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Two-field Q-ball solutions of supersymmetric hybrid inflation
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We demonstrate the existence of two-fi€eball solutions of the scalar field equations of supersymmetric
D- andF-term hybrid inflation. The solutions consist of a complex inflaton field together with a real symmetry
breaking field. Such inflatoni®-balls may play a fundamental role in reheating and the post-inflation era of
supersymmetric hybrid inflation models.
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I. INTRODUCTION U(1) charge and a real symmetry breaking field.
The paper is organized as follows. In Sec. Il we discuss
Hybrid inflation modelq1,2] are a favored class of infla- SUSY hybrid inflation models and th@-ball equations. In
tion model, being able to account for both a flat inflatonSec. lll we demonstrate the existence of two fi€eball
potential during inflation and for a massive inflaton and re-solutions of these equations for the caseDefand F-term
heating after inflation, without requiring very small cou- inflation. In Sec. IV we present our conclusions.
plings. In supersymmetrySUSY) there are two classes of

hybrid inflation model,D-term inflation[3] and F-term in- Il. Q-BALL EQUATIONS OF SUSY HYBRID INFLATION
flation [4], depending on whether the energy density driving o ) i
inflation originates in @-term orF-term contribution to the ~ SUSY hybrid inflation models are eithBrterm orD-term

scalar potential. models. The simpledt-term inflation model has a superpo-

An important period in early Universe cosmology is the tential of the form(2,4]
era immediately following the end of inflation, the post-
inflation era. Important physical processes such as baryogen- _7 2_ 2
; ) . > > : W= 2 §(P°—pu), 1)
esis are likely to occur during the post-inflation era, whilst
reheating of the Universe will occur at the end of this era. In
hybrid inflation models it is known that quantum fluctuationswhereS s the inflaton andb is a field which gains an ex-
of the inflaton sector fields will rapidly grow and become pectation value which terminates inflatiqn? and » are real
nonlinear at the end of inflatiof6—8]. The question of the and positive. The scalar potential is then
subsequent evolution of the nonlinear field configurations in
realistic SUSY inflation models remains to be fully explored,
but one possibility is that non-topological soliton configura-
tions will form [6,7,9. The most stable such configuration
will tend to be the dominant one, since this will come to The scalar potential has &symmetry under which onlg
dominate the energy density of the Universe and so detetransforms, which manifests itself as a glob|1) symme-
mine the physics of the post-inflation era. try in the scalar potentiaB— e'“S, with respect to which we
In SUSY hybrid inflation models the scalar fields are gen-can define a conserved global charge.
erally complex, and therefore can carry conserved global D-term inflation models have a superpotential of the form
U(1) charges. Depending on the form of the scalar potential,3]
it is then possible that @-ball made of inflaton sector fields
exists[10]. If suchQ-balls formed at the end of inflation, the W=\SP D _. 3
Universe following inflation would be highly inhomoge-
neous, with all the energy density concentrated in the form offhe scalar potential is given by
inflatonic Q-balls. Post-inflation physics would then take

2
n
V=72 |SP| @+ | 02— 2. #)

place against this cosmological backgrouyeeB,11], whilst V=N S2(|D, |2+ |D_|2) + N\ D |2 D _|?
reheating would occur via the eventual decay of@hballs? 5
i i i g
The purpose of this paper is to demonstrate the existence + (|2 D2+ 6)?, (4

of inflatonic Q-balls in SUSY hybrid inflation models. We

will present numerical examples of two-fiel@-ball solu-

tions, composed of a complex inflaton field carrying a globalwhereSis the inflaton,® .. are fields with charges: 1 with
respect to a Fayet-llliopoulod (1), gauge symmetryé
>0 is the Fayet-llliopoulos term anglis theU(1)g gauge
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This possibility has previously been realized in the context of a/® | and|® _| and therefore has three gloda(1) symme-
single field chaotic inflation modglL2]. tries, S—e'*S (U(1)g), ®,—eP+d_ . (U(1),) and d_
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—eP-d_ (U(1)_). We can define conserved charges with The above analysis generalizes to the multiple complex

respect to these global(1) symmetriesQg, Q, andQ_.

scalar field case of SUSY hybrid inflation. For each value of

Since SUSY hybrid inflation models have conserved glo- there can be many solutions of tieball equations satis-

bal charges, it is possible that there ex@balls [10]. We
first review the case of a single complex fieldwith U(1)

fying the boundary conditions, each with a different energy
and charge. In particular, there will be a range of solutions of

symmetryd — e “®. The Q-ball configuration is derived by different energy andv for a given global charge. Each of
minimizing the energy whilst fixing the charge via a these solutions is @-ball in the sense that it is a solution of

Lagrange multiplier, i.e., by minimizing the functiond3]

Ew=E+w<Q—fd3XpQ , (5)

with respect to the scalar fields and whereE is the total
energy of the field configuration

