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Two-field Q-ball solutions of supersymmetric hybrid inflation

Matt Broadhead* and John McDonald†

Dept. of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, England
~Received 7 October 2003; revised 8 December 2003; published 17 March 2004!

We demonstrate the existence of two-fieldQ-ball solutions of the scalar field equations of supersymmetric
D- andF-term hybrid inflation. The solutions consist of a complex inflaton field together with a real symmetry
breaking field. Such inflatonicQ-balls may play a fundamental role in reheating and the post-inflation era of
supersymmetric hybrid inflation models.
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I. INTRODUCTION

Hybrid inflation models@1,2# are a favored class of infla
tion model, being able to account for both a flat inflat
potential during inflation and for a massive inflaton and
heating after inflation, without requiring very small co
plings. In supersymmetry~SUSY! there are two classes o
hybrid inflation model,D-term inflation @3# and F-term in-
flation @4#, depending on whether the energy density drivi
inflation originates in aD-term orF-term contribution to the
scalar potential.

An important period in early Universe cosmology is t
era immediately following the end of inflation, the pos
inflation era. Important physical processes such as baryo
esis are likely to occur during the post-inflation era, whi
reheating of the Universe will occur at the end of this era.
hybrid inflation models it is known that quantum fluctuatio
of the inflaton sector fields will rapidly grow and becom
nonlinear at the end of inflation@5–8#. The question of the
subsequent evolution of the nonlinear field configurations
realistic SUSY inflation models remains to be fully explore
but one possibility is that non-topological soliton configur
tions will form @6,7,9#. The most stable such configuratio
will tend to be the dominant one, since this will come
dominate the energy density of the Universe and so de
mine the physics of the post-inflation era.

In SUSY hybrid inflation models the scalar fields are ge
erally complex, and therefore can carry conserved glo
U(1) charges. Depending on the form of the scalar poten
it is then possible that aQ-ball made of inflaton sector field
exists@10#. If suchQ-balls formed at the end of inflation, th
Universe following inflation would be highly inhomoge
neous, with all the energy density concentrated in the form
inflatonic Q-balls. Post-inflation physics would then tak
place against this cosmological background@6,8,11#, whilst
reheating would occur via the eventual decay of theQ-balls.1

The purpose of this paper is to demonstrate the existe
of inflatonic Q-balls in SUSY hybrid inflation models. We
will present numerical examples of two-fieldQ-ball solu-
tions, composed of a complex inflaton field carrying a glo
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1This possibility has previously been realized in the context o

single field chaotic inflation model@12#.
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U(1) charge and a real symmetry breaking field.
The paper is organized as follows. In Sec. II we discu

SUSY hybrid inflation models and theQ-ball equations. In
Sec. III we demonstrate the existence of two fieldQ-ball
solutions of these equations for the case ofD- and F-term
inflation. In Sec. IV we present our conclusions.

II. Q-BALL EQUATIONS OF SUSY HYBRID INFLATION

SUSY hybrid inflation models are eitherF-term orD-term
models. The simplestF-term inflation model has a superpo
tential of the form@2,4#

W5
h

2
S~F22m2!, ~1!

whereS is the inflaton andF is a field which gains an ex
pectation value which terminates inflation.m2 andh are real
and positive. The scalar potential is then

V5h2uSu2uFu21
h2

4
uF22m2u2. ~2!

The scalar potential has anR-symmetry under which onlyS
transforms, which manifests itself as a globalU(1) symme-
try in the scalar potential,S→eiaS, with respect to which we
can define a conserved global charge.

D-term inflation models have a superpotential of the fo
@3#

W5lSF1F2 . ~3!

The scalar potential is given by

V5l2uSu2~ uF1u21uF2u2!1l2uF1u2uF2u2

1
g2

2
~ uF1u22uF2u21j!2, ~4!

whereS is the inflaton,F6 are fields with charges61 with
respect to a Fayet-IlliopoulosU(1)FI gauge symmetry,j
.0 is the Fayet-Illiopoulos term andg is theU(1)FI gauge
coupling.

