensure the integrand in (1.1) is measurable and
vacuum-adapted.) Furthermore, in the strong sense,

lim
s→0

Us(t) − I

is
=

∫ t

0

H(r) dA◦
r for all t � 0,

where the integral has its maximal domain.
One way of viewing this result is as the commutativity of the maps

H �→ eiH − I and H �→
∫

H dA◦

on a large class of vacuum-adapted, self-adjoint processes. This relationship extends
to a functional Itô formula: if f : R → C is a bounded, Borel-measurable function
then

f

( ∫
H dA◦

)
= f(0) +

∫
(f(H) − f(0)) dA◦. (1.2)

If H is a self-adjoint process which is adapted in the sense of Hudson and Partha-
sarathy, the isomorphism [6] between vacuum-adapted semimartingales and those
adapted in the HP-sense yields, in many cases, a self-adjoint process K such that

K =
∫
(H − K) dA◦.

(Some care must be taken interpreting this integral; we follow Attal [3].)
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With either type of adaptedness, the processes obtained may be perturbed by
bounded, self-adjoint quantum semimartingales to produce further examples.

Although our central idea is very simple, certain technicalities have to be
addressed to ensure that eisH inherits adaptedness and measurability properties
from the self-adjoint process H. It appears, for H unbounded, that neither problem
has been examined before.

We prove that various conditions for measurability, given in terms of the
associated unitary groups, resolvents and spectral measures, are all equivalent and
we provide a sufficient condition for these to hold which may readily be verified for
various processes of interest in the quantum stochastic framework.

The adaptedness condition we adopt is the strong generalization of that which
holds in the bounded case: operators are required to have closure equal to the
ampliation by a particular projection, which is the identity in the usual theory and
equal to the vacuum projection for the vacuum-adapted case. (As some interest
has been shown in other possibilities, and it involves no extra working, we consider
these as well.) We show that this requirement for a process F to be vacuum adapted
is essentially equivalent to the condition EFE = F , where E is the conditional
expectation on Fock space.

The results stated above are in their simplest form; however, we work throughout
with an arbitrary (separable) initial space and in multiple Fock space of countable
multiplicity.

The idea of using vacuum adaptedness in quantum stochastic calculus goes
back to Hudson and Krée [9], who employed it for the investigation of processes
consisting of Hilbert–Schmidt operators (which clearly cannot be adapted in the
usual sense).

1.1. Conventions

The restriction of a function f to a subset A of its domain is denoted by f |A . The
indicator function of a set A is denoted by 1A : this function equals 1 if its argument
lies in the set A and equals 0 otherwise. The Kronecker delta is denoted by δ: the
expression δa

b equals 1 if a = b and 0 otherwise.
All vector spaces herein have complex scalar field and all inner products are

conjugate linear in their first argument. The orthogonal complement of a subset A
of a Hilbert space is denoted by A⊥. The algebraic tensor product of vector spaces
X and Y is denoted by X �Y and H⊗K denotes the Hilbert-space tensor product
of Hilbert spaces H and K.

An operator is a densely defined, linear transformation in a Hilbert space. The
closure of a set or a closable operator A is denoted by A. The von Neumann
algebra of bounded operators on a Hilbert space H is denoted by B(H) and B(H;K)
denotes the Banach space of bounded operators from a Hilbert space H to a Hilbert
space K.

2. Operators

In this section we consider properties of tensor products of operators, self-adjoint
operators and reduction of operators to invariant subspaces which will be used in
the sequel; some routine proofs are omitted.
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Proposition 2.1. If A, B and BA are operators then (BA)∗ ⊇ A∗B∗, with
equality if B is bounded.

Proof. See [19, Theorem 13.2].

2.1. Tensor products

If A and B are linear transformations in the Hilbert spaces H and K, respectively,
then A � B is the linear transformation in H ⊗ K with domain D(A) � D(B) and
action on elementary tensors given by

(A � B)(u ⊗ v) = Au ⊗ Bv for all u ∈ D(A) and v ∈ D(B).

Proposition 2.2. For any operators A and B,

A∗ � B∗ ⊆ (A � B)∗.

If A and B are closed then A � B is closable, with closure denoted by A ⊗ B, and

(A ⊗ B)∗ = A∗ ⊗ B∗.

Proof. See [11, Propositions 11.2.27 and 11.2.37].

2.2. Self-adjoint operators

Notation. If H is a self-adjoint operator in the Hilbert space H then

EH : B(R) → B(H); X �→ EH
X

denotes its spectral measure, where B(R) is the σ-algebra of Borel subsets of R.

Proposition 2.3. If A is an operator in the Hilbert space H, and U is an
isometric isomorphism with domain H, then

(i) UAU∗ is an operator such that (UAU∗)∗ = UA∗U∗;
(ii) if A is closable then so is UAU∗, with closure UAU∗;
(iii) if A is self-adjoint then so is UAU∗ and Uf(A)U∗ = f(UAU∗) for any

Borel-measurable function f : R → C.

Proposition 2.4. If H is a self-adjoint operator and P is an orthogonal
projection then H ⊗ P is self-adjoint and has spectral measure

X �→ EK
X := EH

X ⊗ P + δ0(X)I ⊗ P⊥, (2.1)

where δ0 denotes the Dirac measure on R with support {0}.
Conversely, if H is a closed operator such that H ⊗ P is self-adjoint, where P is

a non-zero orthogonal projection, then H is self-adjoint.

Proof. Self-adjointness of H⊗P is immediate from Proposition 2.2. It is readily
verified that (2.1) defines a spectral measure; recall that C �→ C ⊗ D is strong-
operator continuous on norm-bounded sets if D is a bounded operator. If X ⊆ R

is Borel, u, v ∈ D(H) and x, y ∈ D(P ) then

〈u ⊗ x,EK
X (v ⊗ y)〉 = 〈u,EH

X v〉〈x, Py〉 + δ0(X)〈u, v〉〈x, P⊥y〉;
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so, if K denotes the self-adjoint operator with spectral measure EK , then

‖Hv‖2‖Py‖2 =
∫

R

s2 d〈v,EH
s v〉〈y, Py〉

=
∫

R

s2 d〈v ⊗ y,EK
s (v ⊗ y)〉 =

∫
R

s2 d‖EK
s (v ⊗ y)‖2

which shows that v ⊗ y ∈ D(K). Furthermore,

〈u ⊗ x, (H � P )(v ⊗ y)〉 =
∫

R

s d〈u,EH
s v〉〈x, Py〉

=
∫

R

s d〈u ⊗ x,EK
s (v ⊗ y)〉 = 〈u ⊗ x,K(v ⊗ y)〉,

so H � P ⊆ K. Taking closures and using the fact that self-adjoint operators are
maximally symmetric gives the equality claimed.

For the converse, we show first that H is symmetric: let x be a unit vector such
that Px = x and note that D(H)�D(P ) ⊆ D(H ⊗P ); hence, for all u, v ∈ D(H),

〈u,Hv〉 = 〈u ⊗ x, (H ⊗ P )(v ⊗ x)〉 = 〈(H ⊗ P )(u ⊗ x), v ⊗ x〉 = 〈Hu, v〉.
Next, suppose that H is not self-adjoint; by [15, Theorem VIII.3] there exists a
unit vector w ∈ D(H∗) such that H∗w = ±iw. With x as before,

(H∗ ⊗ P ∗)(w ⊗ x) = ±i(w ⊗ x)

and therefore H∗ ⊗ P ∗ = (H ⊗ P )∗ has an eigenvector with eigenvalue ±i. This
contradicts the fact that H ⊗ P is self-adjoint.

Proposition 2.5. If H is a self-adjoint operator and P is an orthogonal
projection then H ⊗ P is the generator of the unitary group

R � s �→ Us := eisH ⊗ P + I ⊗ P⊥. (2.2)

The next lemma may be proved in the same manner as [8, Theorem 10.5.4].

Lemma 2.6. Let U = (Us = eisH : s ∈ R) be a strongly continuous, one-
parameter unitary group on the Hilbert space H. If u ∈ H is such that there exists
a sequence (sn )∞n=1 ⊆ R \ {0} and v ∈ H with

lim
n→∞

1
isn

〈w,Usn
u − u〉 = 〈w, v〉 for all w ∈ H

then u ∈ D(H) and Hu = v.

2.3. Reduction

It is fundamental to the interpretation of a non-anticipating calculus that a
process can have no dependence upon the future. In mathematical terms this leads
to the component operators having certain invariant subspaces.

Proposition 2.7. Let PK denote the orthogonal projection onto K, a closed
subspace of the Hilbert space H. If A is an operator in H then PKA ⊆ APK if and
only if

PKD(A) ⊆ D(A), A(D(A) ∩ K) ⊆ K and A(D(A) ∩ K⊥) ⊆ K⊥. (2.3)
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Proof. See [1, Theorem 40.2].

Definition 2.8. If A and K are as in Proposition 2.7 then K reduces A and
the reduction of A to K is the operator

A�K : D(A) ∩ K → K; u �→ Au. (2.4)

(It is immediate that A�K is densely defined: if u ∈ K then there exists a sequence
(un )∞n=1 ⊆ D(A) such that un → u, but as D(A �K) := D(A) ∩ K = PKD(A),
(PKun )∞n=1 is a sequence in D(A�K) that converges to u.)

