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Abstract

For a strictly positive function f(x), let S(n) =
∑∞

k=n f(k) and I(x) =
∫∞
x f(t)dt,

assumed convergent. If f ′(x)/f(x) is increasing, then S(n)/I(n) is decreasing
and S(n+1)/I(n) is increasing. If f ′′(x)/f(x) is increasing, then S(n)/I(n− 1

2)
is decreasing. Under suitable conditions, analogous results are obtained for
the “continuous tail” defined by S(x) =

∑∞
n=0 f(x + n): these results apply, in

particular, to the Hurwitz zeta function.

2000 Mathematics Subject Classification: 26D15, 26D10, 26A48.
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1. Introduction
Let f be a positive function with

∫∞
1

f(t)dt convergent, and let

S(n) =
∞∑

k=n

f(k), I(x) =

∫ ∞

x

f(t)dt.

The problem addressed in this article is to determine conditions ensuring that
ratios of the typeS(n)/I(n) are either increasing or decreasing. For decreasing
f , one hasI(n) ≤ S(n) ≤ I(n − 1), and one might expectS(n)/I(n) to
decrease andS(n)/I(n − 1) to increase, but, as we show, the truth is not quite
so simple. In general,I

(
n− 1

2

)
is a much better approximation toS(n) than

eitherI(n) or I(n− 1), so we also consider the ratioS(n)/I
(
n− 1

2

)
.

Questions of this type arise repeatedly in the context of generalizations of
the discrete Hardy and Hilbert inequalities, often in the form of estimations
of the norms and so-called “lower bounds" of matrix operators on weighted`p

spaces or Lorentz sequence spaces. These topics have been studied in numerous
papers, e.g. ([3], [4], [5], [7], [8]). Often, the problem equates to finding the
supremum and infimum of a ratio likeS(n)/I(n) for a suitable functionf . In
many “natural" cases, the ratio is in fact monotonic, so the required bounds are
simply the first term and the limit, one way round or the other.

Sporadic results on monotonicity have appeared for particular cases, espe-
cially f(t) = 1/tp, in some of the papers mentioned, though not for ratios
involving I

(
n− 1

2

)
. However, the author is not aware of any previous work

formulating general criteria. As we show, such criteria can, in fact, be given.
Though the methods are essentially elementary, the criteria are far from trans-
parent at the outset, indeed somewhat unexpected.
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We show that the kernel of the problem is already contained in the corre-
sponding question for ratios of integrals (on intervals of fixed length) to single
values of the function. Indeed, write

J1(x) =

∫ x

x−h

f(t)dt, J2(x) =

∫ x+h

x

f(t)dt, J3(x) =

∫ x+h

x−h

f(t)dt.

For both types of problem, the outcome is determined by monotonicity off ′/f
or f ′′/f , as follows:

1. If f ′(x)/f(x) is increasing, thenJ1(x)/f(x) is decreasing andJ2(x)/f(x)
is increasing. Further,S(n)/I(n) is decreasing andS(n)/I(n − 1) is in-
creasing.

2. If f ′′(x)/f(x) is increasing, thenJ3(x)/f(x) is increasing, and
S(n)/I

(
n− 1

2

)
is decreasing. Opposite results apply to a second type

of ratio relating to the trapezium rule.

If the hypotheses are reversed, so are the conclusions. When applied toxp, the
statements in (2) are stronger than those in (1).

By rather different methods, but still as a consequence of the earlier results
on Jr(x)/f(x), we then obtain analogous results for the “continuous tail" de-
fined by

S(x) =
∞∑

n=0

f(x + n).

