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The activation problem is investigated in two-dimensional nonequilibrium systems. A numerical
approach based on dynamic importance sampling (DIMS) is introduced. DIMS accelerates the
simulations and allows the investigation to access noise intensities that were previously forbidden.
The escape path is observed to be shifted compared to a heteroclinic trajectory calculated in the limit of
zero-noise intensity. A theory to account for such shifts is presented and shown to agree with the

simulations for a wide range of noise intensities.
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Activation processes lie at the heart of a large class of
physical phenomena in nonequilibrium systems, such as
stochastic resonance [1], directed diffusion in stochastic
ratchets [2], nucleation in electrochemical systems [3],
the dynamics of vertical cavity surface emitting lasers
(VCSELSs) [4] and gas lasers [5], and the passage of
currents of ions through open ionic channels [6] in bio-
logical membranes. The Kramers activation process lies
within this class of problems [7]. Despite its importance,
the problem of activation cannot be regarded as solved. On
the theoretical side, important steps towards the solution
have been taken in the regime of zero-noise intensities.
They predict the escape to take place in a ballistic manner
along a most probable escape path (MPEP) that can be
obtained from an auxiliary Hamiltonian system [8—14].
The same picture still applies even for escape at short
times (i.e., before quasiequilibrium has been established)
[15]. More recently it has been established [16] that finite
noise does more than just changing the prefactor of the
exponential. It causes the system to follow a path that
differs from the zero-noise theoretical MPEP.

The activation problem has also been extensively
studied numerically, in particular, using Monte Carlo
simulations. However, even for simple systems, the simu-
lation time grows exponentially with decreasing noise
intensity. Consequently, the really interesting range of
noise intensities, i.e., small enough for valid comparisons
to be made with theoretical predictions, has in practice
been inaccessible to numerical experiments. Intensive
efforts are therefore being made to find ways of speeding
up the simulations [17-19]. In [17] the probability distri-
bution for the system is built up iteratively. In this way,
the shift of singularities in the probability distribution
and oscillation of the probability at the boundary due to
finite noise intensity have been observed. These features
are consistent with the predicted shift of optimal paths
due to the finiteness of the noise intensity. However,
simulations able to reveal the predicted shift in the opti-
mal path with increasing noise intensity are still lacking:
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to address this question we need numerical approaches
which yield, not the probability distributions, but rather
the actual paths followed by the dynamics of the system
of interest. Simulation techniques based on dynamic im-
portance sampling (DIMS) were proposed in [18] for
one-dimensional dynamical systems to study dynamics
in the limit of very small noise intensity. DIMS aims to
accelerate Monte Carlo integrations by adding an appro-
priately chosen biasing field to the equations of motion,
which remain stochastic in nature. Standard techniques
are then used to relate Monte Carlo results in the presence
of the bias to the statistical observables of the original
system.

Extensions of DIMS to higher-dimensional systems
(like those one commonly encounters when dealing
with nonequilibrium processes) are not straightforward.
An earlier biasing technique, introduced in [19] for both
one- and two-dimensional systems, was found incapable
of detecting either the shift of the escape path [16] or
saddle point avoidance [20], both of which had been
predicted theoretically. Moreover, in the presence of sin-
gularities, a bad choice of bias might hide impor-
tant physical features of the system of interest. Note
that other numerical approaches, like the umbrella sam-
pling technique [21], are not appropriate for nonequilib-
rium systems.

In this Letter we propose a robust generalization of
DIMS that is, in principle, valid for an arbitrary number
of dimensions. The aim is to reveal finite noise features in
the vicinity of the MPEP, accelerating the simulation by
exploitation of well-established zero-noise-limit theoreti-
cal results. We apply this technique to the investigation of
escape in multidimensional nonequilibrium systems for
very small but finite noise intensities, thereby accessing a
range far beyond anything investigated previously. As we
show, the predicted shift of the optimal path due to the
finiteness of the noise is clearly resolved and turns out to
be in excellent agreement with theory [16] over more than
4 orders of magnitude in the noise intensity.
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We first describe the problem for a generic nonlinear
system under the influence of noise

x = flx) + &), )
@) =0 (£né(s)) = edt — s). 2

Here x represents a vector of coordinates, f(x) is a non-
linear function, and &(z) is a family of zero-mean un-
correlated noise processes of intensity €. For systems in
detailed balance [for example, if f(x) is the gradient of
some potential function], activation traverses paths that
are time reversed relaxational trajectories [22]. In what
follows we consider the case where f(x) does not satisfy
the detailed balance condition, and we focus on the
important case of f(x) showing unstable cycles coexist-
ing with stable steady states. The stochastically equiva-
lent Fokker-Planck equation for the probability density is
de _ _9dfo)  ed’o 3
ar dx 2 9x%° (
In the limit € — 0, (3) can be solved using the WKB
expansion [8,9]. Inserting a test function of the form

