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Abstract

A recent characterisation of Fock-adapted contraction operator stochastic cocycles on a
Hilbert space, in terms of their associated semigroups, yields a general principle for the
construction of such cocycles by approximation of their stochastic generators. This leads to
new existence results for quantum stochastic differential equations. We also give necessary
and sufficient conditions for a cocycle to satisfy such an equation.

0. Introduction

In this paper we study the functional equation

V0 = I, Vr+t = Vrσr (Vt) for all r, t � 0

for a family of contractions on h ⊗ F adapted to the Fock operator filtration. Here F is the
symmetric Fock space over L2(R+; k), h and k are fixed but arbitrary Hilbert spaces and
(σt)t�0 is the endomorphism semigroup of shifts, ampliated to B(h ⊗ F). We call such a
family a left contraction cocycle on h with noise dimension space k.

Contraction cocycles may be constructed by solving quantum stochastic differential equa-
tions of Hudson–Parthasarathy type. By means of a recent characterisation of such cocycles,
in terms of an associated family of semigroups (Theorem 1·6), we provide a new method
of constructing cocycles which in turn leads to new existence results for QSDEs. When the
driving noise is infinite dimensional the coefficient of a QSDE is naturally given as a ses-
quilinear operator-valued map or, in terms of a coordinate system for the noise dimension
space k, as an infinite matrix [Fα

β ]. We show that if a process satisfying such a form QSDE
is contractive and strongly measurable then the coefficient is necessarily given by an op-
erator, equivalently the matrix must be semiregular. We also give necessary and sufficient
conditions, of weak differentiability type, for a strongly continuous left contraction cocycle
to satisfy a QSDE.

This paper builds on work of Accardi, Fagnola, Journé, Mohari and the authors ([Fa2, Jou,
Moh, AJL, FaW]), extending known results for Markov-regular cocycles and QSDEs with
bounded coefficients ([HuP, HuL, LW1, LW2]; see [Mey, L] and references therein). Our
development of the theory is coordinate-free, moreover a technical feature of the work is that
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no separability assumptions are imposed on either the initial space h or the noise dimension
space k. This freedom is useful for certain applications such as the stochastic dilation of
quantum dynamical semigroups ([GS1]). A different approach to the characterisation and
construction of cocycles through semigroup methods has been outlined by Liebscher ([Lie]).

General notations

The algebraic tensor product is denoted ⊗, with ⊗ reserved for the tensor product of
Hilbert spaces and their operators. For a vector ξ in a Hilbert space K, operators Eξ : H →
H ⊗ K and E ξ : H ⊗ K → H are defined by

Eξ u = u ⊗ ξ and E ξ = (Eξ )
∗;

with context indicating the Hilbert space H, and moreover the elementary tensor u ⊗ ξ is
usually abbreviated to uξ . Note that ξ �→ Eξ is an isometry. For Hilbert spaces H and H′

and a dense subspace D of H, O(D; H′) denotes the linear space of operators H → H′ with
domain D; O(D) abbreviates O(D; H). For f ∈ L2(R+; k) and I ⊂ R+, f I denotes the
function that agrees with f on I and is zero elsewhere, and cI denotes the function equal to
c on I and zero elsewhere, when c is a vector in k.

Fock space

We use normalised exponential vectors in F = �
(
L2(R+; k)

)
, the symmetric Fock

space over the Hilbert space L2(R+; k). These are defined by �( f )�‖ε( f )‖−1ε( f ) where
ε( f ) = (1, f, (2!)−1/2 f ⊗2, . . .) for f ∈ L2(R+; k). The function

χ : k × k → C, (c, d) �→ 1
2 (‖c‖2 + ‖d‖2) − 〈c, d〉, (0·1)

which governs their inner product: 〈�( f ), �(g)〉 = exp(− ∫
χ( f (s), g(s)) ds), also plays

a role. The subspace E(S) := Lin {ε( f ) : f ∈ S} is dense in F for various useful subsets of
L2(R+; k), for example

ST�{ f ∈ S : f is T-valued}
where S� Lin {c[0,t[ : c ∈ k, t > 0}, and T is a total subset of k containing 0; we write ET

for E(ST). Examples of such sets T include (not necessarily normalised) orthogonal bases,
augmented by 0.

We shall need a refinement of the basic estimate

‖�( f ) − �(g)‖ � ‖ε( f ) − ε(g)‖ � ‖ f − g‖e
1
2 (‖ f ‖+‖g‖)2

(0·2)

obtained by viewing L2(R+; k) as a subspace of F, namely

‖ε( f ) − ε(g) − ( f − g)‖ � ‖ f − g‖(‖ f ‖ + ‖g‖)e 1
2 (‖ f ‖+‖g‖)2

. (0·3)

Letting FI denote the symmetric Fock space over L2(I ; k), for a subinterval I of R+,
the tensor factorisation F � F[0,t[ ⊗ F[t,∞[ is given by continuous linear extension of the
correspondence

�( f ) ←→ �
(

f |[0,t[
)
�

(
f |[t,∞[

)
.

Operator processes

A family of operators (Xt)t�0 in B(h ⊗ F) is adapted if

Xt ∈ B
(
h ⊗ F[0,t[

) ⊗ IF[t,∞[ for all t,
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that is, if each Xt only acts nontrivially before time t , and is called an (operator) process if
furthermore it is weakly measurable (i.e. if t �→ 〈ξ, Xtζ 〉 is measurable for all ξ, ζ ∈ h⊗F).
Here we are concerned with contraction operator-valued processes, which we refer to simply
as contraction processes on h.

The right shift st and time reversal map rt on L2(R+; k) are

(st f )(u) =
{

0 if u < t,

f (u − t) if u � t,
and (rt f )(u) =

{
f (t − u) if u � t,

f (u) if u > t.

Their second quantisations ampliated to h ⊗ F are the isometry St and self-adjoint unitary
Rt respectively, given by

St uε( f ) = uε(st f ), Rt uε( f ) = uε(rt f ). (0·4)

Thinking of st as a unitary L2(R+; k) → L2([t, ∞[; k) we get the Hilbert space isomorphism
F � F[t,∞[, and the algebra isomorphism B(h ⊗ F) � B(h ⊗ F[t,∞[). The latter algebra is
viewed as a subalgebra of the former:

B(h ⊗ F)� B(h) ⊗ IF[0,t[ ⊗ B
(
F[t,∞[

) ⊂ B(h ⊗ F).

Then, for Y ∈ B(h ⊗ F), σt(Y ) ∈ B(h ⊗ F) denotes the result of carrying out these identi-
fications; more concretely it is determined by the identity

〈uε( f ), σt(Y )vε(g)〉 = 〈uε(s∗
t f ), Yvε(s∗

t g)〉〈ε( f[0,t[
)
, ε

(
g[0,t[

)〉
.

The family (σt)t�0 is a pointwise weakly continuous semigroup of normal endomorphisms
of B(h ⊗ F).

Perturbation

We end this introduction by quoting a dissipative generalisation of the Kato-Rellich The-
orem whose symmetric form is well-suited to our purposes. Recall that a C0-semigroup is
contractive if and only if its generator is dissipative.

THEOREM 0·1. Let A and B be densely defined dissipative operators on a Banach space
with the same domain D, and suppose that there are constants λ, µ � 0 with λ < 1 such
that their difference D = A − B satisfies

‖Dv‖ � λ
(‖Av‖ + ‖Bv‖) + µ‖v‖, v ∈ D. (0·5)

Then Dom A = Dom B, moreover A is a C0-semigroup generator if and only if B is.

This result is due to Gustafson (see [ReS, theorem X·50]). Note that if (0·5) holds then D
is A-bounded with relative bound at most 2λ/(1 − λ).

1. Cocycles and semigroups

Left contraction cocycles on h have been defined in the introduction. An adapted family
of contractions U = (Ut)t�0 on h ⊗ F, satisfying U0 = I and Ur+t = σr (Ut)Ur for r, t � 0,
is called a right contraction cocycle. Thus U is a right contraction cocycle if and only if
U ∗�(U ∗

t )t�0 is a left contraction cocycle.

The semigroup decomposition

For a contraction process V = (Vt)t�0 on h, define the following operators on h:

VQc,d
t = E�(c[0,t[)Vt E�(d[0,t[), c, d ∈ k, t � 0.



538 J. MARTIN LINDSAY AND STEPHEN J. WILLS

These ‘sliced’ operators allow one to determine whether or not a process V is a left contrac-
tion cocycle. Note that they are all contractions.