Note that A is reduced by K if and only if it is reduced by K⊥ and, if B is also
reduced by K, so are A + B and AB (if AB is densely defined), with (A + B)�K =
A�K +B�K and (AB)�K = A�K B�K.

Proposition 2.9. If A is a closable operator in the Hilbert space H, and K is
a closed subspace of H that reduces A, then K reduces A∗ and (A�K)∗ = A∗�K. In
particular, if A is self-adjoint then A�K is also and, if f : R → C is Borel measurable,
f(A) is reduced by K and f(A�K) = f(A)�K.

Proof. Note that

PKA ⊆ APK =⇒ PKA∗ ⊆ (APK)∗ ⊆ (PKA)∗ = A∗PK; (2.5)

the first inclusion and the equality follow from Proposition 2.1. If u ∈ D(A∗ �K)
then

〈A∗�K u, v〉 = 〈A∗u, v〉 = 〈u,Av〉 = 〈u,A�K v〉 for all v ∈ D(A) ∩ K,

so u ∈ D((A�K)∗) and (A�K)∗u = A∗�K u. Conversely, if u ∈ D((A�K)∗) then

〈(A�K)∗u, v〉 = 〈u,A�K v〉 for all v ∈ D(A�K) = D(A) ∩ K.

If w ∈ D(A) then PKw ∈ D(A) ∩ K and

〈u,Aw〉 = 〈u, PKAw〉 = 〈u,APKw〉
= 〈u,A�K PKw〉 = 〈(A�K)∗u, PKw〉 = 〈(A�K)∗u,w〉.

Hence u ∈ D(A∗) ∩ K and A∗�K u = A∗u = (A�K)∗u.
That f(A) is reduced by K if A is self-adjoint follows from [22, Theorem XI.12.1]

(which states that if B is a bounded operator and BA ⊆ AB then Bf(A) ⊆ f(A)B).
Finally, since EA

X = 1X (A) is reduced by K, EA
X �K is well defined for all X ∈ B(R);

it is immediate that X �→ EA
X�K is a spectral measure and, if u ∈ K and v ∈ D(A�K),

〈u,A�K v〉 = 〈u,Av〉 =
∫

R

s d〈u,EA
s v〉 =

∫
R

s d〈u,EA
s �K v〉.

Hence A�K has spectral measure X �→ EA
X �K; that f(A)�K = f(A�K) is immediate

from this.

2.4. Fock space

Notation. Let F(I) := Γ+(L2(I; k)) denote Boson (that is, symmetric) Fock
space over L2(I; k), the space of strongly measurable, square-integrable, k-valued
functions on I, where I is any Borel subset of R+ := [0,∞) and k is a separable
Hilbert space, the multiplicity space.
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One way to view F(I) is as the closure of E(I), the linear span of the linearly
independent family of exponential vectors {ε(u) : u ∈ L2(I; k)}, with respect to the
inner product

〈ε(u), ε(v)〉F(I ) := exp〈u, v〉L2(I ;k) = exp
(∫

I

〈u(t), v(t)〉k dt

)
. (2.6)

If I1 and I2 are disjoint, Borel subsets of R+ then F(I1) ⊗ F(I2) is isometrically
isomorphic to F(I1 ∪ I2), via ιI1,I2 , the continuous extension of the linear bijection

E(I1) � E(I2) → E(I1 ∪ I2); ε(u1) ⊗ ε(u2) �→ ε(u1 ⊕ u2), (2.7)

where u1 ⊕ u2 ∈ L2(I1 ∪ I2; k) is given by

(u1 ⊕ u2)(t) :=

{
u1(t) if t ∈ I1,

u2(t) if t ∈ I2.
(2.8)

(Note that ιI1,I2(E(I1) � E(I2)) = E(I1 ∪ I2).)
For t � 0 we let F := F(R+), Ft := F([0, t)) and F t := F([t,∞)); note that

Ft ⊗F t ∼= F via the isometric isomorphism ιt := ι[0,t),[t,∞). It is useful to introduce
the notation ut := u|[0,t) and ut := u|[t,∞), so that u = ut ⊕ ut and

ι−1
t ε(u) = ε(ut) ⊗ ε(ut) for all u ∈ L2(R+; k). (2.9)

We also regard ut and ut as elements of L2(R+; k): ut = 1[0,t)u and ut = 1[t,∞)u.

Definition 2.10. A subset S ⊆ L2(R+; k) is admissible if
(i) ES := lin{ε(u) : u ∈ S} is dense in F ;
(ii) ut ∈ S for all u ∈ S and t � 0.

We let ES(I) := lin{ε(u) : u ∈ L2(I; k) ∩ S}, with L2(I; k) regarded as a subspace
of L2(R+; k) in the natural manner,

ES := ES(R+), ES,t := ES([0, t)) and E t
S := ES([t,∞)),

so that ES = ιt(ES,t � E t
S).

Notation. Let h be a separable Hilbert space (the initial space) with dense
subspace h0 and define

F̃ := h ⊗F , F̃t := h ⊗Ft ,

Ẽ := h0 � E(R+), ẼS := h0 � ES and ẼS,t := h0 � ES,t ,

so that Ẽ and ẼS are dense subspaces of F̃ and ι̃t := Ih ⊗ ιt is an isomorphism
between F̃t ⊗F t and F̃ such that ẼS = ι̃t(ẼS,t � E t

S).
Henceforth, we omit the product sign between the components of elementary

tensors in F̃ : if a ∈ h and θ ∈ F then aθ denotes a ⊗ θ ∈ F̃ .

Proposition 2.11. If B is a closed operator in F̃t , C is a bounded, self-adjoint

operator on F t such that Cε(0) = ε(0), and A = ι̃t(B ⊗ C)ι̃ ∗t then F̃t reduces A
and A�F̃t

= B.
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Proof. Note that PF̃t
= ι̃t(IF̃t

⊗ PCε(0))ι̃ ∗t : this is immediate on Ẽ , so holds
everywhere by continuity. Hence

PF̃t
A = ι̃t(B ⊗ PCε(0)C)ι̃ ∗t and APF̃t

= ι̃t(B ⊗ CPCε(0))ι̃ ∗t ,

so F̃t reduces A if Cε(0) reduces C, but this is trivial:

PCε(0)D(C) = Cε(0) ⊆ F t = D(C), C
(
D(C) ∩ Cε(0)

)
= CCε(0) = Cε(0),

and if x ∈ D(C) ∩ Cε(0)⊥ then Cx ∈ Cε(0)⊥ because

〈Cx, γε(0)〉 = 〈x, γCε(0)〉 = 0 for all γ ∈ C.

For the last part, note that ι̃t
(
aε(u) ⊗ ε(0)

)
= aε(u) for all a ∈ h and u ∈ L2[0, t),

so ι̃ ∗t θ = θ ⊗ ε(0) for all θ ∈ ẼS,t , and thus for all θ ∈ F̃t , by continuity. Hence

θ ∈ D(A) ∩ F̃t ⇐⇒ θ ⊗ ε(0) ∈ D(B ⊗ C)

and if θ ∈ D(B) then

θ ⊗ ε(0) ∈ D(B) � D(C) ⊆ D(B ⊗ C);

so θ ∈ D(A�F̃t
) and

A�F̃t
θ = ι̃t

(
Bθ ⊗ Cε(0)

)
= Bθ.

It remains to show that D(A�F̃t
) ⊆ D(B); for this, let θ ∈ D(A�F̃t

) and note that
θ ⊗ ε(0) ∈ D(B ⊗ C), so there exists a sequence(∑mn

l=1
φ1,n

l ⊗ φ2,n
l

)∞

n=1
⊆ D(B) � D(C)

such that∑mn

l=1
φ1,n

l ⊗ φ2,n
l → θ ⊗ ε(0) and

(∑mn

l=1
Bφ1,n

l ⊗ Cφ2,n
l

)∞

n=1
is convergent.

Let γn
l ∈ C be such that PCε(0)φ

2,n
l = γn

l ε(0) and note that∑mn

l=1
γn

l φ1,n
l ⊗ ε(0) = (I ⊗ PCε(0))

(∑mn

l=1
φ1,n

l ⊗ φ2,n
l

)
→ θ ⊗ ε(0),

from which it follows that
∑mn

l=1 γn
l φ1,n

l → θ. Since PCε(0)C = CPCε(0),

(I ⊗ PCε(0))
(∑mn

l=1
Bφ1,n

l ⊗ Cφ2,n
l

)
=
∑mn

l=1
Bγn

l φ1,n
l ⊗ ε(0),

so
(
B
∑mn

l=1 γn
l φ1,n

l

)∞
n=1

is convergent and thus θ ∈ D(B).

Proposition 2.12. If A is a closable operator in F̃ such that PF̃t
APF̃t

= A

then F̃t reduces A and

A = ι̃t
(
A�F̃t

⊗PCε(0)

)
ι̃ ∗t .

