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Abstract

An approach for testing goodness-of-fit for parametric continuous-time panel observed multi-state

Markov models is to use Pearson-type χ
2 tests. When observations are balanced and there are no

continuous covariates, a test with an asymptotic χ
2 null distribution can be found. Aguirre-Hernandez

and Farewell (2002) constructed a Pearson-type test by grouping observations with similar time intervals

and covariate values, which is appropriate in more general cases. Titman and Sharples (2008) proposed

an extension to accommodate models where the observed states can be subject to misclassification.

While in some cases the chi-squared distribution can give a good approximation to the null distribution

of these statistics, more generally, and particularly if there are continuous covariates in the model, the

null distribution of the statistic has a higher mean than the χ
2 approximation. Use of the parametric

bootstrap can yield a good approximation of the null distribution, however this method requires multiple

refitting of the model. For many models this may be prohibitively time consuming, limiting the practical

applicability of the tests. In this paper, a better approximation to the asymptotic distribution of the

tests, as a weighted sum of independent χ
2

1 random variables, is given.

1 Introduction

Parametric continuous-time multi-state models are a widely used method to model the progression of a

categorical response variable over time. In medical applications, the response may refer to a disease state,

and this state may only be observed at discrete, irregular intervals. Such an observation scheme is referred

to as panel observation. The multi-state process is often assumed to be Markov. This greatly simplifies

the computation of the likelihood. For data of the form of a series of observations xi0, . . . , xini
at times

ti0, . . . , xini
, for patients i = 1, . . . , N , with covariate vectors zi, the log-likelihood can be expressed as

l(θ) =
N
∑

i=1

ni
∑

j=1

log
(

pxi(j−1)xij
(ti(j−1), tij ; zi, θ)

)

,

where

prs(t0, t1; z, θ) = P(X(t1) = s|X(t0) = r; z, θ)

†Address for correspondence: Department of Mathematics and Statistics, Lancaster University, UK. Email:

a.titman@lancaster.ac.uk

1



is the (r, s) entry of the transition probability matrix which can be found by solving the Kolmogorov Forward

equations (Cox and Miller (1965))
dP (t0, t)

dt
= P (t0, t)Q(t), (1.1)

subject to initial condition P (t0, t0) = I. When the process is time homogeneous, the solution is given by a

matrix exponential. In this situation, a closed-form solution to (1.1) can be found

P (t0, t1) = P (s) = exp (sQ0) =
∞
∑

n=0

sn

n!
Qn

0 ,

where s = t1 − t0. The matrix exponential in this equation can be calculated using the eigen-decomposition

of Q0. Let D be a diagonal matrix of the eigenvalues and U the matrix with the corresponding eigenvectors

as columns. Provided the eigenvalues are distinct, U is invertible and Q0 = UDU−1. Then

exp (sQ) = U exp (sD)U−1.

Kalbfleisch and Lawless (1985) gave a numerical Fisher scoring algorithm for computing the maximum

likelihood estimate.

In some observational studies, the diagnosed state at a particular time may be subject to misclassification.

A method of attempting to account for this is to make the assumption that the observed states, oi0, . . . , oini

are independent conditional on the values of xi0, . . . , xini
. The observable process is then a continuous time

hidden Markov model (HMM). The observed states relate to the true underlying states through classification

probabilities,

πrs = P(O(t) = s|X(t) = r).

These probabilities may be assumed unknown and to be estimated from the data.

Approaches to computation of the maximum likelihood estimates for misclassification HMMs are either to

apply a continuous-time generalization of the Forward-Backward algorithm for discrete-time HMMs (Bureau

et al (2003)). Alternatively the likelihood can be computed directly and maximized using derivative free

optimization algorithms (Jackson and Sharples (2002); Satten and Longini (1996)).