Whenf(t) = 1/tp, this defines the Hurwitz zeta functionζ(p, x), which has
important applications in analytic number theory [2].
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Other studies of tails of series include [9], [10] and further papers cited
there. Typically, these studies describe relationships betweenS(n − 1), S(n)
andS(n + 1), and are specific to power series, whereas the natural context for
our results is the situation whereS(n) ∼ I(n) asn → ∞, which occurs for
series like

∑
1/np.
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2. Ratios Between Integrals and Functional Values
Let f be a strictly positive, differentiable function on a real intervalE, and let
h ≥ 0, k ≥ 0. On the suitably reduced intervalE ′, define

J(x) =

∫ x+k

x−h

f(t)dt

We shall consider particularly the cases where one ofh, k is 0 (so thatx is an
end point of the interval) or whereh = k (so thatx is the mid-point). Our aim
is to investigate monotonicity ofG(x), where

G(x) =
J(x)

f(x)
.

We shall work with the expression for the derivativeG′(x) given in the next
lemma (we include the proof, though it is elementary, since this lemma under-
lies all our further results).

Lemma 2.1. With the above notation, we have

G′(x) =
1

f(x)2

∫ x+k

x−h

W (x, t)dt,

where
W (x, t) = f(x)f ′(t)− f ′(x)f(t).

Proof. We have

J ′(x) = f(x + k)− f(x− h) =

∫ x+k

x−h

f ′(t)dt,
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and hence

G′(x) =
1

f(x)

∫ x+k

x−h

f ′(t)dt− f ′(x)

f(x)2

∫ x+k

x−h

f(t)dt,

which is equivalent to the statement.

So our problem, in the various situations considered, will be to establish that∫ x+k

x−h

W (x, t)dt

is either positive or negative. The functionW is, of course, a certain kind of
Wronskian. Note that it satisfiesW (x, x) = 0 and W (y, x) = −W (x, y).
Further, we have:

Lemma 2.2. Let f be strictly positive and differentiable on an intervalE, and
let W (x, y) = f(x)f ′(y)−f ′(x)f(y). Then the following statements are equiv-
alent:

(i) f ′(x)/f(x) is increasing onE,

(ii) W (x, y) ≥ 0 whenx, y ∈ E andx < y.

Proof. Write f ′(x)/f(x) = q(x). Then

W (x, y) = f(x)f(y)
(
q(y)− q(x)

)
.

The stated equivalence follows at once.
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Hence we have, very easily, the following solution of the end-point prob-
lems.

Proposition 2.3. Let f be strictly positive and differentiable on an intervalE.
Fix h > 0, and define (on suitably reduced intervals)

J1(x) =

∫ x

x−h

f(t)dt, J2(x) =

∫ x+h

x

f(t)dt.

If f ′(x)/f(x) is increasing, thenJ1(x)/f(x) is decreasing andJ2(x)/f(x) is
increasing. The opposite holds iff ′(x)/f(x) is decreasing.

Proof. Again writef ′(x)/f(x) = q(x). If q(x) is increasing, then, by Lemma
2.2, W (x, t) is positive fort in [x, x + h] and negative fort in [x − h, x]. The
statements follow, by Lemma2.1.

Corollary 2.4. Fix h > 0. Let

G1(x) =
1

xp

∫ x

x−h

tpdt, G2(x) =
1

xp

∫ x+h

x

tpdt.

If p > 0, thenG1(x) is increasing on(h,∞), and G2(x) is decreasing on
(0,∞). The opposite conclusions hold whenp < 0.

Proof. Then q(x) = p/x, which is decreasing on(0,∞) when p > 0, and
increasing whenp < 0.

Remark 2.1. Neither the statement of Corollary2.4, nor its proof, is improved
by writing out the integrals explicitly.
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Remark 2.2. Corollary 2.4might lead one to suppose that monotonicity off(x)
itself is significant, but this is not true. Iff(x) = x2, then Proposition2.3shows
thatJ1(x)/f(x) is increasing both forx < 0 and forx > h.

Remark 2.3. Clearly, the case whereJ1(x)/f(x) andJ2(x)/f(x) are constant
is given byf(x) = ecx.

Remark 2.4. Three equivalents to the statement thatf ′(x)/f(x) is increasing
(given thatf(x) > 0) are:

(i) f ′(x)2 ≤ f(x)f ′′(x),

(ii) log f(x) is convex,

(iii) f(x + δ)/f(x) is increasing for eachδ > 0.