Ezf d*x|D|+|VD[2+ V(| D]) (6)
andpq is the charge density
po=i(dTO—dTd). 7
E, may be equivalently written as
Ew(cb,cp,w):f dx(| P —iw®|*+|VD|?
+V(P) ~ 0?|®%) + Q. ®)
This should be minimized with respect 5@, ® andw. To

minimize with respect tab we require® (x,t) = ®(x)e'“t.
Substituting this into Eq(8) gives

Eo(P(X),0)

:fd3x<|V<I><x>|2+V[<I><x>]—w2|<1><x>|2>+wQ-

€)
Extremizing this with respect t®(x), implies that
AV (P (X
qu)(X) - M (10
— b7

whereV,=V— w?|®|2. At this point®(x) could still have a

space-dependent complex phagg). If V(®)=V(|®|), as

it must whend transforms under & (1) symmetry, then Eq.
(9) is generally minimized by the choicé= const, which
may be chosen such thdi(x) is real. A minimum energy
configuration should be spherically symmetric. Then, with

D(x)=p(r)/\2 [ $(r) reall, Eq. (10) becomes

FPp 2dp N
ﬁ'f’r;—ﬁ_w . (11

the scalar field equations corresponding to a non-topological
soliton which has a time-independent amplitude as a function
of r. However, thes&-balls will be metastable with respect
to the lowest energ®-ball solution. The stabl®-ball solu-

tion is the lowest energy field configuration for a given glo-
bal charge, obtained by minimizing the energy functional
with respect tow for a fixed charge.

We will refer to solutions of Eq(11) which are not mini-
mum energy solutions for a given charge as “metastable
Q-balls.” The existence of one metastalfeball solution for
a given charge is sufficient to prove the existence of the
stableQ-ball; it is either the minimum energy solution itself
or there exists a lower energy solution of Efl) carrying
the same global charge.

In the following we will focus on the case db-term
inflation. This is because, as we will show, tQeball equa-
tions for the case of-term inflation are equivalent to those
of D-term inflation with\ = \2g. Therefore theF-term in-
flation Q-balls are a subset of those Bfterm inflation.

We now consider three Lagrange multipliess y, and
v_, corresponding to the conserved char@gs, Q. and
Q_ respectively. The functional is now

E,.=Et+tow Qs‘f dSXPQS)+3’+(Q+_f d3XPQ+)
+7(Q— J d3XpQ_), (12
where
E=J' o|3x|'s|2+|zs|2+|c'1>+|2+|zc1>+|2
o+ VO PHV(S Dy |0, (13
po=i(S's—s's) (14)
and
po. =i(PLd.-dLld.). (19

As before, minimizing the time derivative terms implies that
S(x,t)=S(x)e'“t and . (x,t)=d . (x)e'”='. For D-term
inflation, V=V(|S|,|®,|,|®_|). Therefore the minimum
energy configuration will correspond to re&(x) and
@ . (x). Assuming a spherically symmetric minimum energy

We refer to this as th@-ball equation. The solutions of Eq. configuration then implies tha= s(r)e'“y\2 and @.
(11) should satisfy the boundary conditions that the field= . (r)e'”='/\2. The vacuum ofD-term inflation corre-

tends to the vacuum as— and thatd¢/dr—0 asr—0.

sponds to|®_|=&Y? and S=®, =0. Therefore we must
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FIG. 1. Q-ball profile forA=0.5 andg=1.

have y_=0 in order to reach thé  vacuum expectation
value asr —o. Thus theD-term inflationQ-ball must have
Q_=0. Sinced®,—0 asr—x, the Q-ball could, in prin-
ciple, carry aU(1), charge. However, it is unlikely that a
Q-ball solution with aU (1), charge exists. This is because
the effective mass of thé, scalar increases 49 _| de-
creases front and S increases from zero as—0. Thus a

U(1), charge is likely to be energetically disfavored. There-

fore we will focus on the cas® =0, for which y,=0.
The correspondin®-ball equations are then

s 2ds N, )
P T~ o (it eT)s— e, (16)
Ph, 2dp, N
ar2+ Far —Z S ee.
2 9°
+9° £~ ¢++§¢i (17
and
Php_ 2 dd_
&rZ F ar
)\2 d)z 92
=5 (e~ i+ ot (19

For ¢? <2¢, which will be true for any solution tending to
the vacuum as —«, the only solution of Eq(17) which
satisfies the boundary conditiong, —0 as r—o and
d¢,1dr—0 asr—0 is ¢, (r)=0 Vr. This follows since
for a minimum energy solution we expetp . /dr<0, such
that ¢, (r) is monotonically decreasing to zero asin-
creases. Since the right-hand side of Eg) is positiveVr,

it then follows that??¢.. /9r>>0 Yr. However, for a mono-
tonically decreasingb .. (r) we require thav?¢ ., /9r?<0 at
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FIG. 2. Q-ball profile forA=1 andg=1.

r=0. Therefore there is no nontrivial solution. Thus for a
Q-ball with Qs# 0 andQ , =0, theQ-ball equations become

s 2ds N )
P FE:7¢_S_wS (19)
and
P 20 (N, 9° ,
e FW_(7S 9% b+ 597 (20)