The D-term inflation scalar potential is a function ofuSu,
uF1u anduF2u and therefore has three globalU(1) symme-
tries, S→eiaS „U(1)S…, F1→eib1F1 „U(1)1… and F2

a
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→eib2F2 „U(1)2…. We can define conserved charges w
respect to these globalU(1) symmetries,QS , Q1 andQ2 .

Since SUSY hybrid inflation models have conserved g
bal charges, it is possible that there existQ-balls @10#. We
first review the case of a single complex fieldF with U(1)
symmetryF→eiaF. TheQ-ball configuration is derived by
minimizing the energy whilst fixing the charge via
Lagrange multiplier, i.e., by minimizing the functional@13#

Ev5E1vS Q2E d3xrQD , ~5!

with respect to the scalar fields andv, whereE is the total
energy of the field configuration

E5E d3xuḞu21u¹Fu21V~ uFu! ~6!

andrQ is the charge density

rQ5 i ~Ḟ†F2F†Ḟ!. ~7!

Ev may be equivalently written as

Ev~Ḟ,F,v!5E d3x~ uḞ2 ivFu21u¹Fu2

1V~F!2v2uFu2!1vQ. ~8!

This should be minimized with respect toḞ, F andv. To

minimize with respect toḞ we requireF(x,t)5F(x)eivt.
Substituting this into Eq.~8! gives

Ev„F~x!,v…

5E d3x~ u¹F~x!u21V@F~x!#2v2uF~x!u2!1vQ.

~9!

Extremizing this with respect toF(x), implies that

¹2F~x!5
]Vv~F~x!!

]F†
~10!

whereVv5V2v2uFu2. At this pointF(x) could still have a
space-dependent complex phase,u(x). If V(F)5V(uFu), as
it must whenF transforms under aU(1) symmetry, then Eq
~9! is generally minimized by the choiceu5const, which
may be chosen such thatF(x) is real. A minimum energy
configuration should be spherically symmetric. Then, w
F(x)5f(r )/A2 @f(r ) real#, Eq. ~10! becomes

]2f

]r 2
1

2

r

]f

]r
5

]V

]f
2v2f. ~11!

We refer to this as theQ-ball equation. The solutions of Eq
~11! should satisfy the boundary conditions that the fie
tends to the vacuum asr→` and that]f/]r→0 asr→0.
06351
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The above analysis generalizes to the multiple comp
scalar field case of SUSY hybrid inflation. For each value
v there can be many solutions of theQ-ball equations satis-
fying the boundary conditions, each with a different ener
and charge. In particular, there will be a range of solutions
different energy andv for a given global charge. Each o
these solutions is aQ-ball in the sense that it is a solution o
the scalar field equations corresponding to a non-topolog
soliton which has a time-independent amplitude as a func
of r. However, theseQ-balls will be metastable with respec
to the lowest energyQ-ball solution. The stableQ-ball solu-
tion is the lowest energy field configuration for a given gl
bal charge, obtained by minimizing the energy function
with respect tov for a fixed charge.

We will refer to solutions of Eq.~11! which are not mini-
mum energy solutions for a given charge as ‘‘metasta
Q-balls.’’ The existence of one metastableQ-ball solution for
a given charge is sufficient to prove the existence of
stableQ-ball; it is either the minimum energy solution itse
or there exists a lower energy solution of Eq.~11! carrying
the same global charge.

In the following we will focus on the case ofD-term
inflation. This is because, as we will show, theQ-ball equa-
tions for the case ofF-term inflation are equivalent to thos
of D-term inflation withl5A2g. Therefore theF-term in-
flation Q-balls are a subset of those ofD-term inflation.

We now consider three Lagrange multipliersv, g1 and
g2 , corresponding to the conserved chargesQS , Q1 and
Q2 respectively. The functional is now

Ev5E1vS QS2E d3xrQS
D1g1S Q12E d3xrQ1

D
1g2S Q22E d3xrQ2

D , ~12!

where

E5E d3xuṠu21u¹Su21uḞ1u21u¹F1u2

1uḞ2u21u¹F2u21V~ uSu,uF1u,uF2u!, ~13!

rQS
5 i ~Ṡ†S2S†Ṡ! ~14!

and

rQ6
5 i ~Ḟ6

† F62F6
† Ḟ6!. ~15!