Condition (iii) is implicitly used in [7, Corollary 3.3] to give an alternative
proof of Corollary2.4.

We now consider the symmetric ratios occurring whenh = k. Let

J(x) =

∫ x+h

x−h

f(t)dt.

There are actually two symmetric ratios that arise naturally, both of which have
applications to tails of series. Themid-point estimate for the integralJ(x)
(describing the area below the tangent at the mid-point) is2hf(x), while the
trapeziumestimate ishfh(x), where

fh(x) = f(x− h) + f(x + h).
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If f is convex, then it is geometrically obvious (and easily proved) that

2hf(x) ≤ J(x) ≤ hfh(x),

with equality occuring whenf is linear. So we consider monotonicity of the
mid-point ratioJ(x)/f(x) and the two-end-point ratioJ(x)/fh(x). The out-
come is less transparent than in the end-point problem. We shall see that it
is determined, in the opposite direction for the two cases, by monotonicity
of f ′′(x)/f(x). Both the statements and the proofs can be compared with
Sturm’s comparison theorem on solutions of differential equations of the form
y′′ = r(x)y [11, section 25]. Where Sturm’s theorem requires positivity or
negativity ofr(x), we require monotonicity, and the proofs share the feature
of considering the derivative of a Wronskian. The key lemma is the following,
relating monotonicity off ′′(x)/f(x) to properties ofW (x, y).

Lemma 2.5. Let f be strictly positive and twice differentiable on an interval
(a, b). Then the following statements are equivalent:

(i) f ′′(x)/f(x) is increasing on(a, b);

(ii) for each fixedu in (0, b − a), the functionW (x, x + u) is increasing on
(a, b− u).

Proof. Write f ′′(x) = r(x)f(x) and

A(x) = W (x, x + u) = f(x)f ′(x + u)− f ′(x)f(x + u).

Then

A′(x) = f(x)f ′′(x + u)− f ′′(x)f(x + u)

=
(
r(x + u)− r(x)

)
f(x)f(x + u),

http://jipam.vu.edu.au/
mailto:g.jameson@lancaster.ac.uk
http://jipam.vu.edu.au/


The Ratio Between the Tail of a
Series and its Approximating

Integral

G.J.O. Jameson

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 29

J. Ineq. Pure and Appl. Math. 4(2) Art. 25, 2003

http://jipam.vu.edu.au

from which the stated equivalence is clear.

Lemma 2.6. Letx be fixed and letw be a continuous function such that

w(x + u) + w(x− u) ≥ 0

for 0 ≤ u ≤ h. Then ∫ x+h

x−h

w(t)dt ≥ 0.

Proof. Clear, on substitutingt = x + u on [x, x + h] andt = x− u on
[x− h, x].

We can now state our result on the mid-point ratio.

Proposition 2.7.Letf be strictly positive and twice differentiable on an interval
E. Fix h > 0, and let

J(x) =

∫ x+h

x−h

f(t)dt.

If f ′′(x)/f(x) is increasing (or decreasing) onE, thenJ(x)/f(x) is increasing
(or decreasing) on the suitably reduced sub-interval.

Proof. Fix u with 0 < u ≤ h. Assume thatf ′′(x)/f(x) is increasing. By
Lemma2.5, if x andx + u are inE, then

W (x, x + u) ≥ W (x− u, x) = −W (x, x− u).

The statement follows, by Lemmas2.1and2.6.
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Corollary 2.8. Fix h > 0. Let

G(x) =
1

xp

∫ x+h

x−h

tp dt.

If p ≥ 1 or p ≤ 0, thenG(x) is decreasing on(h,∞). If 0 ≤ p ≤ 1, it is
increasing there.