PROPOSITION 1·1 ([LW2]). Let V be a contraction process on h, and let T and T† be
any total subsets of k containing 0. Then the following are equivalent:

(i) V is a left contraction cocycle;
(ii) for each choice of c ∈ T† and d ∈ T, (Qc,d

t �VQc,d
t )t�0 is a contraction semigroup

on h, and for all f ∈ ST† and g ∈ ST

E�( f[0,t[)Vt E�(g[0,t[) = Q f (t0),g(t0)
t1−t0 · · · Q f (tn),g(tn)

t−tn (1·1)

where {0 = t0 � t1 � · · · � tn � t} contains the discontinuities of f[0,t[ and g[0,t[,
and right-continuous versions are used for the evaluations.

We refer to {VQc,d : c, d ∈ k} as the cocycle’s associated semigroups.

Remark. The same holds for right contraction cocycles except that the product in (1·1)
is in the reverse order. It follows that (Ut)t�0 is a right contraction cocycle if and only if
(RtUt Rt)t�0 defines a left contraction cocycle, where the operators Rt are defined in (0·4).

For a left contraction cocycle V , we refer to the left contraction cocycle defined by
(Rt V ∗

t Rt)t�0 as the (Journé) dual of V ([Jou]), and denote it Ṽ . The associated semigroups
of the dual cocycle are related to those of V as follows:

Q̃c,d
t = (

Qd,c
t

)∗
. (1·2)

Continuity

The above proposition makes no continuity demands on the time variable of V – indeed
it does not even require the weak measurability condition imposed on processes. However
the decomposition of a cocycle into its associated semigroups does provide a useful handle
on the continuity of a cocycle.

LEMMA 1·2. Let V be a left contraction cocycle on h and let {Qc,d : c, d ∈ k} be its
associated semigroups. Then, the following are equivalent:

(i) V is strongly continuous;
(ii) V is weakly continuous at 0;

(iii) for all c, d ∈ k, Qc,d is strongly continuous;
(iv) for some a, b ∈ k, Qa,b is weakly continuous at 0;

Proof. Let c, d ∈ k and suppose that V is weakly continuous at 0. By adaptedness〈
u, Qc,d

t v
〉 = 〈

�
(
c[t,T [

)
, �

(
d[t,T [

)〉−1〈
u�

(
c[0,T [

)
, Vtv�

(
d[0,T [

)〉
,

for 0 � t � T and u, v ∈ h, and so the contraction semigroup Qc,d is weakly continuous at 0
and thus also strongly continuous, by standard semigroup theory ([Dav, proposition 1·23]).
Thus (ii) implies (iii). Suppose now that Qa,b is weakly continuous at 0 (and thus strongly
continuous) for some a, b ∈ k, and let t � r and ξ = v�( f ) for v ∈ h and f ∈ L2(R+; k).
Then by the cocycle relation, and contractivity and adaptedness of V ,

‖Vtξ − Vrξ‖2 � ‖σr (Vt−r )ξ − ξ‖2

� 2 Re 〈ξ, (I − σr (Vt−r ))ξ〉
= 2 Re

〈
S∗

r v�
(

f[r,t[
)
, (I − Vt−r )S∗

r v�
(

f[r,t[
)〉
.
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For any e ∈ k let ϕe
r,t = �( f[r,t[) − �(e[r,t[), so S∗

r v�( f[r,t[) = S∗
r vϕe

r,t + v�(e[0,t−r [), and
thus the right-hand side of the above is no larger than

4‖v‖2
{∥∥ϕa

r,t

∥∥∥∥ϕb
r,t

∥∥ + ∥∥ϕa
r,t

∥∥ + ∥∥ϕb
r,t

∥∥} + 2
∣∣〈v�

(
a[0,t−r [

)
, (I − Vt−r )v�

(
b[0,t−r [

)〉∣∣.
The first term converges to 0 as t − r → 0, and the second term equals

2
∣∣〈v,

(
I − Qa,b

t−r

)
v
〉 + ‖v‖2{exp(r − t)χ(a, b) − 1}∣∣,

hence ‖(Vt − Vr )ξ‖ → 0 as t − r → 0 by the assumption on Qa,b. Therefore, since the
collection of such vectors ξ is total, the uniform boundedness of V implies that it is strongly
continuous. Thus (iv) implies (i). Since the implications (i) ⇒ (ii) and (iii) ⇒ (iv) are trivial
the proof is complete.

Thus, as for semigroups, strong continuity for a left contraction cocycle is equivalent to
weak continuity at 0, and also to any of its associated semigroups – in particular its Markov
semigroup Q0,0 – being a C0-semigroup.

Remark. By the strong continuity of t �→ Rt , Lemma 1·2 is equally true for right con-
traction cocycles.

Suppose that V is a strongly continuous left contraction cocycle on h. Then each VQc,d

is a C0-contraction semigroup by Lemma 1·2 and so has a generator GV
c,d . For immediate

purposes it is convenient to also work with the C0-semigroups defined by

VPc,d
t �Eε(c[0,t[)Vt Eε(d[0,t[) = et (‖c‖2+‖d‖2)/2 VQc,d

t , c, d ∈ k,

and their generators, which we denote H V
c,d . The generators are related by

H V
c,d − 〈c, d〉 = GV

c,d + χ(c, d),

with equality of domains, where χ is the function defined in (0·1).
Note also that, from (1·2),

H Ṽ
c,d = (

H V
d,c

)∗
and GṼ

c,d = (
GV

d,c

)∗
.

Operators associated with a cocycle

In this section the generators of semigroups associated with a strongly continuous left
contraction cocycle are compared. This will lead to natural sufficient conditions on their
domains for such a cocycle to be governed by a QSDE. First note two consequences of the
estimates (0·2) and (0·3). For locally bounded functions f and g in L2(R+; k),∥∥ε

(
f[s,t[

) − ε
(
g[s,t[

)∥∥ = O(
√

t − s) and∥∥ε
(

f[s,t[
) − ε

(
g[s,t[

) − ( f − g)[s,t[
∥∥ = O(t − s), (1·3)

as (t − s) → 0 with [s, t[ in some finite interval. In particular, for a, c ∈ k,∥∥ε
(
c[s,t[

) − ε
(
a[s,t[

)∥∥ = O(
√

t − s) and (1·4)∥∥ε
(
c[s,t[

) − ε
(
a[s,t[

) − (c − a)[s,t[
∥∥ = O(t − s). (1·5)

The former refines to

(t − s)−1/2
∥∥ε

(
c[s,t[

) − ε(a[s,t[)
∥∥ � ‖c − a‖ + O(t − s). (1·6)
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Viewing h ⊗ k ⊗ L2(R+) = h ⊗ L2(R+; k) as a subspace of h ⊗ F, define two families of
operators associated with a cocycle V :

T V
d (t) : = t−1 E1[0,t[ Vt Eε(d[0,t[), and

C V (t) : = t−1 E1[0,t[ Vt E1[0,t[,

for d ∈ k and t > 0. Thus T V
d (t) ∈ B(h; h ⊗ k), and C V (t) ∈ B(h ⊗ k) is a contraction.

Since its associated semigroups satisfy〈
u,

(
VPc,d

t − VPa,d
t

)
v
〉 − t

〈
u(c − a), T V

d (t)v
〉

= 〈
u
(
ε
(
c[0,t[

) − ε
(
a[0,t[

) − (c − a)[0,t[
)
, Vtvε

(
d[0,t[

) − vε(0)
〉

and Vtvε(d[0,t[) → vε(0) as t → 0+, the estimate (1·5) implies that

t
〈
u(c − a), T V

d (t)v
〉 = 〈

u,
(

VPc,d
t − VPa,d

t

)
v
〉 + o(t) (1·7)

as t → 0; similarly

t〈u(c − a), C V (t)v(d − b)〉 = 〈
u,

(
VPc,d

t − VPc,b
t − VPa,d

t + VPa,b
t

)
v
〉 + O

(
t3/2

)
. (1·8)

Now define operators T V
d and C V by

T V
d v = w-lim

t→0+
T V

d (t)v and C V ξ = w-lim
t→0+

C V (t)ξ

with domains equal to the subspaces on which weak convergence holds. Thus Dom C V is a
closed subspace of h ⊗ k on which C V is a contraction. We shall see that each T V

d is densely
defined and obtain sufficient conditions for C V to be defined on all of h ⊗ k.

For a subset S of k and element d of k, define

D
V,d � Dom GV

d,d, and D
V,S �

⋂
c∈S

D
V,c. (1·9)

Note that Dom H V
c,d = Dom GV

c,d for all c, d ∈ k.
In the next result we shall spare the reader a panoply of symbols by dropping the V and

Ṽ superscripts, writing T̃c for T Ṽ
c and so forth.