Proof. The fact that F̃t reduces A (and so A) is immediate from the definition.
As PF̃t

θ = ι̃t(PF̃t
θ ⊗ ε(0)) for all θ ∈ F̃ and PF̃t

= ι̃t(IF̃t
⊗ PCε(0))ι̃ ∗t , if φ ∈ D(A)

then

Aφ = A�F̃t
PF̃t

φ = ι̃t
(
A�F̃t

PF̃t
φ ⊗ ε(0)

)
= ι̃t

(
A�F̃t

⊗ IF t

)
ι̃ ∗t PF̃t

φ = ι̃t
(
A�F̃t

⊗PCε(0)

)
ι̃ ∗t φ;
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this shows that ι̃ ∗t Aι̃t ⊆ A�F̃t
⊗PCε(0) =: B. For the reverse inclusion, let

φn =
mn∑
l=1

φ1,n
l ⊗ φ2,n

l ∈ D(A�F̃t
) � D(PCε(0)) = D(A�F̃t

) �F t

be such that φn → φ and Bφn → Bφ. If γn
l ∈ C is such that γn

l ε(0) = PCε(0)φ
2,n
l

then ι̃tφn → ι̃tφ, PF̃t
ι̃tφn =

∑mn

l=1 γn
l φ1,n

l ∈ D(A) and

ι̃ ∗t Aι̃tφn = ι̃ ∗t APF̃t
ι̃tφn = ι̃ ∗t

mn∑
l=1

γl
nAφ1,n

l =
mn∑
l=1

A�F̃t
φ1,n

l ⊗ γl
nε(0) = Bφn,

so ι̃ ∗t Aι̃tφn → Bφ, φ ∈ D(ι̃ ∗t Aι̃t) and ι̃ ∗t Aι̃tφ = Bφ, as required.

3. Processes

After studying certain questions of measurability for collections of operators, we
introduce the notion of process and types of adaptedness.

3.1. Measurability

For a function with values in a separable Hilbert space, the concepts of weak and
strong measurability coincide, by a theorem of Pettis [22, Theorem V.4]. As all the
Hilbert spaces occurring in this work are separable, we shall henceforth apply the
adjective ‘measurable’ to such functions without any qualifying adverb and shall
exploit both notions interchangeably.

Lemma 3.1. If H is a separable Hilbert space, φ : R+ → H is measurable and
E = (E(t) : t � 0) is a family of operators in H such that

(i) R+ � t �→ E(t)u is measurable for all u ∈ D(E) :=
⋂

t�0 D(E(t)),
(ii) φ(t) ∈ D(E(t)) for all t � 0,
(iii) D(E∗) =

⋂
t�0 D(E(t)∗) is dense in H,

then R+ � t �→ E(t)φ(t) is measurable.

Proof. If v ∈ D(E∗) then R+ � t �→ 〈E∗(t)v, u〉 = 〈v,E(t)u〉 is measurable for
all u ∈ D(E), so, as this set is dense, R+ � t �→ E∗(t)v is as well. Let (φn )∞n=1 and
(ψn )∞n=1 be sequences of simple functions converging almost everywhere to φ and to
R+ � t �→ E∗(t)v, respectively; R+ � t �→ 〈ψn (t), φn (t)〉 is a simple function for all
n and these converge almost everywhere to R+ � t �→ 〈E∗(t)v, φ(t)〉 = 〈v,E(t)φ(t)〉.
Since D(E∗) is dense in H, the result follows.

Corollary 3.2. If H is a separable Hilbert space and F , G : R+ → B(H) such
that R+ � t �→ F (t)u and R+ � t �→ G(t)u are measurable for all u ∈ H then
R+ � t �→ F (t)G(t)u is measurable for all u ∈ H.

Proof. Take E = F and φ(t) = G(t)u in the previous result.

If H = (H(t) : t � 0) is a family of self-adjoint operators, we should like the
function R+ � t �→ f(H(t)) to inherit some form of measurability from H. If H
consists of bounded operators then this is straightforward (and well known).
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Theorem 3.3. Let H = (H(t) : t � 0) be a family of bounded, self-adjoint
operators such that R+ � t �→ H(t)u is measurable for all u ∈ H. If f : R → C

is continuous then f(H) = (f(H(t)) : t � 0) is such that R+ � t �→ f(H(t))u is
measurable for all u ∈ H.

Proof. The case where f is a polynomial function is immediate, by Corollary 3.2.
Next, suppose that H has locally bounded norm and, for N ∈ N, let

νN := sup{‖H(t)‖ : t ∈ [0, N ]}.
By Weierstrass’s approximation theorem, there exists a sequence of polynomials
(pN

n )∞n=1 with pN
n → f uniformly on [−νN , νN ] and so

pN
n (H(t))u → f(H(t))u for all u ∈ H and t ∈ [0, N ].

Hence R+ � t �→ 1[0,N ](t)f(H(t))u is measurable for all u ∈ H and the result
follows, since 1[0,N ]I → I pointwise in norm as N → ∞. Finally, if H does not have
locally bounded norm, let

An := {t ∈ R+ : ‖H(t)‖ � n} = ‖H(·)‖−1[0, n]

and note that, because An is measurable (a straightforward exercise), so too is
R+ � t �→ 1An

(t)H(t)u for all u ∈ H. As 1An
H has bounded norm, the previous

working yields measurability of R+ � t �→ f(1An
(t)H(t))u for all u ∈ H. Finally,

f(1An
(t)H(t)) → f(H(t)) in norm as n → ∞, for all t ∈ R+, whence the required

result follows.

Corollary 3.4. If H is as in Theorem 3.3 and f : R → C is Borel measurable
then R+ � t �→ f(H(t))u is measurable for all u ∈

⋂
t�0 D(f(H(t))).

Proof. While this may be proved directly, it follows from the previous theorem
(with f : x �→ eisx , where s ∈ R), Theorem 3.7 and Proposition 3.6.

The technique used above is not applicable to the unbounded case, however; a
stronger notion of measurability seems to be required.

Lemma 3.5. If H = (H(t) : t � 0) is a collection of self-adjoint operators in
the separable Hilbert space H and M denotes the class of elements X in B(R) such

that R+ � t �→ E
H (t)
X u is measurable for all u ∈ H then M is a σ-algebra.

Proof. As

E
H (t)
∅ = 0, E

H (t)
R\X = I − E

H (t)
X and E

H (t)
X1∩X2

= E
H (t)
X1

E
H (t)
X2

,

we see that M contains ∅, is closed under complements and is closed under finite
intersections, respectively; thus M is a subalgebra of B(R). If (Xn )∞n=1 ⊆ M then,
without loss of generality, these sets may be assumed to be disjoint and

E
H (t)
X u =

∞∑
n=1

E
H (t)
Xn

u for all u ∈ H,

so X ∈ M, as required.

The next proposition indicates the correct choice for measurability.
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Proposition 3.6. Let H = (H(t) : t � 0) be a family of self-adjoint operators

in the separable Hilbert space H, such that R+ � t �→ E
H (t)
X u is measurable for all

u ∈ H and X ∈ B(R). If f : R → C is a Borel-measurable function then R+ � t �→
f(H(t))u is measurable for all u ∈

⋂
t�0 D(f(H(t))).

Proof. Let f : R → C be Borel measurable and let (fn )∞n=1 be a sequence of
simple functions that converges pointwise to f such that |fn | � 2|f | for all n � 1
[7, Theorem 13.5]. Since

R+ � t �→
∫

R

1X (s) d〈u,EH (t)
s v〉 = 〈u,E

H (t)
X v〉

is measurable for all u, v ∈ H and X ∈ B(R),

R+ � t �→
∫

R

f(s) d〈u,EH (t)
s v〉 = lim

n→∞

∫
R

fn (s) d〈u,EH (t)
s v〉

is measurable for all u ∈ H and v ∈
⋂

t�0 D(f(H(t))); the equality holds by the
dominated-convergence theorem of Lebesgue.

Theorem 3.7. Let H = (H(t) : t � 0) be a collection of self-adjoint operators
in the separable Hilbert space H. The following are equivalent:

(i) R+ � t �→ (H(t) + iI)−1u is measurable for all u ∈ H;
(i′) R+ � t �→ (H(t) + iγI)−1u is measurable for all γ ∈ R \ {0} and u ∈ H;
(ii) R+ � t �→ eisH (t)u is measurable for all s ∈ R and u ∈ H;

(iii) R+ � t �→ E
H (t)
X u is measurable for all X ∈ B(R) and u ∈ H.

Proof. (i)⇒(i′). Recall that if A is a self-adjoint operator and λ0 ∈ C \R, then

(A + λI)−1 =
∞∑

m=0

(λ0 − λ)m (A + λ0I)−(m+1) with |λ − λ0| < | Im λ0| (3.1)

(see [22, VIII.2(1),VIII.1(2)]); so the measurability of R+ � t �→ (H(t) + iI)−1

implies that of R+ � t �→ (H(t) + iγI)−1 for all γ ∈ (0, 2): take λ0 = i and λ = iγ
in the above. Next, note that if λ0 = iγ0 with γ0 > 0 then the identity (3.1) holds
for all λ = iγ with γ ∈ (0, 2γ0); hence the result holds for all γ > 0. The case where
γ < 0 follows by taking the adjoint.

(i′)⇒(ii). Note that (1 − isr/n)−n → eisr as n → ∞ and∣∣∣∣eisr −
(
1 − isr

n

)−n
∣∣∣∣ � 1 +

(
1 +

s2r2

n2

)−n/2

� 2,

for all s, r ∈ R and n � 1. Hence, by the dominated-convergence theorem,

eisH (t)u = lim
n→∞

(
I − isH(t)

n

)−n

u for all u ∈ H, t � 0.

