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Abstract
In this paper we give an asymptotic expansion including error terms for the number
of closed orbits in the homology classes for homological full Anosov flows. In partic-
ular we obtain formulae concerning the coefticients of error terms which depend on
the homology classes.

1. Introduction

Let M be a C* compact manifold. We call a C' flow ¢; : M — M an Anosov flow
if the tangent bundle T'M has a continuous splitting

TM =E'® E*® E°

into D¢-invariant subbundles such that:
(1) E" is the one dimensional bundle tangent to the flow;
(2) there exist C, A >0 such that

| Doy E®|| < Ce™ fort >
|Do_|E*|| < Ce ™ fort >

0,
0.

We say that ¢ is transitive if there is a dense orbit. We shall restrict attention to
transitive flows. We can model an Anosov flow by a suspended flow over a shift of
finite type [2].

We assume that M is a C* compact manifold with first Betti number b > 0. For
simplicity, we assume that the first homology group of the manifold M is torsion free.
We know that there is a isomorphism between H;(M,Z) and Z°. So we can identify
the homology group H{(M,Z) with Z°. There are C'(M) functions F = (F}, ..., F).
For a closed orbit v of ¢, f,y F= (f,y ... f,y Iy) represents the homology class of
v, say. |v] € H(M,Z). Let M be the set of ¢-invariant probability measures on M.
For u € Rb, we define the function S(u): R” — R by

B(u) = P({u, F)) = sup {hm + (u,/de)} .
meMy

B(u) is analytic and strictly convex on R”. We say that an Anosov flow ¢ is homo-
logically full if every homology class contains a closed orbit. If ¢ is homologically
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full then it is topologically weak mixing. The function 3 is bounded below and there
exists a unique & € R® for which the infimum is attained [11].

It is easy to see that V3(£) =0. Let my, py be the equilibrium state of (u, F') and
h* = pB(). Since

VB(u) = / Fdmir),
we have

h*:sup{hm:/deZO,m€M¢}.

It is well known that B(u) can be continued analytically in a neighbourhood of &
in C°.

Let T be the set of closed orbits for Anosov flow ¢. When v € T, let () denote
the length of ~, i.e, [(7y f 1. If ¢ is a homologically full transitive Anosov flow, for
«a € H((M,Z) Sharp |11| obtalned

Th*

o’ €
(T, ) =#{y € T,I(7) < T,[y] = a} ~ ce'& >W as T — oo,

where £, h* are the constants we mentioned above and o’ is the torsion-free part
of a.

In [8], Pollicott and Sharp used the results of Dolgopyat’s work ([3]) on Anosov
flows to obtain a more detailed expansion for m(7, a) when ¢ is a homologically full
transitive Anosov flow. That is, there exists § > 0, such that for IV =[24], there exist
Ci,Co,...,cyn such that

Th* N

(T, a) = ° ( S O(T5)> as T — oo. (%)

Tb/2+1 Tn/2

n=0

In this paper, we shall see that if n is odd, then ¢, =0. We also give formulae for
¢y, to describe how the c¢,, depend on the homology class a. The main result is the
following.

THEOREM. Let M be a compact manifold with Betti number b >0 and let ¢pp: M — M
be a homologically full transitive Anosov flow. There exist £ €R®, h* >0 and § > 0 such

that for o€ H{(M,Z)= 7", we have
1
<T5>) asT — o0,

eTh*
(T, a) = —&al g
Jor N < where ¢y >0 is a constant which is independent of o. If we write o=

Tb/2+1

(af, o, . .., ap) then the constants c, () are in the form
2n
_ Lol I
cn(a) = Clylylg O Qg+ 22 Q)

Li+lo+et1y =0

where ¢y, 1,,...1, are constants which are independent of o

The analysis in this paper is closely akin to that used by Anantharaman in [1].
but we give more details of the proofs and more explicit information, necessary to
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understand the role of the homology class . In the last section we use an approxim-
ation argument to determine how the coefticients depend on the homology classes.