PROPOSITION 1·3. Let V be a strongly continuous left contraction cocycle on h with
noise dimension space k, let c, d ∈ k.

(a) For each v ∈ D
d and f ∈ (L2 � L∞

loc)(R+; k), the map t �→ Vtvε( f ) is (locally)
Hölder continuous with exponent 1/2.

(b) For each a ∈ k, Dom Ha,d = D
d . Moreover, for any dense subspace D of D

d , D is a
core for Hc,d if and only if it is a core for Hd,d .

(c) For each e ∈ k,

EeTd ⊃ Hc+e,d − Hc,d . (1·10)

In particular, the map c �→ Hc,d is complex-conjugate affine linear.
(d) For all b, e ∈ k,

Hc,d − Hc,b ⊂ (T̃c)
∗Ed−b and Hc,d + (T̃c)

∗Ee ⊂ Hc,d+e, (1·11)

and the maps d �→ Hc,d and d �→ Td are complex affine linear in the sense that, for
all b ∈ k and z ∈ C, if e = (1 − z)b + zd then

Hc,e ⊃ (1 − z)Hc,b + zHc,d and Te ⊃ (1 − z)Tb + zTd . (1·12)
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(e) For b, e ∈ k

Td − Tb ⊂ C Ed−b and Td + C Ee ⊂ Td+e,

in particular the operator (Td − Tb) is bounded on its domain. If Dom C Ed = h then
(C Ed)

∗ ⊃ EdC̃. Also Dom C = h ⊗ k if and only if Dom C̃ = h ⊗ k, in which case
C̃ = C∗ and Dom Td is independent of d.

(f) For each b ∈ k, Tb is Hc,d-bounded, with relative bound 0, on D
d �Dom Tb ⊃ D

{b,d},
in the notation (1·9).

Proof. First note that for v ∈ D
d , and λ, t > 0,

t−1‖(Vt − I )v�
(
d[0,t[

)‖2 � 2t−1 Re
〈
v,

(
I − Qd,d

t

)
v
〉

= −2t−1 Re
∫ t

0

〈
v, Qd,d

s Gd,dv
〉
ds

� 2‖v‖‖Gd,dv‖
� 2(‖v‖‖Hd,dv‖ + ‖d‖2‖v‖2)

� (λ‖Hd,dv‖ + (λ−1 + √
2‖d‖)‖v‖)2,

so

t−1/2
∥∥(Vt − I )vε

(
d[0,t[

)∥∥ � λ‖Hd,dv‖ + (λ−1 + √
2‖d‖)‖v‖ + O(t) (1·13)

as t → 0. In particular, since E1[0,t[ Eε(0) = 0, using (1·6)

‖Td(t)v‖ � t−1/2
∥∥Vtvε

(
d[0,t[

) − vε(0)
∥∥

� λ‖Hd,dv‖ + µ(λ)‖v‖ + O(t) (1·14)

where µ(λ) = λ−1 + (1 + √
2)‖d‖. From (1·7) therefore∥∥(

Pc,d
t − Pa,d

t

)
v
∥∥ � t‖c − a‖‖Td(t)v‖ + o(t)

� t‖c − a‖(λ‖Hd,dv‖ + µ(λ)‖v‖) + o(t). (1·15)

(a) Let v ∈ D
d, f ∈ (L2 � L∞

loc)(R+; k) and T � t � s � 0. Then, from the estimate (1·3)
the function fs,t � f + (d − f )[s,t[ satisfies

‖ε( f ) − ε( fs,t)‖ = O(
√

t − s),

as (t − s) → 0. Using the cocycle and adaptedness properties of V ,

‖(Vt − Vs)vε( fs,t)‖ � ‖σs(Vt−s − I )vε( fs,t)‖
= ∥∥ε

(
f[s,t[c

)∥∥∥∥σs(Vt−s − I )vε
(
d[s,t[

)∥∥
� ‖ε( f )‖∥∥(Vt−s − I )vε

(
d[0,t−s[

)∥∥.

Therefore, by (1·13), if follows that ‖(Vt − Vs)vε( f )‖ = O(
√

t − s), and (a) follows.

(b) By (1·15)

lim sup
t→0+

t−1
∥∥(

Pc,d
t − Pd,d

t

)
v
∥∥ < ∞ for v ∈ D

d .

By standard semigroup theory ([Dav, corollary 1·39]) it follows that Dom Hc,d ⊃ D
d ,

and (1·15) gives

‖(Hc,d − Hd,d)v‖ � ‖c − d‖(λ‖Hd,dv‖ + µ(λ)‖v‖), v ∈ D
d .
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We may therefore apply Gustafson’s Theorem (Theorem 0·1) with A = Hc,d |Dd , B = Hd,d

and an appropriately chosen λ to conclude that

Dom A = Dom B = Dom B = Dom A

and that A itself generates a C0-contraction semigroup. But C0-contraction semigroup gen-
erators are maximal dissipative ([Dav, theorem 6·4] or [ReS, page 241]) so the inclusion
Hc,d ⊃ A is an equality – in other words Dom Hc,d = D

d . A further application of Gust-
afson’s Theorem now shows that, for a dense subspace D of D

d , D is a core for Hc,d if and
only if it is a core for Hd,d .

(c) Let v ∈ D
d . First note that, by (1·14), Td(t)v is locally bounded in t in a neighbourhood

of 0. Thus, in view of (b) and (1·7), v ∈ Dom Td and EeTdv = (Hc+e,d − Hc,d)v for any
e ∈ k. Thus (1·10) holds.

(d) Let b ∈ k, v ∈ D
{b,d} and u ∈ Dom T̃c. Then, for t > 0,

〈v(d − b), T̃c(t)u〉 = t−1
〈
v,

(
P̃d,c

t − P̃b,c
t

)
u
〉 + o(1) = t−1

〈(
Pc,d

t − Pc,b
t

)
v, u

〉 + o(1).

It follows that v(d − b) ∈ Dom (T̃c)
∗ and (T̃c)

∗Ed−bv = (Hc,d − Hc,b)v. This proves the
first inclusion in (1·11); (1·10) applied to Ṽ gives H̃d,c + EeT̃c = H̃d+e,c which yields the
second:

Hc,d+e = (H̃d,c + EeT̃c)
∗ ⊃ Hc,d + T̃ ∗

c Ee.

By (c), setting e = (1 − z)b + zd,

(1 − z)Hc,b + zHc,d ⊂ ((1 − z)H̃b,c + z H̃d,c)
∗ = (H̃e,c)

∗ = Hc,e.

This gives the first of the inclusions (1·12); the second follows from the observation

‖(1 − z)Tb(t) + zTd(t) − Te(t)‖ � t−1/2
∥∥(1 − z)ε

(
b[0,t[

) + zε
(
d[0,t[

) − ε(e[0,t[)
∥∥

= O
(
t1/2

)
.

(e) The first two inclusions follow from the observation

‖Td(t) − Tb(t) − C(t)Ed−b‖ � t−1/2
∥∥ε

(
d[0,t[

) − ε
(
b[0,t[

) − (d − b)[0,t[
∥∥

= O
(
t1/2

)
,

by (1·5), and the rest follows from the fact that C̃(t) = C(t)∗ for each t > 0.

(f) Let v ∈ D
d and λ > 0. From (1·15)

‖(Hc,d − Ha,d)v‖ � ‖c − a‖(λ‖Hd,dv‖ + µ(λ)‖v‖).
Taking a = d it follows that

(1 − ‖c − d‖λ)‖Hd,dv‖ � ‖Hc,dv‖ + ‖c − d‖µ(λ)‖v‖.
But from (1·14) it follows that

‖Tdv‖ � λ‖Hd,dv‖ + µ(λ)‖v‖,
therefore Td is Hc,d-bounded with relative bound 0. Since (Td − Tb) is bounded on its do-
main (f) follows. This completes the proof.

To a strongly continuous left contraction cocycle V on h, with noise dimension space k,
we may therefore associate an operator on h ⊕ (h ⊗ k) by

F V �
[

Z V M V

LV C V − I

]
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where Z V = H V
0,0, LV = T V

0 |
D

V,0 and M V = (T Ṽ
0 |

D
Ṽ ,0)∗. Thus Z V is a C0-contraction semig-

roup generator, LV has the same dense domain as Z V , M V is closed and C V is a contraction
operator. If F V is densely defined then

(F V )∗ ⊃ F Ṽ . (1·16)

COROLLARY 1·4. For all c, d ∈ k and S ⊂ k

Dom GV
c,d = D

V,d and D
V,Aff S = D

V,S

where Aff S denotes the complex affine span of S. Moreover,

Dom F V ⊃ D
V,0 ⊕ (DV,Aff S ⊗ D), (1·17)

where D = Lin (S − S).