If s �= 0 then (
I − isH(t)

n

)−n

=
( in

s

)n(
H(t) + i

n

s
I
)−n

,

and so the claim follows by Corollary 3.2.
(ii)⇒(iii). If u ∈ H then, since R+ � s �→ eisH (t)u is continuous for all t � 0, the

map R × R+ � (s, t) �→ eisH (t)u is measurable, which follows from approximation
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with functions piecewise-constant in s (see [7, Proof of Theorem 37.2]). If f : R → C

is a continuous function such that it and its Fourier transform

f̃ : R → C; s �→ 1√
2π

∫
R

f(r)e−isr dr

are both Lebesgue integrable then f is bounded (since t �→ f(t) = ˜̃
f(−t) is

continuous and tends to 0 at infinity [18, Theorem 9.11]); a simple Fubini–Tonelli
argument proves that

f(H(t))u =
1√
2π

∫
R

f̃(s)eisH (t)u ds

for all t � 0 and that the map R+ � t �→ f(H(t))u is measurable. Finally, for
s ∈ R let (fn : R → [0, 1])∞n=1 be a sequence of infinitely differentiable functions
with compact support that converges pointwise to 1[s,s+1]; such a sequence may
be constructed as in [19, § 1.46]. By the dominated-convergence theorem and the
previous working, we have the measurability of R+ � t �→ E

H (t)
[s,s+1]u and the result

follows from Lemma 3.5.
(iii)⇒(i). This follows from Proposition 3.6 with f(s) = (s + i)−1.

Remark 3.8. Condition (i) of Theorem 3.7 is the measurability condition
used by Reed and Simon [17, §XIII.16, p. 283]; condition (ii) is (essentially) that
employed by Pathmanathan [14]. Vincent-Smith states [20, § 12; 21, § 2] that
(eisH (t) : t � 0) is a unitary process (as in Definition 3.14) for any s ∈ R and
any self-adjoint quantum semimartingale H (see [2]) but provides no proof of
measurability.

Definition 3.9. If H = (H(t) : t � 0) is a family of self-adjoint operators that
satisfies the conditions of Theorem 3.7 then H is spectrally measurable.

Lemma 3.10. If H, H1, H2, . . . are self-adjoint operators with common core D
such that Hnu → Hu for all u ∈ D then eisHn → eisH strongly for all s ∈ R.

Proof. These hypotheses imply the convergence of (Hn )∞n=1 to H in the strong
resolvent sense [15, Theorem VIII.25(a)] and thus the result follows from a theorem
due to Trotter [15, Theorem VIII.21].

Proposition 3.11. Let H = (H(t) : t � 0) be a family of self-adjoint operators
in the separable Hilbert space H with common core D =

⋃
n�1 Dn , where each Dn

is a closed subspace of H and Dn ⊆ Dn+1 for all n � 1. If R+ � t �→ H(t)u is
measurable for all u ∈ D then H is spectrally measurable.

Proof. Let Pn denote the orthogonal projection onto Dn ; since D is dense in H,
Pn → I strongly. If A = H(t) for some t � 0 then D(PnAPn ) = D(APn ) = H and,
by Proposition 2.1,

(PnAPn )∗ ⊇ P ∗
n (PnA)∗ = PnA∗P ∗

n = PnAPn .

Thus, by the Hellinger–Toeplitz theorem [19, Theorem 13.11(a)], PnAPn is bounded
and self-adjoint. If u ∈ D then Pnu = u for all sufficiently large n; therefore
PnAPnu → Au; hence Lemma 3.10 implies that eisPn APn → eisA strongly for
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all s ∈ R. If u ∈ H then Pnu ∈ Dn ⊆ D, so R+ � t �→ PnH(t)Pnu is measurable;
thus, by Theorem 3.3, R+ � t �→ eisPn H (t)Pn u is also and the result follows.

Example 3.12 [4]. Recall that Boson Fock space has the chaos decomposition

F = CΩ ⊕
∞⊕

n=1

L2
sym(Rn

+; k) =:
∞⊕

n=0

Hn .

Let p ∈ C〈x, y, z〉 be a polynomial in the non-commuting indeterminates x, y and z
such that p† = p, where the anti-isomorphic involution † satisfies x† = y and z = z†.
If E(t) = p(At,A

†
t , A

◦
t ) is a polynomial in the basic integrators of (one-dimensional)

quantum stochastic calculus then E(t) has a representation as a ∗-symmetric matrix
of bounded operators, E(t) = (En

m (t))∞n,m=0, where En
m (t) = Em

n (t)∗ ∈ B(Hm ;Hn )
for all m,n ∈ Z+ := {0, 1, 2, . . .}. Furthermore, there exists d ∈ Z+ such that
En

m ≡ 0 if |n−m| > d, so D(E) ⊇ H00 :=
∑∞

n=0 Hn , the algebraic sum of the spaces
Hn (the finite-particle space), and if each E(t) is self-adjoint then H00 is a core for
E. Since t �→ En

m (t) is strongly continuous for all m,n ∈ Z+, if E is self-adjoint
then it is spectrally measurable.

Proposition 3.13. If H = (H(t) : t � 0) and K = (K(t) : t � 0) are
each spectrally measurable collections of self-adjoint operators and H(t) + K(t) is
essentially self-adjoint on D(H(t)) ∩ D(K(t)) for all t � 0 then the collection

H + K = (H(t) + K(t) : t � 0)

is spectrally measurable.

Proof. This follows from condition (ii) of Theorem 3.7 and Trotter’s product
formula [15, Theorem VIII.31].

3.2. Processes

Definition 3.14. If H is a separable Hilbert space then an H-process F is a
collection of (necessarily closable) operators (F (t) : t � 0) in H ⊗ F̃ such that, for
all t � 0,

(i) D(1[0,t)F ) and D(1[0,t)F
∗) are dense in H ⊗ F̃ ;

(ii) R+ � s �→ (1[0,t)F )(s)θ := 1[0,t)(s)F (s)θ is measurable for all θ ∈ D(1[0,t)F ).
The adjoint process F ∗ = (F (t)∗ : t � 0) is also an H-process. A process F (we
suppress the space H if it is not relevant) has core D if D ⊆ D(F ) and F (t)|D = F (t)
for all t � 0. A process F is bounded or unitary if F (t) is bounded or unitary,
respectively, for all t � 0; a process H is self-adjoint if H(t) is self-adjoint for all
t � 0 and H is spectrally measurable.

Remark 3.15. Note that the collection of bounded processes is a ∗-algebra
and that the sum of any process and a bounded process is also a process (where all
algebraic operations are defined pointwise).

Remark 3.16. A spectrally measurable collection of self-adjoint operators is
an H-process if D(1[0,t)H) is dense in H ⊗ F̃ for all t � 0, by Proposition 3.6.
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3.3. Adaptedness

The continuous tensor-product structure of Fock space gives rise to notions of
adaptedness: a process of operators is adapted if each term corresponds to the
ampliation by some non-zero orthogonal projection. (This form is imposed by
the requirement that such processes be causal, that is, non-anticipating, and for
algebraic reasons.) The simplest examples involve ampliation by the identity
operator (the usual, Hudson–Parthasarathy type of adaptedness) or vacuum
projection (vacuum adaptedness); other possibilities have been explored (for
example, Lenczewski’s colour-filtered calculus [12]).

Notation. Let p be an orthogonal projection onto some subspace of k; the
operator p acts pointwise on L2(I; k) in the obvious manner: (pu)(t) = p(u(t))
for all t ∈ I. Let Πp

I denote the second quantization of this operator: Πp
I is an

orthogonal projection in B(F(I)) and acts on E(I) so that Πp
I ε(u) = ε(pu).

Definition 3.17. An H-process F is p-adapted if, for all t � 0, there exists a
closed operator Ft in H ⊗ F̃t such that

F (t) ⊆ ι̃t
(
Ft ⊗ Πp

[t,∞)

)
ι̃ ∗t . (3.2)

A process F is strongly p-adapted if

F (t) := F (t) = ι̃t
(
Ft ⊗ Πp

[t,∞)

)
ι̃ ∗t for all t � 0. (3.3)

Notation. Vacuum-adapted and HP-adapted processes are referred to as 0-
adapted and 1-adapted, respectively.

Remark 3.18. If F is a strongly p-adapted H-process then F (t) is reduced by
H ⊗ F̃t for all t � 0, by Proposition 2.11. The orthogonal decomposition

H ⊗ F̃ = (H ⊗ F̃t) ⊕ (H ⊗ F̃⊥
t )

yields a block-diagonal decomposition [1, Theorem 40.1] as follows:

F (t) ↔
(

F (t)�H⊗F̃t
0

0 F (t)�H⊗F̃⊥
t

)
for all t � 0.

In the particular case of 0-adaptedness, F (t)�H⊗F̃⊥
t

= 0 because

F (t)PH⊗F̃⊥
t

= ι̃t
(
Ft ⊗ Π0

[t,∞)

)(
IH⊗F̃t

⊗ P⊥
Cε(0)

)
ι̃ ∗t = ι̃t

(
Ft ⊗ PCε(0)PCε(0)⊥

)
ι̃ ∗t .

In particular, if F − I is strongly 0-adapted then

F (t) ↔
(

F (t)�H⊗F̃t
0

0 I�H⊗F̃⊥
t

)
for all t � 0;

this explains why it is natural, in the 0-adapted set-up, to require a unitary process
U to be such that U − I is 0-adapted. (Clearly U cannot be 0-adapted.)