Proof. Let f(x) = xp. Then

f ′′(x)

f(x)
=

p(p− 1)

x2
,

which is decreasing (for positivex) if p(p − 1) ≥ 0. (Alternatively, it is not
hard to prove this corollary directly from Lemmas2.1and2.6.)

Note that Corollary2.8strengthens one or other statement in Corollary2.4in
each case. For example, ifp > 1, then

(
x/(x−h)

)p
is decreasing, so Corollary

2.8 implies thatJ(x)/(x− h)p is decreasing (as stated by2.4).

Corollary 2.9. If f possesses a third derivative onE, then the following scheme
applies:

f ′ f ′′ f ′′′ J/f
+ − + incr
− + + incr
+ + − decr
− − − decr
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Proof. By differentiation, one sees thatf ′′(x)/f(x) is increasing iff(x)f ′′′(x) ≥
f ′(x)f ′′(x). In each case, the hypotheses ensure that these two expressions have
opposite signs.

However, the signs of the first three derivatives do not determine monotonic-
ity of f ′′/f in the other cases. Two specific examples of type+ + + arex3

for x > 0 andx−2 for x < 0. In both cases,f ′′(x)/f(x) = 6x−2, which is
increasing forx < 0 and decreasing forx > 0.

Clearly,J(x)/f(x) is constant whenf ′′(x)/f(x) is constant.
For the two-end-point problem, we need the following modification of Lemma

2.1.

Lemma 2.10. Let G(x) = J(x)/fh(x), whereJ(x) and fh(x) are as above.
Then

G′(x) =
1

fh(x)2

∫ x+h

x−h

(
W (x− h, t) + W (x + h, t)

)
dt,

whereW (x, t) is defined as before.

Proof. Elementary.

Proposition 2.11.Letf be strictly positive and twice differentiable on an inter-
val E. Fix h > 0. Let fh(x) = f(x− h) + f(x + h) and

J(x) =

∫ x+h

x−h

f(t)dt.

If f ′′(x)/f(x) is increasing onE, thenJ(x)/fh(x) is decreasing on the suit-
ably reduced sub-interval (and similarly with “increasing” and “decreasing”
interchanged).
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Proof. By Lemmas2.6and2.10, the statement will follow if we can show that

W (x−h, x−u)+W (x+h, x−u)+W (x−h, x+u)+W (x+h, x+u) ≤ 0

for 0 < u ≤ h. With u fixed, let A(x) = W (x + u, x + h). By Lemma2.5,
A(x) is increasing, hence

0 ≥ A(x− u− h)− A(x)

= W (x− h, x− u)−W (x + u, x + h)

= W (x− h, x− u) + W (x + h, x + u).

Similarly, B(x) = W (x− h, x + u) is increasing, hence

0 ≥ B(x)−B(x + h− u)

= W (x− h, x + u)−W (x− u, x + h)

= W (x− h, x + u) + W (x + h, x− u).

These two statements together give the required inequality.

Corollary 2.12. The expression

(x + h)p+1 − (x− h)p+1

(x + h)p + (x− h)p

is increasing ifp ≥ 1 or −1 ≤ p ≤ 0, decreasing in other cases.
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3. Tails of Series: Discrete Version
Let f be a function satisfying the following conditions:

(A1) f(x) > 0 for all x > 0;

(A2) f(x) is decreasing on some interval[x0,∞);

(A3)
∫∞

1
f(t)dt is convergent.

We will also assume, as appropriate, either

(A4) f is differentiable on(0,∞)

or

(A4′) f is twice differentiable on(0,∞).

Clearly, under these assumptions,
∑∞

k=1 f(k) is convergent. Throughout the
following, we write

S(n) =
∞∑

k=n

f(k), I(x) =

∫ ∞

x

f(t) dt.