2. Counting function

We assume that g has compact support and has C*-regularity. Let g > 0. For
a€ H((M,Z), we define the auxiliary function

m(To0) = > gy —T)).

vel|v]=a
Let g be the Fourier transform of g, By Fourier’s inverse transform formula,

7y(T,a) = Z g(l(y) — T)eotN=T)goT g=0l()

Qi Z// G(—io + t)e—it(l('y)—T)eaTe—ol('y)e<§+27ri'u,|fy|)e—(§+27riv,o¢)d,u dt
™ R JRY /70
vel

1 : i
— / / Z(o +it,v)e” T g(—io + t)e” TN du dt,
Rb /75

where we have defined

Z(S,U) 0_ + Zt ’U Ze—sl Y)H{E+2miv,[v]) — Zefsl +(&+2miv, f F)
el vel
for (s,v) € C x R®/Z°. Tt is well known that when Res =0 > 3(£) =h*, Z(s,v) is abso-
lutely convergent.
For the behaviour of Z(s, v) in the neighbourhood of Res =h*, we have the follow-
ing proposition.

ProOPOSITION 1. There exist B>0, ¢>0, €>0, >0, p>0 and an open set V), a
neighbourhood of 0 in R /74, such that:

(1) Z(s,v) is analytic in {s=oc+it : oc>h* —
|Z(s,v)| = O([t]%):

(2) Z(s,v) + log(s — B(§ +iv)) is analytic in {(s,v) : vEVy,0>h* —¢€,|t| < B};

(3) Z(s,v) is analytic in {(s,v) : v&Vy,0>h—¢, |t| < B}

i [tl> B}, and in this domain

Proof. The proof of part (1) is analogous to [8]. We refer to [1] for the proof of (2)
and (3). For details see [5].
Now in order to estimate 7,(7T’, ), we only need to calculate the integral

1

5 Z(o +it,v)e T G(—io + t)eETFTIVN g dy.
2T JRxRb /70

In the following let g be of class C*° with compact support and o > h*. We will divide
R®/Z" into V,, and R®/Z* — V},. Then
1 5
(T, a) = — Z(o + it,v)el" T g(—ig + t)e” TN gt dy
21 RxR® /Zb

L e—<§+2ﬂ'w,a) d’U/ Z(O’ + Zt, U)e(0+zt)Tg(_/L'o' + t)) dt
27 R

1
2w RY /70 —V,

6_<5+2”i”’(’>dv/Z(0+it,v) T 5(—jo + t)) dt.
R
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We shall consider the two integrals separately. First we consider the integral over
R®/Z° — V;,. For vV, we have the following estimate.

LemMA 1. For vé Vi and for all o > h*,

/ Z(o + it v)el” g (o + 1) dt\ = O(lg™ || T /TOm=0K),
R

for any K, meN.

Proof. By Proposition 1 and Cauchy’s Theorem
/ Z(s,v)e*T §(—is) ds =0,
A

where A={Res=o0,|Ims| <R} U{Res=c(R),|Ims| < R}U{c(R)< Res<c,|Ims|=
R}, and where ¢(R)=h* — ¢/R", R=TX for some K, and 0 =h* + 1/T. Since g is of
class C* with compact support, for any m € N,

|9(—io + ) < cllg"™ | /1™

So
R

/Z(a +it, v)e T g(—io + t) dt —/
R

—-R

o] (m) (m) h*T
or 8 19" e o (g™ llze
< /TK e? " c|t|"e rm dt =0 T AR )

Z(o +it,v)e " T §(—io + t) dt‘

On the other hand,

Tar_ s [ P
Z(s,v)e*" g(—is)ds| = O e ety AL I
Res=c(R),|[Ims|<R T

T
=0 <||9(m)||Llw> .

and

Z(s,v)e’T §(—is)ds

/C(R)<R63§0,|Ims|—R
Since ¢T'/T5? >0, this completes the proof.

Now we consider the integral over V;,. We shall prove the following lemma.