Proposition 3.19. An H-process F such that F = (IH ⊗ E)F (IH ⊗ E) is
strongly 0-adapted, where the conditional expectation R+ � t �→ Et ∈ B(F̃)
satisfies Etaε(u) = aε(ut) for all a ∈ h and u ∈ L2(R+; k). Conversely, if F is
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a strongly 0-adapted H-process then there is an H-process G such that

G = (IH ⊗ E)G(IH ⊗ E) and G = F .

Proof. If F = (I ⊗ E)F (I ⊗ E) then, by Proposition 2.12, F is strongly 0-
adapted. Conversely, if F is strongly 0-adapted then G : R+ � t �→ F (t)(I ⊗ Et)
is as required: Proposition 2.11 shows that D(G(t)) ⊇ D(F (t) �H⊗F̃t

) � F t and
G(t) = (IH ⊗ Et)G(t)(IH ⊗ Et), the inclusion D(G(t)∗) ⊇ D(F (t)∗) is obvious from
Proposition 2.1, and measurability for G holds by Lemma 3.1. Finally, G(t) is closed
(by Proposition 2.1) and G(t)�H⊗F̃t

= F (t)�H⊗F̃t
.

Proposition 3.20. A p-adapted H-process F with D(F ) ⊇ H0 � ẼS satisfies
the inner-product identity

〈aε(u), F (t)bε(v)〉 = 〈aε(ut), F (t)bε(vt)〉〈ε(ut), ε(pvt)〉 for all t � 0, (3.4)

for all a, b ∈ H0 � h0 and u, v ∈ S. Conversely, an H-process F with domain or
core H0 � ẼS is p-adapted or strongly p-adapted, respectively, if (3.4) holds for all
a, b ∈ H0 � h0 and u, v ∈ S.

Proof. By definition, if F is p-adapted then

〈aε(u), F (t)bε(v)〉 = 〈aε(ut), Ftbε(vt)〉〈ε(ut), ε(pvt)〉 for all t � 0,

for all a, b ∈ H0 � h0 and u, v ∈ S; taking u = ut and v = vt yields the identity
(3.4). Conversely, (3.4) implies that F (t)|H0�ẼS, t

has range in H ⊗ F̃t (take v = vt)
and so

F (t)|H0�ẼS
= ι̃t(F (t)|H0�ẼS, t

� Πp
[t,∞)|E t

S
)ι̃ ∗t ;

taking closures gives the result, by Propositions 2.2 and 2.3.

Proposition 3.21. Let H be a strongly p-adapted, self-adjoint H-process. If
f : R → C is Borel measurable with f(0) = 0 and f(H(t)) has core H0 � ẼS for all
t � 0 then f(H) is a strongly p-adapted process.

Proof. Proposition 3.6 implies that f(H) is an H-process. Let a, b ∈ H0 � h0

and u, v ∈ S; for t � 0 we have

〈aε(u), f(H)(t)bε(v)〉 = 〈aε(ut) ⊗ ε(ut), ι̃ ∗t f(H)(t)ι̃t(bε(vt) ⊗ ε(vt))〉
= 〈aε(ut) ⊗ ε(ut), f(ι̃ ∗t H(t)ι̃t)(bε(vt) ⊗ ε(vt))〉,

by Proposition 2.3. Since H is strongly p-adapted, Propositions 2.9 and 2.11 imply
that H(t)�F̃t

= Ht is self-adjoint, and the last inner product above equals

〈aε(ut) ⊗ ε(ut), f(Ht ⊗ Πp
[t,∞))(bε(vt) ⊗ ε(vt))〉

=
∫

R

f(s) d〈aε(ut), EHt
s bε(vt)〉〈ε(ut),Πp

[t,∞)ε(v
t)〉

+ f(0)〈aε(ut), bε(vt)〉〈ε(ut), (Πp
[t,∞))

⊥ε(vt)〉,
by Proposition 2.4. As f(0) = 0 the second term vanishes, and the first equals

〈aε(ut), f(Ht)bε(vt)〉〈ε(ut), ε(pvt)〉 = 〈aε(ut), f(H)(t)bε(vt)〉〈ε(ut), ε(pvt)〉.
This yields strong p-adaptedness, by Proposition 3.20.
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Proposition 3.22. If H is a self-adjoint H-process and R+ � t �→ eisH (t) − I
is strongly p-adapted for all s ∈ R then H is strongly p-adapted.

Proof. Since eisH − I is strongly p-adapted, for all t � 0 and s ∈ R there exists
a bounded operator Kt(s) such that

eisH (t) − I = ι̃t
(
Kt(s) ⊗ Πp

[t,∞)

)
ι̃ ∗t . (3.5)

For the claim, it suffices to prove that, for all t � 0, the operator Gt , where

D(Gt) :=
{

θ ∈ H ⊗ F̃t : lim
s→0

1
is

Kt(s)θ exists
}

and Gtθ = lim
s→0

1
is

Kt(s)θ,

is self-adjoint, since ι̃t
(
Gt �Πp

[t,∞)

)
ι̃ ∗t ⊆ H(t). Equivalently, it suffices to show that

(Kt(s) + I : s ∈ R) is a strongly continuous, one-parameter unitary group. Strong
continuity is immediate from (3.5) and if

M(s) := ι̃t
(
(Kt(s) + I) ⊗ Πp

[t,∞)

)
ι̃ ∗t = eisH (t) − I + ι̃t

(
I ⊗ Πp

[t,∞)

)
ι̃ ∗t

then M(s)∗ = M(−s), M(0) = ι̃t
(
I ⊗ Πp

[t,∞)

)
ι̃ ∗t and M(r)M(s) = M(r + s) for all

r, s ∈ R. Since M(s)�H⊗F̃t
= Kt(s) + I, the result follows.

Proposition 3.23. If F is a strongly p-adapted H-process then there exists a
strongly 0-adapted H-process E such that E(t)�H⊗F̃t

= F (t)�H⊗F̃t
for all t � 0,

which is unique up to closure: if G is a strongly 0-adapted H-process such that
G(t)�H⊗F̃t

= F (t)�H⊗F̃t
for all t � 0 then G = E. The process E is self-adjoint if

and only if F has the same property.

Proof. For t � 0 define

A(t) := ι̃t
(
F (t)�H⊗F̃t

�Π0
[t,∞)

)
ι̃ ∗t = (IH ⊗ Et)ι̃t

(
F (t)�H⊗F̃t

�Πp
[t,∞)

)
ι̃ ∗t

and note that

E(t) := A(t) ⊇ (IH ⊗ Et)ι̃t
(
F (t)�H⊗F̃t

⊗Πp
[t,∞)

)
ι̃ ∗t = (IH ⊗ Et)F (t),

so D(E(t)) ⊇ D(F (t)), and

E(t)∗ = A(t)∗ =
(
ι̃t
(
F (t)�H⊗F̃t

�Πp
[t,∞)

)
ι̃ ∗t (IH � Et)

)∗ ⊇ (IH ⊗ Et)F (t)∗,

so D(E(t)∗) ⊇ D(F (t)∗). As [0, t) � s �→ E(s)u = (IH ⊗ Es)F (s)u is measurable
if u ∈ D(1[0,t)F ), by Lemma 3.1, a simple argument using the inner product and
the density of D(1[0,t)E

∗) yields measurability for all u ∈ D(1[0,t)E), so E is an
H-process. It is also clear from the definition that

E(t) = ι̃t
(
F (t)�H⊗F̃t

⊗Π0
[t,∞)

)
ι̃ ∗t ,

so E is strongly 0-adapted. Uniqueness is immediate and the claim about self-
adjointness is a consequence of Proposition 2.4; the necessary measurability follows
from Proposition 2.5.

Definition 3.24. The closed process E in Proposition 3.23 is the 0-adapted
projection of the process F .

Remark 3.25. If F is a bounded, strongly p-adapted H-process then

R+ � t �→ ι̃t
(
F (t)�H⊗F̃t

⊗Πq
[t,∞)

)
ι̃ ∗t (3.6)
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is a bounded, strongly q-adapted process, the q-adapted projection of F , for any
projection q; measurability may be established by the use of exponential vectors. In
general, a strongly p-adapted process F may be shown to have a strongly q-adapted
projection, that is, (3.6) defines a process, if q � p (with respect to the usual order
on projections; the proof is as above) but for other q it is possible that domain
problems arise.

Example 3.26. For each t � 0, let Ht be a self-adjoint operator in H⊗F̃t with
domain containing H0 � ẼS,t , where H0 is dense in H, and let

H(t) := ι̃t
(
Ht ⊗ Πp

[t,∞)

)
ι̃ ∗t .

If R+ � t �→ 〈aε(ut), eisHt bε(vt)〉 is measurable for all a, b ∈ H0 � h0 and u, v ∈ S
then H is a strongly p-adapted, self-adjoint H-process.

3.4. Quantum stochastic integration

We adopt the very elegant formalism for quantum stochastic integration due to
Lindsay [13]. Let k̂ := C ⊕ k, x̂ := ( 1

x ) for all x ∈ k and

f̂ : A → k̂; t �→ f̂(t) =
(

1
f(t)

)
,

where f : A → k is any function with values in k.

Proposition 3.27. There exists a linear contraction D : F̃ → L2(R+; k ⊗ F̃),
the adapted gradient, such that, for all a ∈ h and u ∈ L2(R+; k),

Dtaε(u) := (Daε(u))(t) = u(t) ⊗ aε(ut) (3.7)

for almost all t ∈ R+.