By simple integral comparison,S(n + 1) ≤ I(n) ≤ S(n) for n ≥ x0. Further,
if f(n)/I(n)→ 0 asn→∞, thenS(n)/I(n) tends to 1. From these consider-
ations, one might expectS(n)/I(n) to decrease withn, andS(n + 1)/I(n) to
increase.
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Functions of the type now being considered will often be convex, at least
for sufficiently largex. In this case, the mid-point and trapezium estimations
mentioned in Section2 come into play. Mid-point comparison, on successive
intervals

[
r − 1

2
, r + 1

2

]
, shows thatS(n) ≤ I

(
n− 1

2

)
, while trapezium com-

parison on intervals[r, r + 1] givesS∗(n) ≥ I(n), where

S∗(n) = 1
2
f(n) + S(n + 1).

In general, both these estimations give a much closer approximation to the tail
of the series than simple integral comparison. From the stated inequalities, we
might expectS(n)/I

(
n− 1

2

)
to increase, andS∗(n)/I(n) to decrease.

We show that statements of this sort do indeed hold, and can be derived from
our earlier theorems. However, the correct hypotheses are those of the earlier
theorems, not simply thatf(x) is decreasing or convex. Indeed, cases of the
opposite, “unexpected" type can occur.

The link is provided by the following lemma. Given a convergent series∑∞
n=1 an, we writeA(n) =

∑∞
k=n ak (with similar notation forbn, etc.).

Lemma 3.1. Suppose thatan > 0, bn > 0 for all n and that
∑∞

n=1 an and∑∞
n=1 bn are convergent. Ifan/bn increases (or decreases) forn ≥ n0, then so

doesA(n)/B(n).

Proof. Write an = cnbn andA(n) = KnB(n). Assume that(cn) is increasing.
ThenA(n) ≥ cnB(n), soKn ≥ cn. Writing

A(n) = an + A(n) = cnbn + Kn+1B(n+1),

one deduces easily thatA(n) ≤ Kn+1B(n), so thatKn ≤ Kn+1.
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Theorem 3.2. Suppose thatf satisfies (A1), (A2), (A3), (A4) and, for somen0,
that f ′(x)/f(x) is increasing forx ≥ n0. ThenS(n)/I(n) is decreasing and
S(n + 1)/I(n) is increasing forn ≥ n0. The opposite applies iff ′(x)/f(x) is
decreasing.

Proof. Let

bn =

∫ n+1

n

f(t) dt,

so thatB(n) = I(n). Assume thatf ′(x)/f(x) is increasing. By Proposition
2.3, bn/f(n) is increasing andbn/f(n + 1) is decreasing. So by Lemma3.1,
I(n)/S(n) is increasing andI(n)/S(n + 1) decreasing.

Corollary 3.3. ([5, Remark 4.10] and [7, Proposition 6]) Letf(x) = 1/xp+1,
wherep > 0. Then (with the same notation)npS(n) decreases withn, and
npS(n + 1) increases.

Proof. Thenf ′(x)/f(x) = −(p+1)/x, which is increasing, andI(n) = 1/pxp.

HereS(n) is the tail of the series forζ(p + 1), and we deduce (for example)
that supn≥1 npS(n) = S(1) = ζ(p + 1). In [7, Theorem 7], this is exactly
the computation needed to evaluate the norm of the averaging (alias Cesaro)
operator on the spacè1(w), with wn = 1/np. In [5, sections 4, 10], it is an
important step in establishing the “factorized" Hardy and Copson inequalities.

In the same way, one obtains the following result for the series∑∞
n=1(log n)/np+1 = −ζ ′(p + 1); we omit the details.
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Corollary 3.4. Letf(x)=(log x)/xp+1, wherep > 0. Letr=max[1, 2/(p+1)].
For n ≥ er, npS(n)/(1+p log n) decreases withn, andnpS(n+1)/(1+p log n)
increases.

We now formulate the theorems deriving from our earlier results on symmet-
ric ratios.

Theorem 3.5.Suppose thatf satisfies (A1), (A2), (A3) and (A4′). If f ′′(x)/f(x)
is decreasing (or increasing) forx ≥ n0 − 1

2
, thenS(n)/I

(
n− 1

2

)
increases

(or decreases) forn ≥ n0.