olx, 1) = z(x, 1) exp(— S():’ 0 > €e— 0, %)

in (3), at leading order € !, the auxiliary function S turns
out to be the solution of the Hamilton-Jacobi equation for
a classical action

as
s _ H<x,—> )
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with the Hamiltonian equations
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The Hamiltonian for the system, H(x, p) = ”72 +p-f,is
known as the Wentzell-Freidlin Hamiltonian [9]. The
function S evolves along the characteristics of (5) accord-
ing to § = % p?. Being nondecreasing along trajectories
and differentiable almost everywhere, the function S can
be considered as a nonequilibrium potential for the sys-
tem [23-26]. It is known from the theory of dynamical
systems that S(x,7) can be a multivalued function of
position in the coordinate space [23,25,27,28]. In this
case, more than one trajectory solution of (5) reaches
the same point in coordinate space. In the limit € — 0,
only the least action S, is relevant, and all trajectories
corresponding to higher values of S are exponentially
disadvantaged. Escape takes place along the least action
trajectory with overwhelming probability in the limit
€ — 0. This is the MPEP, and the action calculated along
it is the “activation energy.” Regions of coordinate space
reached by different families of optimal paths are sepa-
rated by switching lines (SL) [11,12,29]. A trajectory
ceases to be optimal after crossing a switching line. For
this reason, the most probable escape path can touch the
SL only asymptotically. Because the SL reaches the cycle
asymptotically [12], the only possible optimal escape
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trajectories are heteroclinic paths connecting the initial
state to the saddle cycle in infinite time.

To calculate the effect of a finite small € # O in this
picture, a calculation of the next-to-the-leading order in
the WKB expansion is performed. In this order of ap-
proximation, the prefactor z(x, t) satisfies

dz |
= 20,1 —=20,0,8 7
o 20, f 529i0, (7N

[11], where the notation d; has been used for % The
solution of (7) calls for a knowledge of the second de-
rivatives of the action calculated along the characteristics.
Differentiating twice (5), the following equations are

obtained [11]:
d< %S )__ *H  9*S 9’H
dt\ox'ox/ oxiox/  9x'oxk gpFox/
'S *H  9’S  9*S  *H
oxioxt axiap!  axiaxt ax'axk aprapt
(3)

At this order of approximation, the nonequilibrium po-
tential has to be corrected as S, = S — elog(z). The
position of the switching line is now defined as S. = $2,
where the indices 1, 2 refer to two different trajectories
reaching the same point in the coordinate space [17]. The
modified switching line does not touch the cycle asymp-
totically but hits it at a definite position. As a conse-
quence, heteroclinic trajectories are no longer optimal
and optimal escape follows a path different than MPEP.

To test these ideas, we propose an extension of DIMS
[18,19] to the multidimensional case. It is suitable for
unraveling features of the topology close to the optimal
escape path in the limit of small but finite noise intensity.
The method is applicable to a system characterized by a
stable attractor with a sizable basin of attraction, where
escape takes place via a large fluctuation.

For a given dynamical system, we initially set the
system close to the stable attractor and integrate the exact
equations of motion using a standard SDE (stochastic
differential equation) integrator: for the examples shown
below, we used the Heun integrator [30]. We also set a
boundary at some distance from the stable attractor: this
boundary has nothing to do with the boundary of the
basin of attraction, but it defines when we switch from
standard SDE integration to DIMS integration. Although
the final result does not appear to depend on the boundary
choice, nevertheless the boundary ought to be chosen on
some rational basis: we require that the boundary should
be fairly easily reached by the dynamical system when
using straight SDE integration, but also that this event
should not be too probable. In practice, a reasonable
boundary could be, e.g., a circle centered on the stable
attractor, with a radius of a few ./e. This choice is
reproducing the diffusive dynamics in the vicinity of
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the stable state. When the system hits the boundary, we
switch to the DIMS integrator: from the above discussion,
we know that the SDE

x = f(x) + &@)

maps onto the Hamiltonian equation (6), so we switch to
the integration of

x=f(x) + plx) + £0), ()]

where p(x) is the momentum conjugated with x as ob-
tained from the MPEP and £(r) is the DIMS stochastic
component. It is clear that in more than one dimension the
probability of being exactly on the MPEP during each
integration time step is negligible, but the idea is, never-
theless, that we should use in the integration of (9) the
value of p(x) which “pulls” the escape tube towards the
boundary. This is achieved by linearizing the Hamilton
equations near the MPEP and using the p(x) that keeps
the system on the stable manifold of the MPEP. A step of
the scheme is explained in Fig. 1. Consider point A in the
coordinate space. The momentum p(x) to be used in
Eq. (9) is calculated in the following way: point A* in
the extended phase space which has the same x coordinate
as A, and lies on the stable manifold of the MPEP, is
located. The momentum of point A* is then used as p(x) in
(9). The integration scheme is interrupted and reset if the
trajectory leaves a small neighborhood of the MPEP (size
of a few /€).