Proof. Let (ei : i ∈ I) be an orthonormal basis of k, where I = N := {1, 2, . . .}
or I = {1, . . . .n}, and, for each i ∈ I, define

Ei : F̃ → k ⊗ F̃ ; θ �→ ei ⊗ θ.

It is readily verified that Ei is a linear isometry and E∗
i Ej = δi

j IF̃ for all i, j ∈ I.
Suppose first that h = C and let

S := lin{R+ � s �→ f(s)ei : f ∈ L2(R+), i ∈ I}.

Define Dε(u), for all u ∈ S, by setting

Dε(u) : R+ → k ⊗F ; (Dε(u))(t) = Dtε(u) := u(t) ⊗ ε(ut)

and note that if x ∈ k and v ∈ L2(R+; k) then

R+ � t �→ 〈x ⊗ ε(v),Dtε(u)〉 = 〈x, u(t)〉〈ε(v), ε(ut)〉

is measurable, so R+ � t �→ Dtε(u) is measurable. If ui(t) := 〈ei, u(t)〉 then

Dtε(u) =
∑
i∈I

ui(t)ei ⊗ ε(ut) =
∑
i∈I

ei ⊗ ui(t)ε(ut) =
∑
i∈I

Ei(EDi)tε(u),

where EDi is the composition of the conditional expectation (that is, the bounded
C-process such that Etε(u) = ε(ut) for all t � 0 and u ∈ S) and the adapted gradient
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in direction ei [6, § 5.2]. Hence, with D extended by linearity, if θ ∈ ES then

‖Dtθ‖2 =
∥∥∥∥∑

i∈I

Ei(EDi)tθ

∥∥∥∥2

=
∑
i,j∈I

〈Ei(EDi)tθ, Ej (EDj )tθ〉 =
∑
i∈I

‖Ei(EDi)tθ‖2 =
∑
i∈I

‖(EDi)tθ‖2.

By [6, Proposition 35], if t � 0 then∫ t

0

‖Dsθ‖2 ds =
∫ t

0

∑
i∈I

‖(EDi)sθ‖2 ds = ‖Etθ‖2 − ‖E0θ‖2 � ‖θ‖2,

which gives the result, by the density of ES. The extension to a non-trivial initial
space is straightforward: if D̊ is the adapted gradient acting on F = C ⊗F ,

τ : h ⊗ k ⊗F → k ⊗ h ⊗F = k ⊗ F̃ ; a ⊗ b ⊗ c �→ b ⊗ a ⊗ c

is the isometric isomorphism given by exchanging elements of the first two spaces,
and

k : h ⊗ L2(R+; k ⊗F) → L2(R+; k ⊗ F̃); k(a ⊗ f)(t) = τ(a ⊗ f(t))

is the natural isometric isomorphism, then k(Ih ⊗ D̊) = D.

Proposition 3.28. The adjoint of the adapted gradient acts isometrically on

L2
ad(R+; k ⊗ F̃) :=

{
f ∈ L2(R+; k ⊗ F̃) : f(t) = ι̃t

(
ft ⊗ ε(0)

)
for a.e. t ∈ R+

}
.

Proof. We employ the Brownian interpretation of Fock space: let (ei)i∈I be a
basis for k and let L2(Ω) be the Wiener space of a collection of independent standard
Brownian motions (Bi)i∈I, so F̃ ∼= L2(Ω; h) via the map k such that

aε(u) �→ az(u) := a exp
(∑

i∈I

∫
R+

ui dBi− 1
2

∫
R+

u2
i dt

)
for all a ∈ h, u ∈ L2(R+; k),

where ui(t) := 〈ei, u(t)〉 for all i ∈ I and t ∈ R+. If a, b ∈ h, v ∈ L2(R+; k) and
u ∈ L2

ad(R+; k⊗F) ∼= L2
ad(R+×Ω; k), the L2-space of adapted Brownian functionals,

then

〈a ⊗ u,D(bε(v))〉 = 〈a, b〉E
[∫

R+

〈u(s), v(s)z(vs)〉 ds

]
= 〈a, b〉E

[∫
R+

∑
i∈I

ui(s)vi(s)z(vs) ds

]
= 〈a, b〉E

[∑
i∈I

∫
R+

ui dBi

(
1 +

∑
j∈I

∫
R+

vj (s)z(vs) dBj
s

)]
=
〈

a
∑
i∈I

∫
R+

ui dBi, bz(v)
〉

;

if desired, the issue of convergence may be finessed by choosing u such that ui is
non-zero for only finitely many i ∈ I. Since∥∥∥∥∑

i∈I

∫
R+

ui dBi

∥∥∥∥2

L2(Ω)

=
∑
i∈I

∫
R+

|ui |2 dt = ‖u‖2
L2(R+;k),

the map D∗ : a ⊗ u �→ k−1
(
a
∑

i∈I

∫
R+

ui dBi
)

is an isometry, as claimed.
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Remark 3.29. The two previous results may be deduced from the fact that
the adapted gradient is a partial isometry with initial space h ⊗ Cε(0)⊥ and final
space L2

ad(R+; k⊗ F̃), which we learned from Lindsay; the Skorohod isometry [13,
Proposition 3.2] provides a short proof of this.

Definition 3.30. Let

D̂ : F̃ → L2
loc(R+; k̂ ⊗ F̃); (D̂θ)(t) = D̂tθ :=

(
Etθ
Dtθ

)
,

where L2
loc refers to functions which are locally square-integrable, and note that, if

a ∈ h and u ∈ L2(R+; k), then

D̂taε(u) = û(t) ⊗ aε(ut)

for almost all t ∈ R+.

Notation. Let Pk denote the orthogonal projection on k̂ with range k and let
∆ := Pk ⊗ IF̃ . If A ∈ B(k̂ ⊗ F̃), let

A0
0 := ∆⊥A∆⊥, A0

× := ∆⊥A∆, A×
0 := ∆A∆⊥ and A×

× := ∆A∆,

so that

A ↔
(

A0
0 A0

×
A×

0 A×
×

)
with respect to the decomposition k̂ ⊗ F̃ = F̃ ⊕ (k ⊗ F̃). We extend this notation
to bounded k̂-processes in a pointwise manner.

Notation. If R+ � t �→ X(t) is Banach-space valued and R+ � t �→ ‖X(t)‖ is
measurable then, for all t � 0,

‖X‖p,t :=


(∫ t

0

‖X(s)‖p ds

)1/p

if p ∈ [1,∞),

ess sup{‖X(s)‖ : s ∈ [0, t]} if p = ∞.

Definition 3.31. If F is a k̂-process then

It(F ) := {θ ∈ F̃ : D̂sθ ∈ D(F (s)) for almost all s ∈ [0, t] and ‖θ‖F
t < ∞},

where

‖θ‖F
t := ‖∆⊥F D̂θ‖1,t + ‖∆F D̂θ‖2,t ,

is its domain of integrability on [0, t]. (Measurability of [0, t] � s �→ F (s)D̂sθ follows
from Lemma 3.1.)

Theorem 3.32. Let F be a strongly p-adapted k̂-process. For all t � 0 there
exists a linear transformation

∫
F ∂Λ(t) : It(F ) → F̃ such that〈

φ,

∫
F ∂Λ(t)θ

〉
=

∫ t

0

〈D̂sφ, F (s)D̂sθ〉 ds (3.8)

for all φ ∈ F̃ and θ ∈ It(F ). If It(F ) and It(F ∗) are dense in F̃ for all t � 0 then∫
F ∂Λ is a strongly 0-adapted C-process, the 0-adapted QS integral of F ; if F is
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bounded and admissible, that is,

‖F‖t := ‖F 0
0 ‖1,t + ‖F×

0 ‖2,t + ‖F 0
×‖2,t + ‖F×

× ‖∞,t < ∞ for all t � 0,

then
∫

F ∂Λ is a strongly 0-adapted, bounded C-process, the equality (3.8) holds

for all φ, θ ∈ F̃ , and ∥∥∥ ∫
F ∂Λ(t)

∥∥∥ � ‖F‖t for all t � 0.

Proof. If t � 0, θ ∈ It(F ) and φ ∈ F̃ then, for almost every s ∈ [0, t],

|〈D̂sφ, F (s)D̂sθ〉| � |〈Esφ,∆⊥F (s)D̂sθ〉| + |〈Dsφ,∆F (s)D̂sθ〉|
� ‖φ‖ ‖∆⊥F (s)D̂sθ‖ + ‖Dsφ‖ ‖∆F (s)D̂sθ‖ =: dφ,θ (s)

and dφ,θ lies in L1[0, t]. Thus the right-hand side of (3.8) exists and has absolute
value dominated by ‖φ‖ ‖θ‖F

t . The Riesz–Fréchet theorem implies the existence of
a unique vector ψ ∈ F̃ such that ‖ψ‖ � ‖θ‖F

t and
∫ t

0

〈D̂sφ, F (s)D̂sθ〉 ds = 〈φ, ψ〉 for all φ ∈ F̃ ,

so existence of
∫

F ∂Λ(t)θ is proven. If It(F ) and It(F ∗) are dense in F̃ for all t � 0
then we have a process: measurability of

∫
F ∂Λ follows immediately from (3.8) and

this equality also implies that
(∫

F ∂Λ
)∗ ⊇

∫
F ∗ ∂Λ. To see that

∫
F ∂Λ is strongly

0-adapted, note that if θ ∈ F̃ and t � 0 then

D̂sEtθ = D̂sθ for almost all s ∈ [0, t],

so Etθ ∈ It(F ) if and only if θ ∈ It(F ) and Et

∫
F ∂Λ(t)Et =

∫
F ∂Λ(t). Hence∫

F ∂Λ(t) is of the required form, by Proposition 3.19. Finally, if F is bounded and
admissible then It(F ) = It(F ∗) = F̃ for all t � 0 and

‖dφ,θ‖1,t � ‖φ‖ ‖F 0
0 Eθ‖1,t + ‖φ‖ ‖F 0

×Dθ‖1,t

+ ‖Dφ‖2,t‖F×
0 Eθ‖2,t + ‖Dφ‖2,t‖F×

×Dθ‖2,t

� ‖F‖t‖φ‖ ‖θ‖,

which gives the results claimed for this case.