2 Goodness-of-fit tests

In order to assess the appropriateness of the Markov assumption, as well as possible stationarity and subject

homogeneity assumptions, goodness-of-fit procedures are required. When the observation times are balanced,

so that all subjects are observed at the same times, t1j = . . . = tNj , and there are no covariates or the

covariates have a small number of unique values, then a Pearson chi-squared test or asymptotically equivalent

likelihood ratio test can be applied (Kalbfleisch and Lawless (1985); de Stavola (1988)). The likelihood ratio

test has statistic

Λ = 2
∑

j

∑

c

R
∑

r=1

R
∑

s=1

ohcrs log (
ojcrs

ejcrs

)

while the Pearson χ2 test has

X2 =
∑

j

∑

c

R
∑

r=1

R
∑

s=1

(ojcrs − ejcrs)
2

ejcrs
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where

ojcrs =
∑1[Xi(tj) = s,Xi(tj−1) = r] (2.1)

ejcrs = prs(tj−1, tj ; θ̂)njcr (2.2)

where njcr is the number of individuals with covariate value c observed in state r at time tj−1, who have an

observation at time tj .

Each statistic has an asymptotic null distribution which is χ2 with degrees of freedom given by C−|θ|, where

C is the number of independent cells from the resultant contingency table and |θ| is the number of unknown

parameters fitted from the data.

Such tests cannot be applied when subjects are observed at irregularly spaced intervals or when the number

of unique covariate values is high. Aguirre-Hernandez and Farewell (2002) (AH/F) proposed a Pearson-type

goodness-of-fit test which accommodates irregular observation times and continuous covariates. Observations

are categorized by observation number into observation categories, h, and, within each observation category,

by time interval category, lh. Additionally, observations are categorized by covariate category, c, according

to quantiles of the estimated transition intensity qrs. Then, for each transition type, r → s for a patient

with observations at times tj , j = 1, . . . , n, we calculate:

ohlhrsc =
∑1[(X(tj+1) = s,X(tj) = r)] (2.3)

ehlhrsc =
∑P(X(tj+1) = s|X(tj) = r)1[X(tj−1) = r] (2.4)

where the summation is over the set of observations:

∀patients, j : tj+1 − tj ∈ lh, q(z) ∈ c (2.5)

where z is the vector of covariates for a patient.

The statistic is then given by

T =
∑

h

∑

lh

∑

c

∑

r

∑

s

(ohlhrsc − ehlhrsc)
2

ehlhrsc

. (2.6)

Titman and Sharples (2008) (T/S) proposed an extension to this test to accommodate misclassification

hidden Markov models. The same grouping method as the AH/F test applies. However, the observed and

expected counts are based on the observed states, but the observed state does not have the Markov property.

Therefore, it is necessary to consider all observations up to the current time in order to estimate the next

observed state. o and e are then given by

ohlhrsc =
∑1[(O(tj+1) = s,O(tj) = r)] (2.7)

ehlhrsc =
∑P(O(tj+1) = s|O(tj) = r,O(t1), . . . , O(tj−1))1[O(tj) = r]. (2.8)

In addition, Titman and Sharples showed that a modified test was required when the data consisted of a

mixture of discrete observations and exact death times. However, in this paper we only consider the case of

panel observation of all transitions.
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3 The null distribution of the AH/F statistic

Both the AH/F test and the T/S test have null distributions which can be naively approximated by χ2 with

degrees of freedom χ2 with degrees of freedom C − |θ| as defined above. However, even asymptotically, this

approximation is usually a lower bound. In general the statistic will have an inflated mean compared to the

naive degrees of freedom. It will tend to have a lower variance compared to the mean than a χ2 distribution.

The null distribution is also dependent on the choice of categorization for observations, even if the number

of independent cells C remains the same.

The exact asymptotic null distribution is intractable. This is because it depends both on the unknown true

value of the parameter vector θ and the observation times. Aguirre-Hernandez and Farewell proposed a

parametric bootstrap to obtain an approximation of the null distribution. Obtaining one bootstrap sample

involves generating realizations of the Markov process using the maximum likelihood estimate for the original

data at the sampling times from the original data, refitting the Markov model to the new data and applying

the goodness-of-fit test to the data. Such a method does give a test of the required size. However, Markov

models and particularly hidden Markov models can be time consuming to fit, especially if there are a large

number of observations or many unknown parameters. Ideally, at least 1000 bootstrap samples are required

to get a reasonable approximation of the 95% or 99% point of the null distribution. Bootstrapping becomes

undesirable if the model takes more than a few seconds to fit.