Proof. Let

bn =

∫ n+1/2

n−1/2

f(t) dt.

Then B(n) = I
(
n− 1

2

)
. If f ′′(x)/f(x) is decreasing, then, by Proposition

2.7, bn/f(n) is decreasing. By Lemma3.1, it follows that I
(
n− 1

2

)
/S(n) is

decreasing.

Corollary 3.6. Letf(x) = 1/xp+1, wherep > 0. Then
(
n− 1

2

)p
S(n) increases

with n. Further, we have

S(n + 1) ≥
(
n− 1

2

)p
np+1

[(
n + 1

2

)p − (n− 1
2

)p] .
Proof. The first statement is a case of Theorem3.5, and the second one is an
algebraic rearrangement of(n− 1

2
)pS(n) ≤ (n + 1

2
)pS(n + 1).

This strengthens the second statement in Corollary3.3.
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Theorem 3.7.Suppose thatf satisfies (A1), (A2), (A3) and (A4′). LetS∗(n) =
1
2
f(n)+S(n+1). If f ′′(x)/f(x) is decreasing (or increasing) forx ≥ n0, then

S∗(n)/I(n) decreases (or increases) forn ≥ n0.

Proof. Similar, with

an =
1

2

(
f(n) + f(n + 1)

)
, bn =

∫ n+1

n

f(t) dt,

and applying Proposition2.11instead of Proposition2.7.

For the casef(x) = 1/xp+1, it is easy to show thatS(n)/S∗(n) is decreas-
ing. Hence Theorem3.7strengthens the first statement in Corollary3.3.

Remark 3.1. If f(x) = 1/xp+1, thenf ′(x)/f(x) is increasing andf ′′(x)/f(x)
is decreasing. A case of the opposite type isf(x) = xe−x, for whichf ′(x)/f(x)
= 1/x − 1 and f ′′(x)/f(x) = 1 − 2/x. Note that the corresponding series is
the power series

∑
nyn, with y = e−1. Of course, for series of this type,I(n) is

not asymptotically equivalent toS(n); in this case, one finds thatS(n)/I(n)→
e/(e− 1) and S(n + 1)/I(n)→ 1/(e− 1) asn→∞.

Finite sums. Clearly, the same reasoning can be applied to finite sums. Write
An =

∑n
j=1 aj. The statement corresponding to Lemma3.1 is: if an/bn is

increasing (or decreasing), then so isAn/Bn. A typical conclusion is:

Proposition 3.8. Letf be strictly positive and differentiable on(0,∞). Write

F (n) =
n∑

j=1

f(j), J(n) =

∫ n

0

f(t) dt.

If f ′(x)/f(x) is increasing (or decreasing), then so isF (n)/J(n).
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Proof. Let bn =
∫ n

n−1
f , so thatBn = J(n). If f ′(x)/f(x) is increasing, then

bn/f(n) is decreasing, soJ(n)/F (n) is decreasing.

Corollary 3.9. ([4, p. 59], [6, Proposition 3]) Ifan = 1/np, where0 < p < 1,
thenAn/n

1−p is increasing.
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4. Tails of Series: Continuous Version
We continue to assume thatf is a function satisfying (A1), (A2), (A3) and (A4),
and to writeI(x) =

∫∞
x

f(t)dt. The previous definition ofS(n) is extended to
a real variablex by defining

S(x) =
∞∑

n=0

f(x + n).

For anyx0 > 0, integral comparison ensures uniform convergence of this series
for x ≥ x0. Clearly, S(x) is decreasing and tends to 0 asx → ∞. Also,
S(x)− S(x + 1) = f(x).

Whenf(x) = 1/xp, ourS(x) is the “Hurwitz zeta function"ζ(p, x), which
has applications in analytic number theory [2, chapter 12]. Note thatζ(p, 1) =
ζ(p) andζ ′(p, x) = −pζ(p + 1, x).