Lemma 2. Let v € Vyy; then for all M € N and for all o > h*, we have

M ;
, 1 dig .
: (o+it)T Af_ » _ i . B(&+iv)T
/RZ(O' +it,v)e g(—io +t)dt — 27 E y T el (—iB(€ + iv))e
=

¥ el * Cy C2
<clllgller + -+ lyMgllee™ 77 + [lg" e <T(m—l—ﬁ)K * T(m—ﬁ)K>

C
TM+1

T dJWH
[ touts = e+ iope ™ S rrat-is)ds).
C(o) S

where C(o) will be defined later.

Proof. When v € V), o is fixed with o > h*. For 2B < R€R", let
Cy ={Res=c(R), —2B <Ims<2B};Ci={Ims=-2B,c¢(R) < Res < 0};
Cy; ={Res=0,—2B<Ims<2B};C3={Ims=2B,c(R)< Res<o};
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C; ={Res=c(R),2B<Ims< R}:C, ={Res=c(R), —R<Ims< —2B};
Cy ={Res=0,2B<Ims< R};:Cy ={Res=0,—R<Ims<—2B};
Cr={c(R)< Res<o,Ims=R}:Cp ={c(R) < Res<o,Ims=—R}.

By part (1) of Proposition 1, Z(s, v) is analytic in Res > ¢(R), |[Ims| > B, so

/ Z(s,v)e’T §(—is)ds = 0 (1)
{C;UczUciUCT}

and

/ Z(s,v)e’T §(—is)ds = 0. (2)
{cUc;yUcyucs )

By part (2) of Proposition 1, we have

/ (Z(5,0) + log(s — A€ + iv)))e*T g(~is) ds = 0, (3)
—{CUCUCUC }

where the three contours are counterclockwise and —C; means that the orientation

of the path is reversed.
From (1), we have

/ Z(s,v)e’T §(—is)ds = / Z(s,v)e’T §(—is) ds. (4)
ct —{csUciucyy
From (2), we have
/ Z(s,v)e*T §(—is) ds = / Z(s,v)e*T §(—is) ds. (5)
oh —{aucruoy )y
From (3), we have

/ Z(s,v)e’T §(—is)ds = / log(s — B(€ + iv))e™! §(—is) ds
—C,

c,Uc,Ucy

+ / (Z(s,v) +log(s — B(& + iv)))e*T §(—is) ds + / Z(s,v)e’T §(—is)ds. (6)
Cy C\JG;

Let C(0) =C; UC,UCs. Adding the three identities (4), (5), (6) we obtain
/ Z(o +it,v)e" T §(—io + t) dt
R
= — z/ log(s — B(€ + iv))§(—is)e*” ds + 2/ Z(s,v)e*T §(—is) ds
Clo) {cruc,}

— z/ (Z(s,v) +log(s — B(& +iv)))e*T §(—is) ds + z/ Z(s,v)e*T §(—is)ds
Cy C

HUCE
oo —R
+ </ +/ ) Z(o + it,v)el” 7T g(—ig + t) dt.
R —00
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As we discussed in Lemma 1, for any m, K € N,

6hT

Z(s,v)eTg(—is)ds < ¢1]|9™|| 11 =,
/c+uc } h Tm=AK

. it eh*T
(/ / > U+Zt,v> (o+it)T' g( ZU+t) CQHg HLIW’

/c (Z(s,v) +log(s — B(& + iv))e T g(—is) ds = csl|gl|ie” " 77)

and

g™ s
T(m—1-B)K

ST ai g™ e wer — o
B Z(S,’l})e g(—ZS)dS<C4m€ e The <C4
feuery

Hence

/ Z(o +it,v)e " T §(—io + t) dt + z/ log(s — B(€ + iv))g(—is)e*T ds
R C(o)

i CIHQ(m)”L' CQHQ(m)HLl _ el
<elh <T(m—1—5)K+ Tm—BK +c3|gl| e %7 ) .