Therefore theQ-ball solution of D-term inflation withQ
=0 consists of a compleSfield and a reafb _ field, with a
Qs charge but ndQ_ charge. The energy and charge of the
resultingQ-ball solution are given by

s(r) ]
)
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FIG. 3. Q-ball profile for =2 andg=1 (F-term inflation.
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TABLE |. Properties of exampl&-ball solutions forg=1. TABLE II. Table of properties of metastabl@-balls for A =1
andg=1.
N 0} So bo E Qs E/Qg r
) So b0 r E/Qg
0.5 0.375 0.20 0.00371 2894 6346 0.456 8.31
1.0 0.800 3.00 0.14357 378 396 0.956 4.33 0.800 3.00 0.1436 4.33 0.956
\/E 1.125 2.44 0.19680 180 132 1.368 3.11 0.810 3.18 0.1160 4.07 0.978
0.815 3.20 0.1153 4.03 0.981
0.820 3.26 0.1082 3.94 0.982
0.825 3.30 0.1044 3.92 0.991
, 1/0s\2 1 ab_ 2 2g2 0.849 3.48 0.0903 3.65 0.999
E—f47rr dr[2<ar) +2< ar ) + 5 +V(s,d_)
(2D (mg=\&Y2=\ in our unitg, so in the absence of additional
and couplings to the MSSM fields th@-balls will be absolutely
stable as a result oQg conservation[However, once the
_ 2.2 unknown couplings of the inflaton sector fields to the
QS_“’I Amrisdr. @2 (I\/ISSM figlds are ir?cluded, the inflaton@-balls will decay

) ) ] to MSSM fields via conventional inflaton dechn inter-

In the case of-term inflation, only theSfield can carry a  esting feature of these solutions is that the valus af the
global charge. Therefore, upon performing the minimizationcenter of the-balls, sy, is larger than the value at which the
of the energy functional, from minimizing with respect$0 symmetry breaking phase transition ending inflation occurs,
and® we obtainS(x,t)=S(x)e/*! and®(x,t)=®(x). The  So>Sc=2g£"/\ (=1.41g/\ for £=1). However, in the
potential, Eq.(2), is explicitly dependent upon the phase of Q-ball solution, where the field configuration is dependent
®. However, foru? real and positive the energy functional Upon the gradient energy as well as the potential energy, the
will still be minimized by having bottS(x) and®(x) real ~ symmetry breaking field$_ , remains nonzero throughout
and positive. Therefore withS(x)=s(r)/\2 and ®(x) theQ-ball.

E/Qs for metastableQ-balls with A\=1, g=1 and fixed

chargeQs~395. Since the value o®g is generally much
larger than 1, th&)-balls may be studied classically. Meta-
stable Q-ball solutions exist for a finite range ab. The
lowest value oE/Qg corresponds to the trug-ball solution.
and As o decreases, the value Bf Qg decreases, implying that
the binding energy of th& charges in th&-ball is increas-
7? 5 ing. An interesting feature is that the valuexdit the center
o+ 4o (24 of the Q-ball increases whilst decreases a&/Qs increases,
indicating that the metastab(@-balls have a larger gradient
energy than the tru®-balls for a given charge.

PR m=7¢>2s—wzs (23

grz roor 2

75

These equations are the same as the two-fietdrm infla-
tion equations, Eq(19) and Eq.(20), when¢_« ¢, N7

andg« 7;/\/5 i.e. when\ = \/Eg. IV. CONCLUSIONS

We have provided examples of inflator@ball solutions

Ill. NUMERICAL TWO-FIELD  Q-BALL SOLUTIONS of the .SUSYD-term hybrio_l inflat_ion scalar fie_ld equations

for typical values of the dimensionless couplingsand g,

In this section we will present a number of numerical including the special case= \/Eg corresponding td--term
solutions of Eq.(19) and Eq.(20) demonstrating the exis- inflation. SinceE/Qs<mjg for these solutionsQg conserva-
tence ofQ-balls. We consideg=1 throughout. tion implies that theQ-balls are stable up to the decay of the

For a given\ there will be a range of solutions corre- inflaton sector particles they are made of to particles in the
sponding to different values ds. In Fig. 1 we show a minimal SUSY standard model sector. Inflato@idalls may
Q-ball solution fors(r) and¢_(r) for the case, =0.5. (We  form at the end of SUSY hybrid inflation via the formation of
use units such thag=1.) In Fig. 2 we show a solution for neutral condensate lumps and their subsequent decay into
A=1. In Fig. 3 we show a solution for the special case Q-ball, anti-Q-ball pairs. In this case there would be a highly
=29, corresponding to the case &kterm inflation. In  inhomogeneous post-inflation era, with the energy density of
Table | we summarize the properties of these exar@abmll  the Universe concentrated inside tQeballs and reheating
solutions. (We define the radius as the value ofwithin  via Q-ball decay. We hope to discuss in detail the classically
which 90% of the totalQ-ball energy is containedE/Qgis  stableQ-ball solutions and the process Qkball formation
less than theS mass in vacuum for all of these solutions following SUSY hybrid inflation in future work.
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