Remark 3.33. As is immediate from the previous proof, the integral
∫

F ∂Λ
depends only on

(
F (t)�k̂⊗F̃t

: t � 0
)
, so if E is the 0-adapted projection of F then∫

E ∂Λ =
∫

F ∂Λ. Vacuum adaptedness is the correct sort for the integrand, as the
next remark makes clear.

Remark 3.34. The validity of the identity〈
aε(u),

∫
F ∂Λ(t)bε(v)

〉
=

∫ t

0

〈u(s) ⊗ aε(u), F (s)v(s) ⊗ bε(v)〉 ds (3.9)

is the key property of the quantum stochastic integral (perhaps expressed in an
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unfamiliar manner); it follows from (3.8) if F is 0-adapted and has a suitable domain
because

〈u(s) ⊗ aε(us), F (s)v(s) ⊗ bε(vs)〉 = 〈u(s) ⊗ aε(u), F (s)v(s) ⊗ bε(v)〉,

and this enables us to work with the bounded adapted gradient (as opposed to
the unbounded gradient operator ∇ of the Malliavin calculus). The fact that 0-
adaptedness is not required in the proof of Theorem 3.32 corresponds to the fact
that (3.9) holds for this integral only if F is 0-adapted.

Theorem 3.35 (Itô product formula). If E and F are 0-adapted, bounded,
admissible k̂-processes, M =

∫
E ∂Λ, and N =

∫
F ∂Λ, then

G := R+ � t �→ (P⊥
k ⊗ M(t))F (t) + E(t)(P⊥

k ⊗ N(t)) + E(t)∆F (t)

is a 0-adapted, bounded, admissible k̂-process and
∫

E ∂Λ
∫

F ∂Λ =
∫

G∂Λ.

Proof. This is a coordinate-free way of expressing a result in [6, § 5], which
itself follows from the usual quantum Itô product formula for bounded processes
[2, Theorem 18; 13, Corollary 3.16] and the isomorphism between 0-adapted and
1-adapted quantum semimartingales [6].

4. Semimartingales

4.1. Vacuum-adapted semimartingales

Lemma 4.1. If H is a strongly p-adapted, self-adjoint H-process then, for all
s ∈ R, (eisH (t) − I : t � 0) is a strongly p-adapted, bounded H-process with
uniformly bounded norm.

Proof. This follows immediately from Proposition 3.21.

Proposition 4.2. If A is a linear transformation in k ⊗ F̃ then

Â : F̃ ⊕ D(A) → F̃ ⊕ (k ⊗ F̃) = k̂ ⊗ F̃ ;
(

θ0

θ1

)
�→

(
0

Aθ1

)
is a linear transformation in k̂ ⊗ F̃ and Â∗ = Â∗ if A is densely defined.

Proof. We write θ =
(

θ0
θ1

)
et cetera. If A is densely defined then so is Â and〈

Â

(
θ0

θ1

)
,

(
ψ0

ψ1

)〉
= 〈Aθ1, ψ1〉 = 〈θ1, A

∗ψ1〉 =
〈(

θ0

θ1

)
, Â∗

(
ψ0

ψ1

)〉
for all θ ∈ D(Â) and ψ ∈ D(Â∗), so Â∗ ⊆ Â∗. Conversely, if θ ∈ Â∗ and φ = Â∗θ
then

〈θ1, Aψ1〉 = 〈θ, Âψ〉 = 〈φ, ψ〉 = 〈φ0, ψ0〉 + 〈φ1, ψ1〉 for all ψ ∈ D(Â).

Taking ψ0 = 0 and ψ0 = φ0 shows that φ0 = 0, so θ1 ∈ D(A∗) and A∗θ1 = φ1, and
therefore θ ∈ D(Â∗) with Â∗θ = φ = Â∗θ, as required.
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Notation. The ̂ notation is used to mean four different things, each of which
refers to some form of extension with k replaced by k̂:

x̂ =
(

1
x

)
∈ k̂ for any vector x ∈ k;

f̂ = t �→ f̂(t) for any k-valued function f ;

D̂ ↔
(

E 0
0 D

)
for the adapted gradient D;

Â ↔
(

0 0
0 A

)
for any linear transformation in k ⊗ F̃ .

This should not cause confusion.

Theorem 4.3. If H is a strongly 0-adapted, self-adjoint k-process and

Us := I +
∫
(eisH − I )̂ ∂Λ for s ∈ R, (4.1)

then, for all t � 0, the collection U(t) := (Us(t) : s ∈ R) is a strongly continuous,
one-parameter unitary group.

Proof. Lemma 4.1, Theorem 3.32 and Theorem 3.35 show that U(t) is a one-
parameter unitary group, for all t � 0. To see that R+ � s �→ Us(t) is weakly
continuous, let φ, θ ∈ F̃ and note that

|〈φ, (Us1 − Us2)(t)θ〉| �
∫ t

0

|〈Drφ, (eis1H (r) − eis2H (r))Dr θ〉| dr

�

√∫ t

0

‖Drφ‖2 dr

√∫ t

0

‖(eis1H (r) − eis2H (r))Dr θ‖2 dr;

as R+ � s �→ eisH (r) is strongly continuous on F̃ for all r � 0 and

‖(eis1H (r) − eis2H (r))Dr θ‖2 � 2‖Dr θ‖2 ∈ L1[0, t] for all s1, s2 ∈ R,

the dominated-convergence theorem gives the claim. Weak continuity implies strong
continuity for unitary groups and so the result follows.

Lemma 4.4. If E is a strongly 0-adapted, bounded k-process that has locally
essentially bounded norm then∫

Ê ∂Λ(t) = D∗(1[0,t)E)D for all t � 0,

where 1[0,t)E acts pointwise on L2(R+; k ⊗ F̃).

Proof. This follows immediately from Theorem 3.32.

Theorem 4.5. If H is a strongly 0-adapted, self-adjoint k-process, t � 0 and
K(t) is the generator of the unitary group

R+ � s �→ Us(t) := I +
∫
(eisH − I )̂ ∂Λ(t),

then K(t) =
∫

Ĥ ∂Λ(t) and K is a strongly 0-adapted, self-adjoint C-process.
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Proof. If θ ∈ D(K(t)) then, by Lemma 4.4 and Proposition 3.28,

lim
s→0

1
is
D∗(1[0,t)(eisH − I)

)
Dθ exists in F̃

⇐⇒ lim
s→0

1
is

(eisH − I)Dθ exists in L2([0, t]; k ⊗ F̃),

so there exist f ∈ L2([0, t]; k⊗F̃) and a sequence (sn )∞n=1 ⊆ R\{0} such that sn → 0
and (eisn H (r) − I)Dr θ/(isn ) → f(r) for almost all r ∈ [0, t]. For such r, Lemma 2.6
implies that Dr θ ∈ D(H(r)) and H(r)Dr θ = f(r), so θ ∈ It(Ĥ). Conversely, if
r � 0 and ψ ∈ D(H(r)) then

lim
s→0

eisH (r)ψ − ψ

is
= H(r)ψ

and, if s ∈ R \ {0},∥∥∥∥eisH (r)ψ − ψ

is

∥∥∥∥2

=
∫

R

∣∣∣∣eist − 1
is

∣∣∣∣2 d‖EH (r)
t ψ‖2

=
∫

R

2 − 2 cos(st)
s2

d‖EH (r)
t ψ‖2 � ‖H(r)ψ‖2;

this inequality holds because 2(1− cos x) � x2 for all x ∈ R. Hence, if t � 0, φ ∈ F̃
and θ ∈ It(Ĥ) then∣∣∣∣〈φ,

(
Us(t) − I

is
−

∫
Ĥ ∂Λ(t)

)
θ

〉∣∣∣∣2
=
∣∣∣∣∫ t

0

〈
Drφ,

(
eisH (r) − I

is
− H(r)

)
Dr θ

〉
dr

∣∣∣∣2
� ‖φ‖2

∫ t

0

∥∥∥∥(eisH (r) − I

is
− H(r)

)
Dr θ

∥∥∥∥2

dr, (4.2)

by the Cauchy–Bunyakovskii–Schwarz inequality and Proposition 3.27. Thus

θ ∈ D(K(t)) and K(t)θ =
∫

Ĥ ∂Λ(t)θ

if the final integral in (4.2) tends to zero as s → 0, but this follows from the
dominated-convergence theorem: the integrand converges to zero almost everywhere
on [0, t], by our initial working, and is bounded there by 4‖H(r)Dr θ‖2, using the
result which follows that (and the fact that ‖x− y‖2 � 2(‖x‖2 + ‖y‖2) for all x, y).