The non-χ2 null distribution is due to the lack of efficiently of the maximum likelihood estimate to minimize

the statistics, and the cell counts being the sum of non-identical multinomials rather than multinomial.

It is well known been that a chi-squared test based on grouped data will result in a distribution which

lies between χ2
d−|θ| and χ2

d where d is the number of independent cells in the contingency table and |θ| the

number of unknown parameters fitted from the data (Chernoff (1954); Kendall and Stuart (1961)).

By considering the joint distribution of the observed counts in the contingency table and the score function of

the log-likelihood, better asymptotic approximations to the null distributions of the AH/F and T/S statistics

may be derived.

4 Derivation of the approximation

Suppose we have panel observed data from a Markov or hidden Markov process. For notational convenience,

we suppose each observation is arbitrarily categorized into category c = 1, . . . , C, where c encompasses

observation quantile, time quantile, covariate and categorization by previous observed state.

Each observation from a panel observed Markov model can be considered as a multinomial random variable.

An observation, xc,i, i = 1, . . . , nc within category c is non-identical multinomial, such that

xc,i ∼ Multinomial(1, (p1(zc,i, θ), . . . , pR(zc,i, θ))) (4.1)

where zc,i is the covariate vector corresponding to that observation (which we allow to include both the last

observed state and the time between observations) and θ the parameter vector of length M . Similarly, for
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hidden Markov models, since the likelihood for an individual can be factorized as

Li = P (O(t1))P (O(t2)|O(t1)) . . . P (O(tn)|O(t1), . . . , O(tn−1))

the observed states can be again considered Multinomial as in (4.1), provided zc,i also includes all the

observed states up to that time.

We can therefore write either the AH/F or T/S statistic as

T (x, θ̂) =
C
∑

c=1

R
∑

r

(orc − erc(θ̂))
2

erc(θ̂)
(4.2)

where or,c =
∑

i 1{xc,i = δr}, er,c(θ̂) =
∑

i pr(zc,i, θ̂) and δr is a vector of length R with rth entry 1 and all

other entries zero.

For a standard chi-squared test on multinomial data, O, the vector of length RC with entries orc, is a

sufficient statistic for θ and so θ̂ is a deterministic function of O. However, this isn’t the case when O are

not multinomial. The statistic is instead a function of both O and θ̂.

To proceed we first define υ(θ) to be a vector of length RC with entries

υrc(θ) =
(orc − erc(θ))

erc(θ)
1
2

.

As

T (x, θ̂) = υ(θ̂)Tυ(θ̂),

the aim is then to determine the distribution of υ(θ̂).

We firstly assume that the maximum likelihood estimate gives a consistent estimate such that θ̂
p
−→ θ, and

that we may therefore Taylor expand υ(θ̂) about θ. This gives

υ(θ̂) = υ(θ) +B(θ̂ − θ) + op(1), (4.3)

where B is a RC × M matrix with entries ∂erc(θ)
∂θm

1

erc(θ)
1
2
. Also, from standard asymptotic results, (θ̂ −

θ) = (EI(θ))−1U(θ) + op(1), where U(θ) = ∂l(θ)
∂θ

is the score function and EI(θ) = −E( ∂2l(θ)
∂θT ∂θ

). Hence,

asymptotically, υ(θ̂) can be viewed as a linear function of ω = (U(θ), v(θ)), a vector of length M + RC.

Hence

υ(θ̂)
d
−→ Aω, (4.4)

where

A =
[

BE(I(θ))−1
I

]

and I is a RC ×RC identity matrix.

We therefore seek the covariance matrix of ω.

Firstly note that

V ar(U(θ)) = EI(θ). (4.5)
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The vector O is made up of blocks of length R which are the sum of independent, non-identical multinomials

of size 1. O therefore has expectation e(θ) and covariance matrix which is block diagonal,

Σ =









Σ1

. . .

ΣC









where

(Σc)rs =







∑nc

i pr(zc,i, θ)(1 − pr(zc,i, θ)) r = s

∑nc

i pr(zc,i, θ)ps(zc,i, θ) r 6= s

for c = 1, . . . , C. υ(θ) therefore has mean zero and covariance matrix given by PΣPT , where P is a RC×RC

diagonal matrix with elements (erc(θ))
− 1

2 . Thus Cov(υ(θ)) = PΣPT .