Under our assumptions,f ′(x) ≤ 0 for x > x0 and
∫∞

x
f ′(t)dt = −f(x).

We make the following further assumption:

(A5) f ′(x) is increasing on some interval[x1,∞).

This ensures that
∑∞

n=0 f ′(x + n) is uniformly convergent forx ≥ x0, and
hence thatS ′(x) exists and equals the sum of this series. (An alternative would
be to assume thatf is an analytic complex function on some open region con-
taining the positive real axis.)

We shall establish results analogous to the theorems of Section3, by some-
what different methods. Unlike the discrete case, there is a simple expression
for I(x) in terms ofS(x):
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Lemma 4.1. With notation as above, we have

I(x) =

∫ x+1

x

S(t)dt.

Proof. Let X > x + 1. Then∫ X

x

f(t) dt =

∫ X

x

[S(t)− S(t + 1)]dt

=

∫ X

x

S(t)dt−
∫ X+1

x+1

S(t)dt

=

∫ x+1

x

S(t)dt−
∫ X+1

X

S(t)dt

→
∫ x+1

x

S(t)dt asX →∞

sinceS(t)→ 0 ast→∞.

SoI(x)/S(x) is already a ratio of the type considered in Section2, with S(x)
as the integrand. There is no need (and indeed no obvious opportunity) to use
Lemma3.1 or its continuous analogue. Instead, we apply the ideas of Section
2 to S(x) instead off(x). This will require some extra work. We continue to
write

W (x, y) = f(x)f ′(y)− f ′(x)f(y).

We need to examine

WS(x, y) = S(x)S ′(y)− S ′(x)S(y).
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Lemma 4.2. With this notation, we have

WS(x, y) =
∞∑

n=0

W (x+n, y+n)+
∑
m<n

(
W (x+m, y+n)+W (x+n, y+m)

)
.

Proof. We have

WS(x, y) =

(
∞∑

m=0

f(x + m)

)(
∞∑

n=0

f ′(y + n)

)

−

(
∞∑

m=0

f ′(x + m)

)(
∞∑

n=0

f(y + n)

)
.

Since the terms of each series are ultimately of one sign, we can multiply the
series and rearrange. For fixedn, the terms withm=n equate toW (x+n, y+n).
For fixedm, n with m 6= n, the corresponding terms equate to
W (x + m, y + n).

Lemma 4.3. If f ′(x)/f(x) is increasing forx > 0, then for0 < t < c,

(i) f(c− t)f(c + t) increases witht,

(ii) W (c− t, c + t) increases witht.

Proof. Write f ′(x)/f(x) = q(x). Then

W (c− t, c + t) = f(c− t)f(c + t)
(
q(c + t)− q(c− t)

)
.

This is non-negative whent > 0. Also, the derivative off(c − t)f(c + t) is
W (c− t, c + t), hence statement (i) holds. By the above expression, statement
(ii) follows.
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Theorem 4.4. Suppose thatf(x) satisfies (A1), (A2), (A3), (A4) and (A5), and
thatf ′(x)/f(x) is increasing forx > 0. Then:

(i) S ′(x)/S(x) is increasing forx > 0,

(ii) S(x)/I(x) is decreasing andS(x)/I(x− 1) is increasing.

Opposite conclusions hold iff ′(x)/f(x) is decreasing.

Proof. We show thatWS(x, y) ≥ 0 when x < y. Then (i) follows, by the
implication (ii) ⇒ (i) in Lemma 2.2, and (ii) follows in the same way as in
Proposition2.3. It is sufficient to prove the stated inequality wheny − x < 1.
By Lemma2.2, W (x + n, y + n) ≥ 0 for all n. Now fix m < n. Note that
y + m < x + n, sincey − x < 1. In Lemma4.3, take

c = 1
2
(x + y + m + n), t = c− (x + m), t′ = c− (y + m).