We now consider two explicit examples of the applica-
tion of this algorithm. First, we consider the inverted
Van der Pol oscillator (IVDP). It is characterized by the
presence of an unstable cycle with a stable point at its
center. DIMS is used here to study transitions from the
stable state to the limit cycle. The IVDP system is de-
scribed by the following set of equations:

FIG. 1 (color online). The scheme for one step of the DIMS
method, where () is a cross section in the extended phase space,
v (thick line) is the optimal path predicted by the theory, and
the thin lines are the stable and unstable eigenspaces (as
indicated by the directions of the arrows) of the optimal
path. The dashed lines represent, respectively, the coordinate
space x and the momentum space p. A is a point in the
coordinate space; A* is the corresponding point on the stable
manifold of vy as required by the integration procedure.
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Here x and y are dynamical variables and £(¢) is a white
Gaussian process of unit intensity. The DIMS simulation
have been performed for a range of intensities running
between 107> and 1072, The results are shown in Fig. 2
for two different noise intensities. The agreement between
the theoretical and experimental escape paths at finite
noise intensities is seen to be excellent. The shift in the
optimal path is dramatic, leading to a marked change in
the point where it hits the cycle.

As a second example, we consider the harmonically
driven overdamped Duffing oscillator

x=y,

x=x— x>+ Asin(w?) + VJe&(1). (11

Here x is the dynamical coordinate, A and w are the
amplitude and the frequency of the external driving,
and ¢ is a white Gaussian process of unit intensity. The
parameters A and w are chosen to be in the nonperturba-
tive, nonadiabatic regime. The dynamics of this system is
characterized by two stable limit cycles separated by an
unstable limit cycle. In the presence of noise, the system
can fluctuate from one stable cycle to the other. Some
simulation results are shown in Fig. 3. The experimental
trajectory follows closely the heteroclinic path when it is
far from the stable and unstable cycles. As the system
approaches the unstable cycle, however, diffusion be-
comes important and the escape then runs along the finite
noise escape path calculated using finite noise corrections.
Experiments with different noise intensities (not shown)
reveal an increase of the shift with noise intensity.

In conclusion, we have introduced a highly efficient
way of performing numerical simulations, based on the
idea of taking the momentum so as to stay on the stable
manifold. It is applicable to a large class of dynamical
systems. The technique provides a unique tool for study-
ing features induced by finite noise in the neighborhood of
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FIG. 2 (color online). Simulations of escape in the IVDP
system (9), with 7 = 0.5 and two different noise intensities:
€ =107 (left) and € = 1072 (right). The full lines are the
limit cycle and the most probable escape path; the crosses are
points on the ridge of the prehistory probability density for the
escape. The arrows indicate the positions where the theoretical
modified optimal escape path hits the cycle. For both noise
intensities, the theory agrees well with the experimental points.
A significant shift of the optimal path is evident.
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FIG. 3 (color online). Simulations of escape in the Duffing
system (10), with A =0.1, w =1, and € =4 X 1073, The
steady states and the most probable escape path at € = 0 are
indicated by dashed lines. The noise corrected optimal path is
shown by a solid line. The crosses are points on the ridge of the
prehistory probability density for the escape. The arrow shows
where the noise-corrected optimal path hits the cycle.

the optimal escape path and hence leads to a biasing
scheme that is based on the dynamics of the system itself,
thus constituting a most natural scheme for dynamic
importance sampling. Using this method we were able
to probe new regimes of low but finite noise intensity and
were able to observe experimentally the shift of escape
path predicted in [17]; we stress that this shift is a large
physical effect, even at the smallest noise intensities
investigated in this Letter. The technique provides a
way of extending experimental studies to noise intensities
that were previously inaccessible and promises to accel-
erate research in many fields of science, e.g., in the
investigation of the polarization of flip dynamics in
VCSELs or in the motion of ions in the pores of cellular
membranes. It will be straightforward to extend the
method to treat the case of a stochastic nonlinear map
like the one used in [5].
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