We then need to find Cov(U(θ), υ(θ)). Since both U(θ) and O are functions of the full data x, we can

condition on x.

Cov(U(θ),O) = Cov[E(U(θ)|x),E(O|x)] +E[Cov(U(θ),O|x)] (4.6)

The second term of the right hand side of equation 4.6 is zero because given x, U(θ) and O are fully

determined, moreover

Cov(U(θ),O) = Cov(U(θ)|x,O|x).

Note that the mth component of U(θ) can be written as

Um(θ) =
∑

c

nc
∑

i=1

(
∂p(zc,i, θ)

∂θm

1

p(zc,i, θ)
)Txc,i,

that the (r, c) entry of O is just
∑nc

i x(c,i)(r) where x(c,i)(r) denotes the rth entry of the vector xc,i, and that

each of the individual observations xc,i are independent. Then

Cov(Um(θ), orc) =

nc
∑

i

Cov((
∂p(zc,i, θ)

∂θm

1

p(zc,i, θ)
)Txc,i, δ

T
r xc,i)

where δr is a vector of length R with rth entry 1 and all other entries zero. Further

Cov(Um(θ), orc) =

nc
∑

i

E[((∂p(zc,i, θ)

∂θm

1

p(zc,i, θ)

)T

xc,i

)

(

δT
r xc,i

)

]

−E [(∂p(zc,i, θ)

∂θm

1

p(zc,i, θ)
)Txc,i

]E [δT
r xc,i

]

.

(4.7)

The ith observation only contributes a non-zero value for both Um and orc if the observation is in cell r with

probability pr(zc,i, θ). Moreover, the expected contribution to Um from observation i is 0. Hence equation

4.7 reduces to

Cov(Um(θ), orc) =
∑

ic

∂pr(zc,i, θ)

∂θm

.

If we denote Ψ = Cov(U(θ),O), then it follows that Cov(U(θ), υ(θ)) = ΨP and moreover that ω has

covariance

Ω =

[E(I(θ)) PT ΨT

ΨP PΣPT

]

.
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Combining this result with (4.4), it follows that υ(θ̂) has an asymptotic multivariate normal distribution with

mean vector 0 and covariance matrix V = AΩAT . T (x, θ̂) can therefore be expressed as a scalar product of

such a multivariate normal.

Equivalently,

T
d
−→

M
∑

i=1

λiX
2
i

where λ1, . . . , λM are the eigenvalues of covariance matrix V and X2
1 , . . . , X

2
M are i.i.d. χ2

1.

The null distribution of T therefore tends towards a distribution with characteristic function given by

ψ(u) =
R
∏

j=1

(1 − 2iλju)
−0.5.

The p-value of a particular point can then be found numerically by applying the Gil-Pelaez formula (Gil-

Pelaez (1951)). This gives P(T > x) =
1

2
+

∫ ∞

−∞

Im(
ψ(u) exp (−iux)

2πu
)du.

Of course, λ1, . . . , λM , and therefore P(T > x), depend on the unknown true value of θ. In the same way

that the parametric bootstrap approach takes θ = θ̂ when simulating new datasets, in our approximation we

also take θ = θ̂.

In order to compute P(T > x) for a given θ, we need
∂prc(zc,i,θ)

∂θm
and the expected Fisher information matrixE(I(θ)). Details of how to calculate these quantities, particularly for hidden Markov models, are given in

Appendix A.1.

5 Simulation study

To validate the method on data with realistic sample sizes and observation schemes, we consider data on

post-heart transplantation patients. 596 patients received heart transplants between 1979 and 2000. Patients

were followed up until March 2005. Periodically patients had angiograms to assess the presence of cardiac

allograpt vascopathy. Patients may be classified into one of three states. State 1, referring to absence of

CAV, state 2, meaning mild CAV and state 3 referring to severe CAV. This dataset is available in the R

package msm (Jackson (2008)) where data on exact death times also available. In this paper our aim is only

to get a realistic observation scheme for a panel observed dataset on which to base simulations, so we remove

the mortality data.