Proof. For convenience we drop the superscripts V and Ṽ as in the proposition. The
semigroup generators Gc,d and Hc,d have the same domains, so the first equality follows
from part (b) of the proposition. For the second equality, if e ∈ Aff S then D

e ⊃ D
S by the

first inclusion in (1·12). But this implies that

D
S ⊂

⋂
e∈Aff S

D
e = D

Aff S ⊂ D
S.

For (1·17) note that if b, d ∈ k then

M Ed−b = (Ed−bT̃0|D0)∗ = (H̃d,0 − H̃b,0)
∗ ⊃ H0,d − H0,b,

applying part (c) to the dual cocycle Ṽ . Also C Ed−b ⊃ Td − Tb, thus D
{b,d} is a subspace

of both Dom M Ed−b and Dom C Ed−b. Therefore if e ∈ S − S and v ∈ D
S then ve ∈

Dom M � Dom C . The result follows since Dom L = Dom Z = D
0.

For a cocycle V and subspace D of k, Corollary 1·4 permits the following definition:

F V,D�F V |D0⊕(D⊗D) (1·18)

where D0 = D
V,0 and D = D

V,D. Note that for any subset T of k containing 0

D
V,T = D

V,D, where D = Lin T. (1·19)

From the corollary we see that D
V,{0,d} ⊂ Dom Eĉ F V Ed̂ for all c, d ∈ k, and by parts (b)–

(e) of the proposition,

Eĉ F V Ed̂ = H V
c,d − 〈c, d〉 = GV

c,d + χ(c, d) on D
V,{d,0}. (1·20)

For Markov-regular cocycles, that is cocycles whose Markov semigroup Q0,0 is norm-
continuous, the situation is much simpler. (See below for the definition of k̂)

COROLLARY 1·5. Let V be a strongly continuous left contraction cocycle on h with noise
dimension space k and suppose that one of its associated semigroups Qc,d is norm continu-
ous. Then all of its associated semigroups are norm continuous and F V ∈ B(h ⊗ k̂).

Proof. That all or none of the associated semigroups are norm continuous follows since∥∥Pa,b
t − Pc,d

t

∥∥ = O(
√

t) for a, b, c, d ∈ k,

by (1·4). So if it is the case that all the semigroups are norm continuous then H V
c,d ∈ B(h)

for all c, d ∈ k. In particular Z V = H V
0,0 ∈ B(h), so that D

V,0 = h, and hence LV = T V
0 which

is bounded by part (f) of the proposition.
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Since the semigroups associated to the dual cocycle are the adjoints of those associated
with the cocycle, and must also be norm continuous, M V = T Ṽ ∗

0 ∈ B(h ⊗ k; h), and
from (1·8) it follows that the contraction C V is densely defined, hence C V ∈ B(h ⊗ k).

Cocycle characterisation through semigroups

In Proposition 1·1 we used the family of maps {VQc,d
t : c, d ∈ T, t � 0} defined in terms

of a given process V to determine whether or not it is a left cocycle. The following result
turns this around.

THEOREM 1·6 ([LW3]). Let QT ={Qc,d : c, d ∈ T} be a family of semigroups on h in-
dexed by a total subset T of k which contains 0. Then the following are equivalent:

(i) there is a left contraction cocycle V on h whose associated family of semigroups
includes QT;

(ii) for all n ∈ N, Y ∈ Mn(|h〉) = B(Cn; h
n), and positive invertible matrices A, B ∈

Mn(C), if ‖A−1/2Y B−1/2‖ � 1 then∥∥(
A • � c

t

)−1/2(
Qc

t • Y
)(

B • � c
t

)−1/2∥∥ � 1, (1·21)

for all c ∈ Tn, t � 0.

This requires some explanation of terms: |h〉�B(C; h), the column operator space de-
termined by h ([EfR, Pis]); given c, d ∈ k, �

c,d
t = 〈�(c[0,t[), �(d[0,t[)〉 = exp −tχ(c, d),

and given c ∈ kn , � c
t �[� ci ,c j

t ] ∈ Mn(C) = B(Cn), Qc
t �[Q

ci ,c j
t ] ∈ Mn(B(h)) = B(hn),

the symbol • denotes the Schur product of matrices, so in particular if T =[|ui
j 〉] then

Qc
t •T =[|Qci ,c j

t ui
j 〉] ∈ B(Cn; h

n); finally, the first matrix within each of the norms is thought
of as having entries of the form ν Ih for ν ∈ C, thus both norms are those of B(Cn; h

n).
What this result tells us is that if we can find a family of semigroups QT on h, indexed by a

total subset T of k containing 0, which satisfies (1·21) then there is an associated cocycle V
on h. This condition, on a putative family of semigroups QT, looks hard to verify. However
the strength of the result lies in the fact that it is manifestly stable under pointwise limits.

THEOREM 1·7. Let QT = {Qc,d : c, d ∈ T} be a family of semigroups on h, indexed by
a total subset T of k which includes 0. Suppose that there is a sequence (V (n))n�1 of left
contraction cocycles on h whose associated semigroups satisfy

(n)Qc,d
t → Qc,d

t pointwise on h,

for all c, d ∈ T and t > 0. Then there is a unique left contraction cocycle V on h whose
associated semigroups include the family QT. Moreover V (n)

t → Vt in the weak operator
topology for each t.

Proof. The existence of V is immediate from Theorem 1·6, uniqueness follows from the
totality of T, and the convergence V (n) → V is a consequence of (1·1) and contractivity.

2. Quantum stochastic differential equations

Let k̂�C ⊕ k and, for any subspace D of k, let D̂ = C ⊕ D = Lin {d̂ : d ∈ D} where
d̂�

(1
d

)
. Also let e0 = (1

0

) ∈ k̂ and define

 = Ih ⊗ Pk

where Pk ∈ B(̂k) is the orthogonal projection with range {e0}⊥ = 0 ⊕ k.
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Consider now the form QSDE

dVt = Vt F d�t , V0 = I, (2·1)

and the operator QSDE

dVt = V̂t(F⊗IF) d�t , V0 = I, (2·2)

for (bounded operator-valued) processes V on h, for which we need dense subspaces D0 ⊃
D of h, and total subsets T† and T of k containing 0. Set D = Lin T and D† = Lin T†.

In the first case, F is an operator-valued map defined on D̂† × D̂ of the form((
z

c

)
,

(
w

d

))
�→ [z 1]

[
K Md

Lc N c
d

] [
w

1

]
= zwK + zMd + wLc + N c

d

where K ∈ O(D0), c �→ Lc is conjugate linear D† → O(D0), d �→ Md is linear D → O(D)

and (c, d) �→ N c
d is sesquilinear D† × D → O(D) (thus F(

(z
c

)
,
(
w

d

)
) ∈ O(D) in general, and

is O(D0)-valued if d = 0), and V is a T†-T-solution of (2·1) on D0 ⊗ ε(0)+D⊗ET if, in the
notation ĝ(s)� ĝ(s),

〈uε( f ), (Vt − I )vε(g)〉 =
∫ t

0
〈uε( f ), VsF( f̂ (s), ĝ(s))vε(g)〉 ds (2·3)

for all u ∈ h, f ∈ ST† , (v, g) ∈ (D0 × {0}) � (D × ST) and t � 0. In particular V is weakly
continuous in an obvious sense.

In the second case F ∈ O(D0 ⊕(D ⊗ D)), V̂t stands for the operator on h⊗̂k⊗F obtained
from Vt ⊗ Îk by tensor flipping, and there are two basic kinds of solution: V is a T†-weak
solution of (2·2) on D0 ⊗ ε(0) + D ⊗ ET if (2·3) holds for the component map of F , defined
by

F(ξ, η) = E ξ F Eη, ξ ∈ D̂†, η ∈ D̂.

In other words, setting ζ(s) = ve0ε(0) + wĝ(t)ε(g),

〈uε( f ), (Vt − I ){vε(0) + wε(g)}〉
=

∫ t

0

〈
uε( f ), Vs E f̂ (s)F⊗IFζ(s)

〉
ds

=
∫ t

0

〈
uε( f ), Vs

{(
K + L f (s)

)
vε(0) + (

K + L f (s) + Mg(s) + N f (s)
g(s)

)
wε(g)

}〉
ds,

where F = [
K M
L N

]
in block matrix form, and Lc = Ec L etc.