Then0 < t′ < t < c, also c + t = y + n and c + t′ = x + m . We obtain

W (x + m, y + n) ≥ W (y + m, x + n),

henceW (x + m, y + n) + W (x + n, y + m) ≥ 0. The required inequality
follows, by Lemma4.2.

Corollary 4.5. Letp > 1, and letζ(p, x) =
∑∞

n=0(x+n)−p. Then xp−1ζ(p, x)
decreases withx, and (x − 1)p−1ζ(p, x) increases. Also,ζ(p + 1, x)/ζ(p, x)
decreases.

We now establish the continuous analogue of Theorem3.5, which will lead
to a sharper version of the second statement in Corollary4.5. First, another
lemma.
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Lemma 4.6.Suppose thatf ′(x)/f(x) is increasing andf ′′(x)/f(x) is decreas-
ing for x > 0. If 0 < b < a, then

W (x− a, x + a)−W (x− b, x + b)

decreases withx for x > a.

Proof. Write f ′′(x)/f(x) = r(x). As in the proof of Lemma2.5, we have

d

dx
W (x− a, x + a) = f(x− a)f(x + a)

(
r(x + a)− r(x− a)

)
,

and similarly forW (x− b, x + b). Sincer(x) is decreasing, we have

r(x− a)− r(x + a) ≥ r(x− b)− r(x + b) ≥ 0.

Also, sincef ′(x)/f(x) is increasing, Lemma4.3gives

f(x− a)f(x + a) ≥ f(x− b)f(x + b).

The statement follows.

Theorem 4.7. Suppose thatf(x) satisfies (A1), (A2), (A3), (A4′) and (A5),
and also thatf ′(x)/f(x) is increasing andf ′′(x)/f(x) is decreasing forx >
0. Then(i)S ′′(x)/S(x) is decreasing forx > 0, and (ii) S(x)/I

(
x− 1

2

)
is

increasing forx > 1
2
. The opposite holds if the hypotheses are reversed.

Proof. Recall that, by Lemma4.1,

I

(
x− 1

2

)
=

∫ x+ 1
2

x− 1
2

S(t) dt.
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The statements will follow, by Lemma2.5and Proposition2.7, if we can show
that WS(x, x + u) decreases withx for each fixedu in

(
0, 1

2

)
. We use the

expression in Lemma4.2, with y = x+u. By Lemma2.5, W (x+n, x+n+u)
decreases withx for eachn. Now takem < n. We apply Lemma4.6, with

z = x +
1

2
(m + n + u), a =

1

2
(n−m + u), b =

1

2
(n−m− u).

Then0 < b < a (sincen−m ≥ 1), and

z − a = x + m, z + a = x + n + u, z − b = x + m + u, z + b = x + n,

so the lemma shows that

W (x + m, x + n + u) + W (x + n, x + m + u)

decreases withx, as required.

Corollary 4.8. The function
(
x− 1

2

)p−1
ζ(p, x) is increasing forx > 1

2
.

Remark 4.1. In Theorem4.7, unlike Theorem3.5, we assumed a hypothesis on
f ′(x)/f(x) as well asf ′′(x)/f(x). We leave it as an open problem whether this
hypothesis can be removed.

Remark 4.2. Lemmas4.3 and4.6 both involve a symmetrical perturbation of
the two variables. Our assumptions do not imply thatW (x, y) is a monotonic
function ofy for fixedx. For example, iff(x) = 1/x2, then W (1, y) = 2/y2 −
2/y3, which increases for0 < y ≤ 3/2 and then decreases.

Finally, the continuous analogue of Theorem3.7:
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Theorem 4.9.Let

S∗(x) =
1

2
f(x) +

∞∑
n=1

f(x + n).

If f satisfies the hypotheses of Theorem4.7, thenS∗(x)/I(x) is decreasing.

Proof. Note thatS∗(x) = 1
2
S(x) + 1

2
S(x + 1). By Theorem4.7, S ′′(x)/S(x)

is decreasing. By Lemma4.1and Proposition2.11, it follows thatI(x)/S∗(x)
is increasing.
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