Next we consider ¢ fc(a) log(s — B(£ + iv))g(—is)e*Tds. Integrating by parts, we have

z/ log(s — B(€ + iv))§(—is)e’T ds + / _ 9 ar g
C(o) s =

£+w)

o L ot = Bi€ + i) P ime T s

i s=c(R)—2Bi .
= 'Tlog<s — (& +iv)g(—is)e”” <cllgllpe™™ "7
s=c(R)+2B1
For the integral fc gflv) e*Tds, we use the residue formula,

ﬂ T o e
/< WCo S—ﬂ(§+iv)€ ds 2mig(—if(€ + iv))e”! .

— B +iv)

g(—1s) T Th*— <&
= ——————e""ds| < c[|g||pe TK?,
/c(, s — B(§ + )

/ _ IS g 2miG(—if(iv))e’E T
C(o)

Now we have obtained

; 1 )
/ Z(o +it,v)e” T G(—io + t)di — 2w g(—iB(E +iv)e” T
R

: Cng(m)HL‘ CZHQ(m)HL' el
geTh (T(mlﬁ)K+ T(m*,@)K +c3||g||Ll€ 7K

L C dg(—1is)
T ds

/ log(s — B(£ +iv))esT ds‘ .
C(o)
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We iterate the preceding operation M + 1 times, and note that
d*g(—is)| _

- v g)edy| < clly*gl L.
ds R

We have

M ;
; 1 d’g
/RZ(O' +it, v)e T g(—io + t) dt — 27 ;“ i —dsg(—zﬁ(g + jv))elEriT

* Cq Cy *_ _cT
< g™ e (T(m—1—ﬁ)K + T(m—ﬁ)K) +ch (lgllp + -+ [ly™gllwr) el TR

c T dM+1
oTes) /C Touts = BlE +i0)e”” mrg(—is) ds| O
Since
i . dM+1 )
Uler}:* g e v gy /C(U) log(s — B(iv))e® dsMHg(—zs) ds

dM-H

:/ 6_2”<”’“>dv/ log(sfﬁ(iv))eSTd s d(—is) ds
1 C(h*) $

_o (Il o
B TM+1 ’

by Lemma 1 and Lemma 2, we can prove the following proposition.

PROPOSITION 2. Lel g be class C™ with compact support. For all M, m > 1, we have

RT0) - e 3 ) / et D8 _igie 1 jup)eneinTyy

Tj+1 d J
7=0
||y 1+1 gHL' * * Cq Cy
< CQW‘ET}L +cllg m)HL'eTh (T(m—l—B)K + T(m— )K)
% _ T
+&(llglle + -+ [ly™gllp)e™ "7 (7)

For VN €N, taking m sufficiently so large such that (m —g8)K > N + g +2 and
M=N+b+2, we have

Prorosi1ioN 3. Let g be class C™ with compact support. For all N > 1, we have

N+b+2

(TOC —e —{&@) Z J+1/ —2mi{v,a) ( Zﬂ(f-f—?,?))) pErioT gy,
7=0
el e 6
S TNvbe2 ZpN+1+S
*_ _eT
+es (gl + -+ [y g| ) e™ TR (8)

3. Coefficients of error terms of wg(T', o)
From Proposition 3, in order to estimate (7', o) we only need to estimate
d’g

/ W(—iﬁ(g + iv))eTﬁ(f*i”)e*%i(vmdv.
v, 48
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We shall use the method that Anantharaman used in [1]. We first prove the following
lemma.

Lemma 3. There exist polynomials f](-k)(z'v) Ay, . . ., 10 sSuch that the total exponent
of each term has the same parity as k and such that

djg ; ; TB(&+iv)—2mi{v,o)
—(— + (2% ZTT(V, d _
/w o BT e v

eTh* 2N+1 1 1 < \ ok
_ = 487@ =2l ) () oy | <
b/2 k z/ € J (v) dv| <
T2 = T Jiwicvan
Th*
<c sup —
n<21£+2||y "ol TN+
Sfor some small p.
Remark.
. RN VE:
(1) Here || - || denotes the 2-norm, i.e., ||v|| = (Zizl vzz) .