V is a strong solution of (2·2) on the same domain if the map

t �−→ ‖V̂tF⊗IFζ(t)‖2 + ‖V̂t
⊥ F⊗IFζ(t)‖

is locally integrable for each v ∈ D0, w ∈ D, and g ∈ ST, V is strongly measurable, (and
so V̂ F ⊗ IF is stochastically integrable), and if it satisfies the quantum stochastic integral
equation

Vt = I +
∫ t

0
V̂s(F⊗IF) d�s .

In particular V is then strongly continuous on its domain ([L]), hence on all of h ⊗ F by
contractivity; the First Fundamental Formula of quantum stochastic calculus implies that V
is necessarily a k-weak solution on D0 ⊗ ε(0) + D ⊗ET.
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We recall the basic implication for F of contractivity of a strong solution of (2·2), and
include its short proof for the convenience of the reader (cf. [FaW]).

PROPOSITION 2·1 ([Fa2, MoP]). Let F ∈ O(D0⊕(D ⊗ D)) where D0 ⊃ D are dense sub-
spaces of h and D = Lin T for a total subset T of k containing 0, and suppose that (2·2) has
a strong contractive solution on D0 ⊗ ε(0) + D ⊗ET. Then F satisfies the form inequality

2 Re 〈ξ, Fξ〉 + ‖Fξ‖2 � 0, (2·4)

with equality if the solution is isometric.

Proof. Let ξ ∈ D0 ⊕ (D ⊗ D). Then ξ is expressible in the form u0e0 + ∑n
i=1 ui ĉi for

some u0 ∈ D0, n ∈ N, u1, . . . , un ∈ D and c1, . . . , cn ∈ T. Let ζ = u0ε(0) + ∑n
i=1 uiε( fi)

and ζ(s) = u0e0ε(0) + ∑n
i=1 ui f̂i (s)ε( fi) where fi = ci [0,T [ for i = 1, . . . , n and some

T > 0. Then, by the Second Fundamental Formula of quantum stochastic calculus,

0 � t−1(‖Vtζ‖2 − ‖ζ‖2)

= t−1

∫ t

0
{2 Re 〈V̂sζ(s), V̂s(F ⊗ IF)ζ(s)〉 + ‖V̂s(F ⊗ IF)ζ(s)‖2} ds

for t ∈ ]0, T ], with equality if V is isometric. Using the continuity of the integrand at the
origin, letting t → 0 and then letting T → 0 now gives the result.

Remarks. (i) If it is assumed further that all the T-components (Eĉ F Ed̂ : c, d ∈ T) are
bounded, then (2·2) may be solved by Picard iteration and Mohari and Fagnola showed
that (2·4) is also sufficient for contractivity of the solution. In fact boundedness of T-
components and contractivity of the solution implies that F itself is bounded ([LW1,
theorem 7·5]) so that (2·4) simplifies to the operator inequality

F + F∗ + F∗F � 0. (2·5)

The solution is also unique amongst T†-weak solutions (cf. Theorem 2·3 below).
(ii) Since the integrability condition for being a strong solution is automatically satis-

fied by strongly measurable contraction processes, any strongly measurable weak solution
of (2·2) is necessarily a strong solution on the same domain.

We next show how the assumption of strong measurability also renders form solutions
into strong operator solutions.

THEOREM 2·2. Let V be a strongly measurable contraction process on h with noise di-
mension space k, let T be a total subset of k containing 0 and let D0 ⊃ D be dense subspaces
of h. Set D = Lin T, and assume that D has an orthonormal basis. If V is a T-T-solution of
the form QSDE (2·1) on D0 ⊗ ε(0) + D ⊗ET, and each map ξ �→ F(ξ, η)v is continuous
then F is the component map of an operator F ∈ O(D0 ⊕ (D ⊗ D)) and V satisfies the
corresponding operator QSDE (2·2) strongly on the same domain.

Proof. By the second remark above it suffices to show that F is necessarily the component
map of an operator F ∈ O(D0⊕(D ⊗ D)). For any subspace h of k of the form Lin T0 where
T0 is a finite subset of T, define an operator Fh ∈ O(D0 ⊕ (D ⊗ h)) by

Fh =
∑
α,β

Eeα
F(eα, eβ)Eeβ
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where (eα) is an orthonormal basis for ĥ which includes the vector e0 = (1
0

)
. By sesqui-

linearity, Fh does not depend on the choice of basis and, for ξ ∈ ĥ and (v, η) ∈ (D0 ×
Ce0) � (D × ĥ),

E ξ Fhvη = F(ξ, η)v.

Also let J h be the natural isometric embedding h ⊗ �(L2(R+; h)) → h ⊗ F, obtained by
second quantisation of the inclusion map h → k. Then it is easily verified that the process
V h�(J h∗Vt J h)t�0 satisfies the QSDE d Xt = X̂t(Fh ⊗ I ) d�t , X0 = I , T0-weakly on D0 ⊗
ε(0) + D ⊗ET0 . Since V h is contractive and strongly measurable it satisfies the equation
strongly. Therefore, by Proposition 2·1, Fh satisfies

‖Fhvη‖2 � −2 Re 〈vη, Fhvη〉 = −2 Re 〈v, F(η, η)v〉 (2·6)

for (v, η) ∈ (D0 × Ce0) � (D × ĥ).
Now let (di)i∈I be an orthonormal basis for k taken from D (with 0 � I ), and set Î =

{0} � I , e0 = (1
0

)
and ei = ( 0

di

)
so that (eα)α∈ Î is an orthonormal basis for k̂. Then, for

(v, η) ∈ (D × C
(0

d

)
) � (D0 × Ce0) where d ∈ T and I0 a finite subset of I , applying (2·6)

with h = Lin ({d} � {di : i ∈ I0}) gives

∑
i∈I0

‖F(ei , η)v‖2 =
∥∥∥∥∥∑

i∈I0

Eei Eei Fhvη

∥∥∥∥∥
2

� ‖Fhvη‖2 � −2 Re 〈v, F(η, η)v〉,
and so the orthogonal sum

∑
i∈I Eei F(ei , η)v is convergent. Thus an operator F ∈ O(D0 ⊕

(D ⊗ D)) is defined by linear extension of the prescription

vη �−→
∑
α∈ Î

Eeα
F(eα, η)v.

By the continuity assumption on F, E ξ Fvη = F(ξ, η)v for ξ ∈ D̂ and vη as above, and it
follows that F is independent of the choice of basis (di)i∈I , hence is the component map of
F: E ξ F Eη = F(ξ, η) for ξ, η ∈ D̂. This completes the proof.

Remarks. Dixmier showed that a pre-Hilbert space need not have an orthonormal basis
([Bou, V·70]); however the assumption on D is automatically satisfied if either the Hilbert
space k is separable or the set T contains a subset which is orthogonal and total.

Since contraction processes satisfying the form QSDE are weakly continuous, the strong
measurability assumption is redundant when h and k are both separable or, in view of
Lemma 1·2, when the solution is a left cocycle.

This connects with issues of uniqueness.

THEOREM 2·3. Let F be a sesquilinear map D̂† × D̂ → O(D), where D is a dense sub-
space of h, D† = Lin T† and D = Lin T for total subsets T† and T of k that contain 0.

(a) Suppose that T† = RT† and T = RT. If K �F(e0, e0) is a pregenerator of a C0-
contraction semigroup on h then the form QSDE (2·1) has at most one contractive
T†-T-solution on D ⊗ ET.

(b) If the form QSDE (2·1) has a unique contractive T†-T-solution V on D ⊗ET then V
is a left contraction cocycle.

(c) If the form QSDE (2·1) has a T†-T-solution V on D ⊗ ET which is a left contraction
cocycle then D ⊂ D

V,D and Eĉ F V Ed̂ |D = F(̂c, d̂) for all c ∈ D†, d ∈ D.
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Part (a) is Mohari’s Uniqueness Theorem ([Moh]). The invariance of T (and T†) under
scalar multiplication can be weakened to the following:

for each d ∈ T there exists ε > 0 such that [0, ε]d ⊂ T,

which is sufficiently strong to allow differentiation at a crucial stage in his argument. It is
clear from Meyer’s treatment ([Mey, page 191]) that the result remains valid in this gener-
ality. Part (b) is proved by verifying that, for each t > 0,

V t
s =

{
Vs if s � t,

Vtσt(Vs−t) if s > t,

defines a contraction process V t which also satisfies (2·1). This is easily checked by treating
h ⊗ F[0,t[ as an initial space and using the explicit action of shifts on exponential vectors.