As before, minimizing the time derivative terms implies th
S(x,t)5S(x)eivt and F6(x,t)5F6(x)eig6t. For D-term
inflation, V5V(uSu,uF1u,uF2u). Therefore the minimum
energy configuration will correspond to realS(x) and
F6(x). Assuming a spherically symmetric minimum ener
configuration then implies thatS5s(r )eivt/A2 and F6

5f6(r )eig6t/A2. The vacuum ofD-term inflation corre-
sponds touF2u5j1/2 and S5F150. Therefore we must
0-2
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haveg250 in order to reach theF2 vacuum expectation
value asr→`. Thus theD-term inflationQ-ball must have
Q250. SinceF1→0 as r→`, the Q-ball could, in prin-
ciple, carry aU(1)1 charge. However, it is unlikely that
Q-ball solution with aU(1)1 charge exists. This is becaus
the effective mass of theF1 scalar increases asuF2u de-
creases fromj and S increases from zero asr→0. Thus a
U(1)1 charge is likely to be energetically disfavored. The
fore we will focus on the caseQ150, for whichg150.

The correspondingQ-ball equations are then

]2s

]r 2
1

2

r

]s

]r
5

l2

2
~f1

2 1f2
2 !s2v2s, ~16!

]2f1

]r 2
1

2

r

]f1

]r
5

l2

2
~s21f2

2 !f1

1g2S j2
f2

2

2 Df11
g2

2
f1

3 ~17!

and

]2f2

]r 2
1

2

r

]f2

]r

5
l2

2
~s21f1

2 !f22g2S j1
f1

2

2 Df21
g2

2
f2

3 . ~18!

For f2
2 <2j, which will be true for any solution tending to

the vacuum asr→`, the only solution of Eq.~17! which
satisfies the boundary conditionsf1→0 as r→` and
]f1 /]r→0 as r→0 is f1(r )50 ;r . This follows since
for a minimum energy solution we expect]f1 /]r<0, such
that f1(r ) is monotonically decreasing to zero asr in-
creases. Since the right-hand side of Eq.~17! is positive;r ,
it then follows that]2f1 /]r 2.0 ;r . However, for a mono-
tonically decreasingf1(r ) we require that]2f1 /]r 2,0 at

FIG. 1. Q-ball profile for l50.5 andg51.
06351
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r 50. Therefore there is no nontrivial solution. Thus for
Q-ball with QSÞ0 andQ150, theQ-ball equations become

]2s

]r 2
1

2

r

]s

]r
5

l2

2
f2

2 s2v2s ~19!

and

]2f2

]r 2
1

2

r

]f2

]r
5S l2

2
s22g2j Df21

g2

2
f2

3 . ~20!

Therefore theQ-ball solution of D-term inflation with Q1

50 consists of a complexSfield and a realF2 field, with a
QS charge but noQ2 charge. The energy and charge of t
resultingQ-ball solution are given by

FIG. 2. Q-ball profile for l51 andg51.

FIG. 3. Q-ball profile for l5A2 andg51 (F-term inflation!.
0-3
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E5E 4pr 2drF1

2 S ]s

]r D
2

1
1

2 S ]f2

]r D 2

1
v2s2

2
1V~s,f2!G

~21!

and

QS5vE 4pr 2s2dr. ~22!

In the case ofF-term inflation, only theSfield can carry a
global charge. Therefore, upon performing the minimizat
of the energy functional, from minimizing with respect toṠ

andḞ we obtainS(x,t)5S(x)eivt andF(x,t)5F(x). The
potential, Eq.~2!, is explicitly dependent upon the phase
F. However, form2 real and positive the energy function
will still be minimized by having bothS(x) and F(x) real
and positive. Therefore withS(x)5s(r )/A2 and F(x)
5f(r )/A2, theQ-ball equations become

]2s

]r 2
1

2

r

]s

]r
5

h2

2
f2s2v2s ~23!

and

]2f

]r 2
1

2

r

]f

]r
5S h2

2
s22

h2

2
j Df1

h2

4
f3. ~24!