(2) The proof is similar to that in [1]. We denote (d7§/ds?)(—iB(¢ +1iv)) by g;(iv).
For convenience, let Vj be of the form {v € R®/Z" : |jv|| < p}.
(3) By the first condition, we mean that f](»k)(iv) can be written in the form

k), - . . ; .
£ 00) =) an g, o) 0) - (i0)"

In particular,

4’

)+« — ~(0),ny _ L .
[ (iv) = g;(0) = EQ(*ZS) |s=h;

£0i) = Ll 0)5(E) - (o) + g;-”<0> (iv);

(4) We can see that fj(»())(iv) are constants and ﬁ()())(iv) >0, since

d7

(0) @’ - &
dsI

1) = S g(~is)

J
ds s=h*

= /ng(y)esydy
R

Next we need to estimate

g(y)e™dy
R s=h*

/yg( )"V dy.
s=h*

2N+1

> i / 8@ -2l VI 9o gy,
P u||<fp

We have the following proposition.
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PRropPosITION 4.

2N+
~18" (O W) —2mifa/VT)
Z Th2 / 2h e f (iv) dv
k=0 ”|<\FP
2N+1
= Z T2 / ;k)(a,iv)dv + O( sup  |ly"gll. T N“)),
k=0 T R n<AN+b+2
where
k (UFS 9 in\k—1
k . _ k—1 f <ZU)<a7 27”7}>
s (i) = (=)' S
1=0 '
are polynomials in vy, ..., 10, and we still have that the total exponent of each term in
s;k)(oa, v) has the same parity as k.

Proof. We expand e~27@2/VT) in a neighbourhood of 0,

e—?ﬂ'i<a,v/ﬁ> — 1 . <Oé, 27TZU> n <a, 27T7;U>2 <O¢,2'/Ti’u>3

VT 2T 3ITH2
(o, 2miv)? N+ .
~ N+ g i/ VD)
' ol[2N+2
where |Zy (iv/VT)| < ”T‘%
Let
k k-1
w, v Ji () {a, 2miv)
s: (o, iv) =y (—1) ,
’ 1=0 (k=10)
then
)N+1 "
D g,
k=0 lvll<vTe
2N+
- <§)(7””)s(1€)(a w)dv+ 0O sup |jy" g||L1T (V1)
kz; Tk/2 /v||<\fp ’ (n<4N+b+2 )

For T sufficiently large, for all m € N, we have

/ e%ﬁ”(g)(v,u)Hva dv < / efe’l\v\|2|v11)2 - vg| dv
ol >v/T lol>vTp

d S
1,2 _/
< | |/ e Yivdy; < ce T,
i=1 Y VTp
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for some € > 0. So we have

2N+l .
/ 0l 2t/ VT) 0) ) gy
k 0 |UH<\/_P
2N+1
k .
Z Tk/Z/ s(- >(a,w) dv
k=0
<c sup [y gl (T~ e

n<AN+b+2

Now the proof of the proposition is complete.

k
2

In the following lemma, we will see that the coefficients of 772 vanish.

Lemma 4. If k is odd, then

/ =30 O s (o i) dv = 0.
Rb

Proof. Since

_Z )R A0 ) (2mi)" (Zaw)k_l

1=0

=3t (@) (i00)" (02) - (i)

where {; +1;+---+1yis odd and q, 1, ;, () are constants which depend on « and g.