Proof of part (c). Pick u ∈ h, v ∈ D, c ∈ T† and d ∈ T, and set f = c[0,1[ and g = d[0,1[.
Then for all 0 < t < 1

〈uε( f ), (Vt − I )vε(g)〉 =
∫ t

0
〈uε( f ), VsF(̂c, d̂)vε(g)〉 ds.

But, for the same t ,〈
u,

(
Pc,d

t − I
)
v
〉 = 〈uε( f ), (Vt − I )vε(g)〉e(t−1)〈c,d〉 + (

et〈c,d〉 − 1
)〈c, d〉〈u, v〉

and consequently

lim
t→0

t−1
〈
u,

(
Pc,d

t − I
)
v
〉 = 〈u, (F(̂c, d̂) − 〈c, d〉)v〉.

Since this holds for all u ∈ h it follows that v ∈ Dom H V
c,d and that F(̂c, d̂) − 〈c, d〉 ⊂ H V

c,d

for all c ∈ D† and d ∈ D ([Dav, theorem 1·24]). Hence D ⊂ D
V,D and so Eĉ F V Ed̂ |D =

F(̂c, d̂) by (1·20).

3. Necessary conditions for contractive solution

In this section we explore necessary conditions on F for the existence of contractive solu-
tions of (2·2). Recall that densely defined dissipative operators are closable with dissipative
closures.

PROPOSITION 3·1. Let F ∈ O
(
D0 ⊕ (D ⊗ D)

)
, for dense subspaces D0 ⊃ D of h and D

of k, have block matrix form
[

K M
L C−I

]
and satisfy the form inequality (2·4). For each c ∈ k

and d ∈ D define G0
c,d �Eĉ F Ed̂ − χ(c, d). Then:

(a) C is a contraction and, for all u ∈ D0,

‖Lu‖2 + 2 Re 〈u, K u〉 � 0; (3·1)

(b) F and G0
c,d are dissipative; let Gc,d = G0

c,d and Z = G0,0 = K ;
(c) L is G0

c,d-bounded, with relative bound 0, on Dom G0
c,d ;

(d) for each a ∈ k, G0
a,d is a relatively bounded perturbation of G0

c,d with relative bound
0, Dom Ga,d = Dom Gc,d , and Ga,d is a C0-semigroup generator if and only if Gc,d

is;
(e) Dom M∗ ⊃ Dom K and, for all u ∈ D0,

‖(L + C M∗)u‖2 + ‖M∗u‖2 + 2 Re 〈u, K u〉 � 0, (3·2)

in particular, M∗ is K -bounded with relative bound 0;
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(f) F also satisfies (2·4), moreover F ⊃ F ′ where F ′ = [
Z M
L ′ C−I

]
, L ′ being the continu-

ous extension (in the graph norm of Z ) of L to Dom Z.

Proof. For ξ = (u
η

) ∈ D0 ⊕ (D ⊗ D), (2·4) is equivalent to

‖Lu + Cη‖2 � −2 Re 〈u, K u + Mη〉 + ‖η‖2, (3·3)

and setting u = 0, respectively η = 0, shows that (a) holds. Now abbreviate Ec L , M Ed and
EcC Ed to Lc, Md and Cc

d respectively, and denote Dom G0
c,d by D

0
d , thus

G0
c,d = K + Lc + Md + Cc

d − 1
2‖c‖2 − 1

2‖d‖2,

where D
0
d = D0 if d = 0 and equals D otherwise.

If η = ud where d ∈ D and u ∈ D
0
d then (3·3) reads

‖(L + Cd)u‖2 � −2 Re 〈u,
(
K + Md − 1

2‖d‖2
)
u〉,

so, for c ∈ k and d ∈ D,

−2 Re
〈
u, G0

c,du
〉 = −2 Re

〈
u,

{(
K + Md − 1

2‖d‖2
) + (

Lc + Cc
d − 1

2‖c‖2
)}

u
〉

� ‖(L + Cd)u‖2 − 2 Re 〈uc, (L + Cd)u〉 + ‖uc‖2

= ‖(L + Cd − Ec)u‖2

for all u ∈ D
0
d . Thus G0

c,d is dissipative, moreover

‖(L + Cd − Ec)u‖ �
√

−2 Re
〈
λ−1u, λG0

c,du
〉
� λ

∥∥G0
c,du

∥∥ + λ−1‖u‖
for all λ > 0 and so, since (Cd − Ec) is bounded, L is G0

c,d-bounded with relative bound
0. Since F is clearly dissipative, we have established (b) and (c). Since G0

a,d − G0
c,d =

Ea−c L +Ca−c
d + 1

2 (‖c‖2 −‖a‖2) it also follows that G0
a,d is a relatively bounded perturbation

of G0
c,d with relative bound 0, and so (d) follows from Gustafson’s Theorem.

Now let u ∈ D0. Then, from (3·3), 2|〈u, Mη〉| � ‖η‖2 − 2 Re 〈u, K u〉 for each η ∈
D ⊗ D. This implies that u ∈ Dom M∗. Thus Dom M∗ ⊃ D0 and (3·3) reads ‖Lu +Cη‖2 +
2 Re 〈M∗u, η〉+2 Re 〈u, K u〉 � ‖η‖2, now valid for u ∈ D0 and η ∈ h⊗k. Putting η = M∗u
gives (3·2), in particular

‖M∗u‖2 � 2|〈u, K u〉| � (λ‖K u‖ + λ−1‖u‖)2

for λ > 0, showing that (e) holds. Since F is densely defined and dissipative it is closable
and it is easily verified that its closure contains F ′, and that it inherits the property (2·4) from
F . Thus (f) holds too and the proof is complete.

Remarks. (i) The form inequality (2·4) is therefore equivalent to (3·1) together with con-
tractivity of C , the inclusion Dom M∗ ⊃ D0 and the following inequality holding for u ∈ D0

and η ∈ h ⊗ k:

|〈(M∗ + C∗L)u, η〉|2 � (2 Re 〈u, (−K )u〉 − ‖Lu‖2)(‖η‖2 − ‖Cη‖2).

If equality holds in (2·4) then C is isometric and ‖Lu‖2 + 2 Re 〈u, K u〉 = 0 for all u ∈ D0,
in turn, if either of these conditions hold then M∗ ⊃ −C∗L .

(ii) In view of (f), the proposition still holds if K , L and C are replaced by Z , L ′ and C
respectively, and M is replaced by the restriction of M to any dense subspace of its domain
of the form D

′
1 ⊗ D′.
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PROPOSITION 3·2. Let F and F ′ be as in Proposition 3·1. Suppose that Z is a generator
of a C0-semigroup and let F (n)� I (n)∗ F I (n), where I (n) = diag [J (n), Ih⊗k] ∈ B(h ⊗ k̂),

J (n) being the contraction (I − n−1 Z)−1. Then F (n) is bounded and its closure satisfies the
operator inequality (2·5), and F (n) → F pointwise on D0 ⊕ (D ⊗ D).

Proof. Note first that I (n) leaves Dom F ′ invariant, and that I (n) =. Thus for ξ ∈
Dom F , putting ξn = I (n)ξ ,

2 Re
〈
ξ, F (n)ξ

〉 + ∥∥F (n)ξ
∥∥2 = 2 Re 〈ξn, Fξn〉 + ‖Fξn‖2 � 0,

by Proposition 3·1, thus F (n) satisfies the form inequality (2·4). Now let
[

K (n) M (n)

L(n) C−I

]
be the

block matrix form of F (n). Since K (n) = J (n)∗ Z J (n) ∈ B(h) it follows from Proposition 3·1
that L (n) and M (n)∗ are bounded, and so F (n) is bounded, hence extends to h ⊗ k̂. Thus F (n)

satisfies the operator inequality (2·5). Now (J (n)) and (J (n)∗) are sequences of contractions
which converge strongly to I and, for v ∈ Dom Z , J (n)v → v in the graph norm of Z .
Thus K (n) → Z on D0, L (n) = L ′ J (n) → L on D0 (since L ′ is Z -bounded) and M (n) =
J (n)∗M → M on D ⊗ D. In other words F (n) → F pointwise on D0 ⊕ (D ⊗ D).

4. Stochastic Hille–Yosida

In this section we obtain the stochastic generator of a strongly continuous left contraction
cocycle – when it has one; an existence theorem for the QSDE (2·2) is established; and some
examples are discussed. We also briefly describe the situation when k is separable and has a
given orthonormal basis.