These equations are the same as the two-fieldD-term infla-
tion equations, Eq.~19! and Eq.~20!, whenf2↔f, l↔h
andg↔h/A2 i.e. whenl5A2g.

III. NUMERICAL TWO-FIELD Q-BALL SOLUTIONS

In this section we will present a number of numeric
solutions of Eq.~19! and Eq.~20! demonstrating the exis
tence ofQ-balls. We considerg51 throughout.

For a givenl there will be a range of solutions corre
sponding to different values ofQS . In Fig. 1 we show a
Q-ball solution fors(r ) andf2(r ) for the casel50.5. ~We
use units such thatj51.! In Fig. 2 we show a solution for
l51. In Fig. 3 we show a solution for the special casel
5A2g, corresponding to the case ofF-term inflation. In
Table I we summarize the properties of these exampleQ-ball
solutions. ~We define the radius as the value ofr within
which 90% of the totalQ-ball energy is contained.! E/QS is
less than theS mass in vacuum for all of these solution

TABLE I. Properties of exampleQ-ball solutions forg51.

l v so fo E QS E/QS r

0.5 0.375 0.20 0.00371 2894 6346 0.456 8.3
1.0 0.800 3.00 0.14357 378 396 0.956 4.3
A2 1.125 2.44 0.19680 180 132 1.368 3.1
06351
n

l

(mS5lj1/2[l in our units!, so in the absence of additiona
couplings to the MSSM fields theQ-balls will be absolutely
stable as a result ofQS conservation.@However, once the
~unknown! couplings of the inflaton sector fields to th
MSSM fields are included, the inflatonicQ-balls will decay
to MSSM fields via conventional inflaton decay.# An inter-
esting feature of these solutions is that the value ofs at the
center of theQ-balls,s0, is larger than the value at which the
symmetry breaking phase transition ending inflation occu
s0.sc5A2gj1/2/l ([1.41g/l for j51). However, in the
Q-ball solution, where the field configuration is depende
upon the gradient energy as well as the potential energy,
symmetry breaking field,f2 , remains nonzero throughou
the Q-ball.

In Table II we give the values ofv, s0, f2(r 50), r and
E/QS for metastableQ-balls with l51, g51 and fixed
chargeQS'395. Since the value ofQS is generally much
larger than 1, theQ-balls may be studied classically. Meta
stable Q-ball solutions exist for a finite range ofv. The
lowest value ofE/QS corresponds to the trueQ-ball solution.
As v decreases, the value ofE/QS decreases, implying tha
the binding energy of theS charges in theQ-ball is increas-
ing. An interesting feature is that the value ofs at the center
of theQ-ball increases whilstr decreases asE/QS increases,
indicating that the metastableQ-balls have a larger gradien
energy than the trueQ-balls for a given charge.

IV. CONCLUSIONS

We have provided examples of inflatonicQ-ball solutions
of the SUSYD-term hybrid inflation scalar field equation
for typical values of the dimensionless couplingsl and g,
including the special casel5A2g corresponding toF-term
inflation. SinceE/QS,mS for these solutions,QS conserva-
tion implies that theQ-balls are stable up to the decay of th
inflaton sector particles they are made of to particles in
minimal SUSY standard model sector. InflatonicQ-balls may
form at the end of SUSY hybrid inflation via the formation
neutral condensate lumps and their subsequent decay
Q-ball, anti-Q-ball pairs. In this case there would be a high
inhomogeneous post-inflation era, with the energy density
the Universe concentrated inside theQ-balls and reheating
via Q-ball decay. We hope to discuss in detail the classica
stableQ-ball solutions and the process ofQ-ball formation
following SUSY hybrid inflation in future work.

TABLE II. Table of properties of metastableQ-balls for l51
andg51.

v so fo r E/QS

0.800 3.00 0.1436 4.33 0.956
0.810 3.18 0.1160 4.07 0.978
0.815 3.20 0.1153 4.03 0.981
0.820 3.26 0.1082 3.94 0.982
0.825 3.30 0.1044 3.92 0.991
0.849 3.48 0.0903 3.65 0.999
0-4
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