Let v' = —v, i.e., (v],v},...,0;) = (—vy, —V2,...,—p), then
/b e 1P (f)(”’“)sgk)(a,iv) dv
R

/
= / e 1B Z ay, 1,,.. zm) (ivg)l2 . (ivb)l*’dmdvg - duy
RI’

/
:/ T O TN gy (=) )" ) - (g duf ) - - d
Rb

"

= _/ @*%ﬁ <E)(v/’v/)S§k)(a,iU/) dv'.
Rb

Thus

/ e~ 4810w 0 i) v = 0. =
Rb

vanish. So we only need to

By Lemma 4, for k£ odd the coefficients of T~ g
b; (o) be the coefficient of T* in

calculate the coefficients when k is even. Let
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Proposition 4. If we write o = (o, g, . . ., ap) then

b(,’“)(a) :/ PRl (5)(”’”)sgzk)(a,iv) dv
RY

j
2k 2k—1
L f (i) (e, 2miv)?
= [ e Syl v
/Rb = ) (2k —1)!

2k

(7) I 1y I
Z blllz‘ 1,0 Oy

Li+la+--+1,=0

where bgf Z_)___lb are constants. More precisely,

; L+L+--+ 1) ” .
b;J) = (G 2 b) /]Rb e*%ﬁ (5)(%”)(Qﬁz)lﬁlz*"-ﬂh

il ! 1)
x ool ol f](»Qk_(l'+l2+"'+l”)>(iv) dv.
Thus we have proved the following proposition.
PROPOSITION 5.
IN+1 N (k)
Z ”(E)(U 71)6 2mi{c, v/f)]c ( ) . Z b] (Oé)
T’f/ Tk
k=0 ””<‘/_P =0
<c sup gl (T + e T,
n<AN+b+2
where b;k)(a) = ?.k+lg+~~-+lb:0 bE{} o ozll‘ alj - ~ozé” are polynomials in oy, qa, . .., o and

the degree of b;k) 1s 2k and b;{l)z___lb are constants which depend on g.
Let

n n 2(n—1)
_ (n—1) _ (4) by 12 Uy
cn(a) = E by (o) = § § b, g0 0 oy
=0 =0 Li+lo+- -+l =0
2n
. SN E l
= E Clyly--1, Oy 0‘22 abb7

Li+lo+-+1, =0

where ¢;,;,..;, are constants and

(27)b/? i
NIEERGIR

so that cy(a) is independent of a. On the other hand, for n > 1, ¢, () is polynomial
in o, ...,o, whose degree is 2n by Proposition 5. From the expression of b;k)(oz), we
have

1

coa) = by = £ / =2 O gy = —ih*) >0,
Rb

(a, 2miv)™"
(2n)

(0) , ’

|2n

Cn () ~ /b L (g)w’v)f(()”)(iv) "
R

~ (—1)"¢4|le] (cg >0 and ¢4 is dependent on g),
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where A ~ B means that lim,) - A/B=1. In order to make the result positive, we
assume that K < % so that
er 1

€ TS Oy

for any N > 0. Now we obtain the following theorem.

THEOREM 1. Let M be a compact manifold with first Bette number b>0 and let ¢,
M — M be a homologically full transitive Anosov flow. Let g be of class C™ with compact
support and g > 0. There exist £ €R®, h* >0 such that for « € H(M,Z), we have

_ eth” — (e, N Cng(C) 1
7Tg(T,Oé)— W@ ’ ZT—FO TN+1 G/ST*)OO, (9)

n=0
SJorany N € N. If we write o = (o, o, . . ., ) then the constants c,, () are in the form
2n
_ ol
Cngla) = Clily. g O O 2o m Oy
Li+ly+-+1, =0

where ¢y, 1, .1, are constants which are independent of a.

Remark. 1f g is of class C™ with compact support and m satisfies (m — 8)/p> N +
b + 2 for some N € N, (9) still holds.

4. The proof of the main result

In this section we use an approximation argument to obtain m(7, ). Let g be
a characteristic function. For all T we take g7 and g7 of class C*° with compact
supports such that:

(1) 97 <g<gr;

(2) llg7 o <2 and [lg7 |0 < 2:

(3) for 0 < n < M,iHy”gT Iz <elly™glles

(4) sup,, < [y"(95 — 9)ll20 <T>sup,, <y ly"gllz: for some A >0,

(m) m
() gz "Il <eT™ gz

These can be done by a convolution argument.