Stochastic generator of a cocycle

We first show that strongly continuous left contraction cocycles satisfy a quantum
stochastic differential equation under a minimal condition for the equation to make sense –
namely that there is an available dense domain for a coefficient operator to act on. It amounts
to a weak-differentiability condition (cf. [AJL, Fa2]). Recall the notation (1·18) and the
identities (1·19) and (1·20).

THEOREM 4·1. Let V be a strongly continuous left contraction cocycle on h with noise
dimension space k, let T† and T be total subsets of k containing 0, and let D = Lin T,
D† = Lin T† and Z = H V

0,0. If D
V,T is dense in h then the following hold.

(a) For F = F V,T, the process V satisfies the operator QSDE (2·2) strongly on D
V,0 ⊗

ε(0) + D
V,T ⊗ED.

(b) If D is a core for Z contained in D
V,T, then V is the unique contractive D†-weak

solution of (2·2) on D ⊗ED, for F = F V,T|D⊗ D̂.

(c) If D
Ṽ ,T†

is also dense in h then (F V,T)∗ ⊃ F Ṽ ,T†
.

Proof. (a) Since V is strongly measurable and contractive it suffices to show that V is
a k-weak solution by the second remark after Proposition 2·1. But this follows from the
semigroup representation as follows. Let u ∈ h, f ∈ S and (v, g) ∈ (DV,0 × {0}) � (DV,D ×
SD). Then by adaptedness and the semigroup representation (1·1),

〈uε( f ), Vtvε(g)〉 = 〈
u, P f (t0),g(t0)

t1−t0 · · · P f (tn),g(tn)
t−tn v

〉
e

∫ ∞
t 〈 f (s),g(s)〉 ds,

and since D
V,D ⊂ Dom H V

c,d for all c ∈ k and d ∈ D by Corollary 1·4, the (a.e.) derivative
of this with respect to t is〈

u, P f (t0),g(t0)
t1−t0 · · · P f (tn),g(tn)

t−tn

(
H f (tn),g(tn) − 〈 f (t), g(t)〉)v〉

e
∫ ∞

t 〈 f (s),g(s)〉 ds,
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in other words 〈uε( f ), Vt E f̂ (t)F Eĝ(t)vε(g)〉 by (1·20). Thus V satisfies (2·2) k-weakly on
D

V,0 ⊗ ε(0) + D
V,D ⊗ ED.

(b) This follows from Theorem 2·3.
(c) This follows from (1·16): (F V,T)∗ ⊃ (F V )∗ ⊃ F Ṽ ⊃ F Ṽ ,T†

.

Remark. By Corollary 1·5 if V is Markov-regular then F V ∈ B(h ⊗ k̂), so D
V,k = h and

hence V satisfies the operator QSDE on h⊗Ek for this bounded operator – this is theorem 6·7
of [LW2].

The theorem also extends the main result of [AJL] to infinite dimensional noise. Note
that an application of the Banach–Steinhaus Theorem is needed there in order to show that
the form QSDE coefficient is actually the component map of an operator. In infinite dimen-
sions the same argument again leads to a form QSDE for V , however the Banach–Steinhaus
Theorem does not help in this case. The above result therefore also fills a gap in the proof of
theorem 2·4 of [Fa2].

From this result and part (c) of Theorem 2·3 we may now give necessary and sufficient
conditions for a contraction cocycle to satisfy a QSDE.

THEOREM 4·2. Let V be a strongly continuous left contraction cocycle on h with noise
dimension space k. Then the following are equivalent:

(i) D
V,T is dense in h for some total subset T of k containing 0;

(ii) V strongly satisfies a QSDE of the form (2·2) on some domain of the form D0 ⊗
ε(0) + D ⊗ ED;

(iii) V is a T†-T-solution of a form QSDE (2·1) on some domain of the form D ⊗ ET.

Remark. Thus if V is a left contraction cocycle on h which satisfies a QSDE of the
type (2·2) on D

V,0 ⊗ ε(0) + D
V,T ⊗ ED, where D = Lin T , then

F = F V,D.

Coordinates

Suppose that k is separable with orthonormal basis η = (di )i�1, and set d0�0. Let V be
a strongly continuous left contraction cocycle on h and suppose that D = ⋂

α,β Dom G(α,β)

is dense in h, where G(α,β) denotes the generator GV
c,d for c = dα and d = dβ . Then The-

orem 4·1 ensures that V strongly satisfies a Hudson–Parthasarathy equation

dVt = Vt Fα
β d�β

α(t), V0 = I,

in which [Fα
β ]α,β�0 is the matrix of components of an operator F ∈ O(D ⊗ D̂) where D =

Lin η – in other words the matrix is semiregular in the sense that
∑

α�0‖Fα
β v‖2 < ∞ for all

β � 0 and v ∈ D. Moreover the components are recovered from the associated semigroup
generators by the affine transformation

F0
0 = G(0,0)

Fi
0 = G(i,0) − G(0,0) + 1

2 , i � 1

F0
j = G(0, j) − G(0,0) + 1

2 , j � 1

Fi
j = G(i, j) − G(i,0) − G(0, j) + G(0,0) − δi

j , i, j � 1,

δi
j being the Kronecker delta.
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Cocycles from stochastic generators

Our treatment of the existence question for (2·2) is founded on the following infinitesimal
version of Theorem 1·7.

PROPOSITION 4·3. Let QT = {Qc,d : c, d ∈ T} be a family of C0-contraction semigroups
on h, indexed by a total subset T of k containing 0 and let Gc,d denote the generator of
the semigroup Qc,d . Suppose that there is a sequence of strongly continuous left contraction
cocycles (V (n)) on h and, for each c, d ∈ T, a core Dc,d for Gc,d such that:

(a) Dc,d ⊂ D
V (n),T for each n ∈ N, and

(b) Eĉ F (n)Ed̂ −χ(c, d) → Gc,d pointwise on Dc,d , for all c, d ∈ T, where F (n)�F V (n),T.
Then there is a unique strongly continuous left contraction cocycle V whose associated
semigroups include QT. Moreover V (n) → V in the weak operator topology.

Proof. We use the notation (n)Qc,d and G(n)

c,d for semigroups and generators associated with
the cocycle V (n). Condition (a) and Corollary 1·4 imply that Dc,d ⊗ D̂ ⊂ Dom F (n), where
D = Lin T, so each F (n) is densely defined, and also Eĉ F (n)Ed̂ − χ(c, d) ⊂ G(n)

c,d by (1·20).
Hence, by the Trotter–Kato Theorem ([Dav, corollary 3·18]), assumption (b) implies that

lim
n→∞ sup

t∈[0,T ]

∥∥((n)
Qc,d

t − Qc,d
t

)
u
∥∥ −→ 0

for all c, d ∈ T, u ∈ h and T > 0. The result therefore follows by Theorem 1·7 and
Lemma 1·2.

Remark. This result is a stochastic generalisation of the Trotter–Kato Theorem. In the
usual version pointwise convergence of the generators implies convergence of the sequence
of semigroups in the strong operator topology. However a similar strengthening of the con-
clusion for cocycles is not possible – as can be demonstrated using the conditions for iso-
metricity of cocycles given in terms of conservativity of an associated quantum dynamical
semigroup. See [LW4] for details.

THEOREM 4·4. Let F ∈ O(D ⊗ D̂) where D is a dense subspace of h and D = Lin T for
a total subset T of k containing 0. Assume that:

(a) for each c, d ∈ T, E ĉ F Ed̂ −χ(c, d) is a pregenerator of a C0-contraction semigroup
Qc,d ; and

(b) there is a sequence (F (n)) in B(h ⊗ k̂) satisfying the operator inequality (2·5), such
that, for all c, d ∈ T,

E ĉ F (n)Ed̂ −→ Eĉ F Ed̂ pointwise on D.

Then F ⊂ F V,T for a unique strongly continuous left contraction cocycle V on h. Moreover,
for all c ∈ k and d ∈ T,

GV
c,d = Eĉ F Ed̂ − χ(c, d), and (4·1)

GṼ
d,c ⊃ Ed̂ F∗Eĉ − χ(d, c). (4·2)

Proof. By Theorems 2·3 and 4·1, assumption (a) (with c = d = 0) implies uniqueness.
Let Gc,d be the generator of Qc,d and let V (n) be the strongly continuous left contraction
cocycle generated by F (n) (see the remark following Proposition 2·1). Then the hypotheses
of Proposition 4·3 are satisfied with Dc,d = D for each c, d ∈ T. Let V be the resulting
cocycle. Then GV

c,d = Gc,d so Eĉ F Ed̂ ⊂ GV
c,d +χ(c, d) and therefore D

V,T ⊃ D. This gives
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F V,T ⊃ F and so GV
c,d ⊃ Eĉ F Ed̂ − χ(c, d) for all c ∈ k and d ∈ D, by (1·20). Now D is a

core for GV
c,d when c, d ∈ T so, by part (b) of Proposition 1·3, it is also a core when c ∈ k.