Since D(K(t)) = It(Ĥ) is dense and Is(Ĥ) ⊆ It(Ĥ) for all s � t, D(1[0,t)K) is
dense for all t � 0. Spectral measurability is immediate from the definition of K
and strong 0-adaptedness follows from Proposition 3.22.

Definition 4.6 [2, 5]. Let S and SΩ denote the algebras of regular quantum
semimartingales on F̃ which are 1-adapted and 0-adapted, respectively: each M ∈
S ∪ SΩ is a bounded process admitting the representation M =

∫
F dΛ or M =∫

F ∂Λ, with F a bounded, admissible process which is either 1- or 0-adapted.
Since M∗ =

∫
F ∗ dΛ or M∗ =

∫
F ∗ ∂Λ, as appropriate, M is self-adjoint if and only

if F is self-adjoint almost everywhere. (The extension of S and SΩ to a non-trivial
initial space is straightforward.)
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Corollary 4.7. If H and K are as in Theorem 4.5 and K1 =
∫

H1 ∂Λ ∈ SΩ

is self-adjoint then K + K1 is a strongly 0-adapted, self-adjoint process and

K + K1 =
∫
(Ĥ + H1) ∂Λ.

Proof. This is an immediate consequence of Theorem 4.5 and the Kato–Rellich
theorem [16, Theorem X.12]; measurability follows from Proposition 3.13.

Corollary 4.8. If H is a strongly 0-adapted, self-adjoint k-process then

f
(∫

Ĥ ∂Λ
)

= f(0) +
∫(

f(H) − f(0)
)̂

∂Λ (4.3)

for any bounded, Borel-measurable function f : R → C.

Proof. If f ∈ L1(R) is such that f̃ ∈ L1(R) then f is bounded and

f
(∫

Ĥ ∂Λ
)
(t) − f(0) =

1√
2π

∫
R

f̃(s)
(
eis

∫
Ĥ ∂Λ(t) − I

)
ds

=
1√
2π

∫
R

f̃(s)
∫(

eisH − I
)̂

∂Λ(t) ds =: F ;

the result follows by exchanging the order of integration: if φ, θ ∈ F̃ then

(s, r) �→ |f̃(s)〈Drφ, (eisH (r) − I)Dr θ〉| � 2|f̃(s)| ‖Drφ‖ ‖Dr θ‖ ∈ L1(R × [0, t])

and

〈φ, Fθ〉 =
1√
2π

∫
R

f̃(s)
∫ t

0

〈Drφ, (eisH (r) − I)Dr θ〉 dr ds

=
∫ t

0

〈
Drφ,

1√
2π

∫
R

f̃(s)(eisH (r) − I) dsDr θ

〉
dr

=
∫ t

0

〈Drφ,
(
f(H(r)) − f(0)

)
Dr θ〉 dr

=
〈

φ,

∫(
f(H) − f(0)

)̂
∂Λ(t)θ

〉
.

If (fn )∞n=1 is a sequence of Borel-measurable functions such that fn → f pointwise
and (‖fn‖∞)∞n=1 is bounded then the dominated-convergence theorem implies that,
for any self-adjoint operator K,

〈u, f(K)v〉 = lim
n→∞

∫
R

fn (x) d〈u,EK
x v〉 = lim

n→∞
〈u, fn (K)v〉,

and so 〈
Drφ,

(
fn (H(r)) − fn (0)

)
Dr θ

〉
→

〈
Drφ,

(
f(H(r)) − f(0)

)
Dr θ

〉
for almost every r ∈ R+. Hence the collection of bounded, Borel-measurable
functions for which (4.3) holds is a unital ∗-algebra closed under pointwise limits
of uniformly bounded sequences and containing {f ∈ L1(R) : f̃ ∈ L1(R)}.
The smallest such algebra is the set of all bounded, Borel-measurable functions
f : R → C, as required.
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4.2. HP-adapted semimartingales

Definition 4.9 [3]. A strongly 1-adapted C-process M of closable operators
is the 1-adapted QS integral of the strongly 1-adapted k̂-process F , denoted by
M =

∫
F dΛ, if, for all t � 0, F̃t reduces M(t) and

M(t)�F̃t
=

∫
(F + Pk ⊗ M) ∂Λ(t)�F̃t

,

where
∫
(F + Pk ⊗M) ∂Λ is the 0-adapted integral of Theorem 3.32. If ẼS ⊆ D(M)

then

〈aε(ut),M(t)bε(vt)〉 =
∫ t

0

〈D̂sε(ut), (F + Pk ⊗ M)(s)D̂sε(vt)〉 ds

=
∫ t

0

〈û(s) ⊗ aε(us), F (s)v̂(s) ⊗ bε(vs)〉 ds

+
∫ t

0

〈u(s), v(s)〉〈aε(us),M(s)bε(vs)〉 ds

and it is a simple exercise to verify that

〈aε(u),M(t)bε(v)〉 =
∫ t

0

〈û(s) ⊗ aε(u), F (s)v̂(s) ⊗ bε(v)〉 ds.

In particular, this definition agrees with the usual one in the case of regular quantum
semimartingales [2].

Remark 4.10. If E is strongly 1-adapted and M =
∫

E dΛ is its 1-adapted
integral then, if N and F are the 0-adapted projections of M and E, respectively,
N =

∫
(F + Pk ⊗ N) ∂Λ. (More in this vein may be found in [6].)

Proposition 4.11. If H is a strongly 1-adapted, self-adjoint k-process then let
G be the 0-adapted projection of H and let

Us := I +
∫
(eisG − I )̂ ∂Λ for all s ∈ R.

If Vs − I is the 1-adapted projection of Us − I then Vs is a strongly 1-adapted,
unitary C-process and

Vs = I +
∫
(eisH − I ⊗ Vs )̂ dΛ for all s ∈ R.

Proof. The process Us is unitary, for all s ∈ R, by Theorem 4.3, and therefore
Vs(t) is unitary for all (s, t) ∈ R × R+:

Vs(t) = I + ι̃t
(
(Us(t) − I)�F̃t

⊗Π1
[t,∞)

)
ι̃ ∗t = ι̃t

(
Us(t)�F̃t

⊗Π1
[t,∞)

)
ι̃ ∗t ,

so each Vs is a strongly 1-adapted, unitary C-process, as claimed. Furthermore, by
[6, Corollary 40],

(Vs − I)|ẼS
=

∫(
(eisH − I) − I ⊗ (Vs − I)

)̂
dΛ|ẼS

for the admissible subset S = lin{fei : f ∈ L2(R+), i ∈ I}, where (ei : i ∈ I) is an
orthonormal basis for k; this holds because the 1-adapted projection of eisG − I is
eisH − I, by Proposition 2.5. As It(eisH − I ⊗ Vs) = F̃ for all t � 0, the result
follows.
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Theorem 4.12. If H and V are as in Proposition 4.11 and, for all t � 0,

K(t) := ι̃t

(∫
Ĥ ∂Λ(t)�F̃t

⊗Π1
[t,∞)

)
ι̃ ∗t

then

K(t) = lim
s→0

Vs(t) − I

is
,

where the limit is taken in the strong sense, and K is a strongly 1-adapted, self-
adjoint C-process such that, if D(1[0,t)(H − I ⊗K)) is dense in k⊗ F̃ for all t � 0,

K =
∫
(H − I ⊗ K )̂ dΛ.

Proof. If U and G are as in Proposition 4.11 then∫
Ĝ ∂Λ(t) = ι̃t

(∫
Ĝ ∂Λ(t)�F̃t

⊗Π0
[t,∞)

)
ι̃ ∗t ,

so
∫

Ĝ ∂Λ(t)�F̃t
is self-adjoint and, since Ĝ is the 0-adapted projection of Ĥ,

K(t) = ι̃t

(∫
Ĝ ∂Λ(t)�F̃t

⊗Π1
[t,∞)

)
ι̃ ∗t .

By Proposition 2.5, this is the generator of

R � s �→ ι̃t
(
Us(t)�F̃t

⊗Π1
[t,∞)

)
ι̃ ∗t = Vs(t),

and the final result follows if H − I ⊗ K is a k-process, which is an immediate
consequence of the domain condition.

Example 4.13. If H is a strongly 1-adapted, self-adjoint k-process such that
k0 � ẼS ⊆ D(H(t)) for all t � 0, where k0 is a dense subspace of k and

R+ � t �→ H(t)(u(t) ⊗ ε(ut)) ∈ L2
loc(R+; k) for all u ∈ S,

then k0 � ẼS ⊆ D(H(t) − I ⊗ K(t)) for all t � 0, since

D(K(t)) ⊇ D
(∫

Ĥ ∂Λ(t)�F̃t

)
�F t ⊇ (It(Ĥ) ∩ F̃t) � E t

S ⊇ ẼS,t � E t
S = ẼS.

Corollary 4.9. If H and K are as in Theorem 4.12, with D(1[0,t)(H−I⊗K))
dense in k⊗ F̃ for all t � 0, and K1 =

∫
H1 dΛ ∈ S is self-adjoint then K + K1 is a

strongly 1-adapted, self-adjoint C-process and

K + K1 =
∫(

(H − I ⊗ K )̂ + H1

)
dΛ. (4.4)

Proof. This is the same as for Corollary 4.7.
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