By (7), we have that

T —(&,@) = 1 —2mi(v,a) dj-;"l:\l“: . . ﬁ(§+iv)Td
T (T o) — e ZTj+1 w,e W(—zﬂ(fﬂ-w))e v

7=0
(m)
Ay il one gz e o _
< e e telllgrln 4+ lyMgr ) e T
™™ gz ra lgllz : e
<a e g ge el eyt glln)e™ T

By condition (4),

M

1 —2mi{v,a) dj;; d]@\ . . B(E+iv)T
Z Tj+l /‘; (& W — g (— ﬂ(f + Z”l)))e dv
3=0 0
Th* 1
< 3 sup 1y" gl T TN

X



Asymptotic expansion for closed orbits 395

Hence,
Tg(T, @) — e~ (& ZT]H ( iB(€ + iv))eP T gy
7=0
M
g (Tha) —e” Z j+l/ —2mi(v,e) —(—Zﬂ(§+w)) BErio)T g,
M
g (T,a) —e” ZT]H/ —2mifv.a) ( iB(€ + iv))eP T gy
M , .
— (&, 1 —2mi(v, dngr djg v
+e (& >2Tj+1 /Ve 2mi{v, ><dsz_@ (—iB(€ + iv))ePEr T gy
3=0 o
N iasr P S 1 R
T]\/I+1 T(m—ﬁ)K—m)\
" e 6Th* 1
+exlglo + -+ ™ gll)e™ 7% +Cs:3}1?4 ly" 9||L b TA

Taking M > 5 + 1+ Xand g = x_gi/u g, then

(T, ) — e~ (&) ZTM / e < iB(¢ + iv))e” €T dv

7=0

Th* [ €0 Ci e C3
Se <T—M+m+cze Ry

Let ¢ = min{\ — 1, (m — B)K — mA — & — 2}, where K < 1/p. Since we can take M
suﬁi(iently large, the best error term is 1/T¢. By A — 1 >0 and (m — 3)K — m\ —

2 —2>0, we have A\ < K < 1/p if we let m — oo. We assume that p < 1 and let
é = —] — 1. We do the same as was done in the last section for

/ e PN (g dsT) (—iB(€ + iv))e” T dy
4

and obtain

, &g ,
/ —Zﬂl(v,@)_g(_iﬁ<£ + iv))eﬁ(§+zv)Tdv
dsi

eTh” N cer() 1
:Tgﬂ <C"+Z Tk +O<T_N> :

G(—iB(E +iv)) = g(€ +iv) + O(e-T™™1") hence

T]-H
7=0

Qi —
Since for g X(_rte op

crr(@) = cp(a) +O(e Th*—Tﬁh*).

et Y en(@) 1
ﬂ—g(Tv Ck) - Tb/QJrl Co + Z Tk + O W .

k=1

Hence




396 DoxagsHiENG Liv

It is well known that
(T — Tﬁaa) = O(eTh**Twliﬁh*)’

and

(T —Tw=a)+m, , (T,a)=n(T,a).

[—T M +2 0]

Lt/ AM 42

However, e — 0 faster than 1/T™ for any n. We have the following theorem.

THEOREM 2. Let M be a compact manifold with first Betti number b>0 and let
¢1: M — M be a homologically full transitive Anosov flow. There exist £ €R®, h* >0
and d > 0 such that for o € H((M,Z), we have

— e —(&,a) > cn(a) 1
(T, o) = Tt co + Z T +0 TS asT — oo (10)
n=1

for N < 8, where ¢y >0 is a constant which is independent of «. If we write o =
(af, o, ..., ap) then the constants c,(a) are in the form

2n

_ Iyl Iy
cn(a) = E Clily. 10 Qs -y
Li+lo+e -+, =0

where ¢y, 1, .1, are constants which are independent of a.
Remark. As we see in [5] for closed geodesics, we still have that

cn(@) ~ (=1)"cllal* (¢ > 0) as [|a]| — oo.
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