The above inclusion is therefore an equality. It remains only to verify the inclusion (4·2), but
since GṼ

d,c = (GV
c,d)

∗ this follows by taking adjoints.

Remarks. Under the conditions of the theorem, if also Dom F∗ ⊃ D
† ⊗ D̂†, for dense

subspaces D
† and D† of h and k respectively, then D

Ṽ ,D†
contains the dense subspace D

† so
Ṽ strongly satisfies the QSDE (2·2) with coefficient F Ṽ ,D†

on D
Ṽ ,0 ⊗ ε(0) + D

Ṽ ,D† ⊗ED† ,
and F∗ ⊃ F Ṽ ,D†

. In particular, F∗ satisfies the form inequality (2·4) on D
Ṽ ,0⊕(DṼ ,D† ⊗ D†).

Our next result extends Fagnola’s existence theorem ([Fa2]). Whereas his proof requires
separability of both of the Hilbert spaces h and k, ours requires a strengthening of his condi-
tion which amounts to K being a pregenerator of a C0-semigroup. This difference in hypo-
theses reflects our difference of approach. Whereas he approximates the solution process by
adapting Frigerio’s diagonalisation argument with the Arzelà–Ascoli Theorem to cocycles
constructed from bounded stochastic generators, we approximate a sufficient number of the
associated semigroup generators by exploiting the Trotter–Kato Theorem and this demands
stronger core requirements.

THEOREM 4·5. Let F ∈ O(D ⊗ D̂), with block matrix form
[

K M
L C−I

]
, where D is a dense

subspace of h and D = Lin T for a total subset T of k containing 0. Suppose that:
(a) 2 Re 〈ξ, Fξ〉 + ‖Fξ‖2 � 0 for all ξ ∈ D ⊗ D̂; and
(b) K + M Ed − 1

2‖d‖2 is a pregenerator of a C0-semigroup, for each d ∈ T.
Then F ⊂ F V,T for a unique strongly continuous left contraction cocycle V on h,
moreover (4·1) and (4·2) hold.

Proof. By Proposition 3·1, assumption (a) implies that G0
c,d �Eĉ F Ed̂ − χ(c, d) is dis-

sipative and Gc,d �G0
c,d generates a C0-contraction semigroup if and only if Gb,d does, for

b, c ∈ k and d ∈ D. Since K + M Ed − 1/2‖d‖2 = G0
0,d , this operator is dissipative for each

d ∈ D and assumption (b) is equivalent to G0,d being a C0-semigroup generator for each
d ∈ T. Therefore Gc,d is such a generator for each c ∈ k and d ∈ T. In view of Propo-
sition 3·2, Theorem 4·4 therefore applies.

COROLLARY 4·6. If condition (b) of Theorem 4·5 is replaced by:
(bi) Ran (λI − K ) is dense in h for some λ > 0; and

(bii) M Ed is K -bounded, for each d ∈ T,
then the conclusion of the theorem holds, moreover

Dom GV
e,d ⊃ Dom K for all e ∈ k and d ∈ D,

with equality when d is a sufficiently small multiple of an element of T.

Proof. Since K is dissipative (bi) is equivalent to K being a C0-contraction semigroup
generator, by the Lumer–Phillips Theorem ([Dav, theorem 2·25]). For α > 0 let Tα = {(α +
λd)

−1d : d ∈ T}, where λd is the relative bound of M Ed with respect to K , thus Lin Tα = D
and M Ed has relative bound less than one for each d ∈ Tα. Using Proposition 3·1 once
more this means that, for each e ∈ k and d ∈ Tα, Eê F Ed̂ − χ(e, d) is a relatively bounded
perturbation of K with relative bound less than one. Therefore, by Gustafson’s Theorem, its
closure has the same domain as K and is a C0-contraction semigroup generator, so (b) of
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Theorem 4·5 holds (with Tα in place of T) and the theorem applies. We have

Dom GV
e,d = Dom K for e ∈ k, d ∈ Tα and α > 0.

The proof therefore follows by Corollary 1·4 since D = Lin T α.

Remark. By choosing suitable functions µ and λ in the example below, it is possible
to find an operator F ∈ O(D ⊗ D̂) satisfying the conditions of Theorem 4·5 but whose
coefficients Md are not K -bounded, so that F is not covered by the corollary above.

Dualising we obtain alternative conditions.

COROLLARY 4·7. Let F ∈ O(D ⊗ D̂) and F† ∈ O(D† ⊗ D̂†) be densely defined op-
erators on h ⊗ k̂ with block matrix forms

[
K M
L C−I

]
and

[
K † L†

M† C†−I

]
respectively, satisfying

F∗ ⊃ F†, where D = Lin T for a total subset T of k containing 0. Then the conclusions of
Theorem 4·5 hold under the conditions:

(a) F and F† satisfy the form inequality (2·4);
(bi) K † is a pregenerator of a C0-semigroup on h; and

(bii) D is a core for the operator (K † + Ed M† − (1/2)‖d‖)∗, for each d ∈ T.

Proof. In view of assumption (bi), Proposition 3·1 applied to F† shows that (K †+Ed M†−
(1/2)‖d‖2) is a pregenerator of a C0-contraction semigroup. Assumption (bii) therefore im-
plies that its closure is (K + M Ed − (1/2)‖d‖2)∗, thus (K + M Ed − (1/2)‖d‖2) is a pre-
generator of a C0-contraction semigroup and so Theorem 4·5 applies.

Many examples are covered by the following consequence of Theorem 4·5, with C typic-
ally being unitary.

THEOREM 4·8. Let H be a closed symmetric operator on h, L a closed operator h →
h ⊗ k, C a contraction operator on h ⊗ k and T a total subset of k containing 0, such that
D� Dom H � Dom L∗L �

⋂
d∈T Dom L∗C Ed is dense in h, and let F = [

K −L∗C
L C−I

]∣∣
D⊗ D̂

where K = i H − (1/2)L∗L and D = Lin T. Then the following hold.
(a) (i) F satisfies (2·4), with equality if and only if C is isometric.

(ii) If there are constants γd > 0 (d ∈ T) such that(
γd I + 1

2 L∗L + L∗C Ed − i H
)
D is dense in h.

then F generates a strongly continuous left contraction cocycle on h.
(b) Suppose that D

†� Dom H ∗ � Dom L∗L �
⋂

d∈T† Dom L∗Ed is dense in h, and let
D† = Lin T† for another total subset of k containing 0. Then:
(i) F∗ satisfies (2·4) on D

† ⊗ D̂†, with equality if and only if C is coisometric on
h ⊗ k;

(ii) if there are constants γd > 0 (d ∈ T†) such that(
γd I + 1

2
L∗L − L∗Ed + i H ∗

)
D

† is dense in h

then F†�F∗|
D

† ⊗ D̂† generates a strongly continuous left contraction cocycle.

Examples in which C = I and H = 0 have arisen recently in the problem of constructing
stochastic dilations of tracially-symmetric quantum Markov semigroups ([GS2]). In this case
it suffices for D to be a core for the positive selfadjoint operator L∗L , and for L∗Ed (d ∈ T)

to be relatively bounded with respect to L∗L .
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Let D be the linear span of the standard orthonormal basis of h�l2(Z+), let

F =
[

ν(N ) W ∗λ(N )

−λ(N )W 0

]
, where ν(n) = iµ(n) − 1

2 |λ|2(n + 1),

where W and N denote respectively the isometric right shift on h and the number operator
on h, and λ : Z+ → C and µ : Z+ → R are arbitrary functions. Then F∗ + F + F∗F
and F + F∗ + FF∗ both vanish on D ⊕ D and Theorem 4·5 applies. Models of this type
arise in the study of inverse harmonic oscillators interacting with a heat bath in the singular
coupling limit ([Wal]). Conditions on the pair (λ, µ) which ensure isometry/unitarity of the
resulting contraction cocycle are investigated in [FaW], from the point of view of the right
equation dUt = (F∗ ⊗ IF)Ût d�t .

Classical birth and death processes have been constructed using quantum stochastic cal-
culus ([Fa1, FaW]). These are similarly covered by the above theorem, this time working
with the Hilbert space l2(Z) and two dimensional quantum noise. These examples and others
are treated in detail in [LW4].
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