It is assumed that observation of disease free status or mild CAV is subject to classification error but that state

3 is an absorbing state. A three-state misclassification HMM was fitted to the data via maximum likelihood,

giving estimate θ̃. Donor age and whether the patient had ischaemic heart disease before transplantation

are both significant covariates affecting CAV onset rates (1 → 2 transition intensity). Donor age varied from

6 to 61 years. Ischaemic heart disease was present in 50% of subjects.
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New data were simulated from a process with θ = θ̃ using the same sampling times as in the original

dataset. This involves sampling both a trajectory of the Markov model and subjecting the true states to

misclassification error.

To calculate the goodness-of-fit statistic we choose to stratify by time quantiles of the times between obser-

vations and also by covariate values. To avoid sparse cell counts, we limit the number of covariate groups

to two. This is achieved by choosing covariate groupings based on whether q12(zi, θ̂) for observation i, lies

above or below the median for the whole sample. This means that the cell boundaries are themselves a

function of the data. This contradicts an assumption made in the derivation of section 4, that the groups

into which each observation is placed is fixed in advance. Such random cell boundaries are known to have

some effect on the theoretical distribution of χ2 tests (Moore (1971)). The naive χ2 approximation has 18

degrees of freedom in this case.

10000 datasets were generated and the goodness-of-fit statistic was computed for each. Additionally, using

the methods of section 4, the p-value for the particular dataset was calculated. The 95% point for the

original dataset was calculated as 30.46 using the asymptotic approximation. After obtaining 10000 bootstrap

samples, the 95% point was found to be at 30.78 and 5.42% of samples exceeded 30.46. In contrast the naive

χ2
18 approximation gives the 95% point at 28.87 and has size 8.12%. Figure 1 shows a comparison of the

three estimates of the null distribution.

Figure 1: Comparison of empirical bootstrap null distribution with naive χ2
18 approximation and improved

approximation.
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For each bootstrap sample we also calculated the p-value of the goodness-of-fit test, based on the refitted

maximum likelihood estimate and the simulated dataset, using the improved approximation. This gave

similar results, with 5.44% of samples having a p-value below 0.05. Figure 2 shows the distribution of upper
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p-values for the naive and improved approximations.

Figure 2: Distribution of p-values for the naive χ2
18 and improved approximations.
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6 Discussion

An asymptotic approximation to the null distribution of the AH/F and T/S statistics has been derived. The

method allows a more accurate p-value to be calculated in cases where the naive χ2
C−|θ| approximation is poor

and bootstrapping is prohibitively time consuming. This significantly improves the practical applicability of

the AH/F and T/S tests of goodness-of-fit.

The simulated example showed that the approximation is quite accurate for relative small sample sizes and

cell frequencies. For instance, some cell categories only had 8 observations in them. The effect of small

cell counts seems to be that the approximation is slightly anti-conservative. We would expect the degree

of inaccuracy to increase for datasets that give tests with very sparse contingency tables. In these cases a

parametric bootstrap may still be required. It is not clear to what extent cell boundaries that depend on the

data have on the accuracy of the approximation, but the effect seemed minimal in the simulated example.

A goodness-of-fit suite has recently been incorporated into the R package msm (Jackson (2008)), including

the AH/F and T/S goodness-of-fit tests. Code to compute more accurate p-values for models fitted using

msm, based on the results of this paper, has been developed and is available from the author.
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A Appendix

A.1 Calculation of first derivatives and expected Fisher information

For Markov models, prs(zc,i, θ) just refers to a particular entry, e.g. (r, s) of some transition probability

matrix P (t0, t1; θ). Kalbfleisch and Lawless (1985) showed, for time homogeneous Markov models, where

P (t0, t1) = P (t),
∂P (t)

∂θm

= UVmU
−1

where Vm is a M ×M matrix with (i, j) entry






g
(m)
ij

(exp (dit)−exp (djt))

(di−dj)
i 6= j

g
(m)
ii t exp (dit) i = j

where g
(m)
ij is the (i, j) entry of the matrix Gm = U−1( ∂Q

∂θm
)U and d1, . . . , dR are the eigenvalues of the

intensity matrix Q(θ), which are assumed to be distinct. Derivatives can also be calculated in the presence of

a singular matrix U , but this is unlikely to arise at the maximum likelihood estimate in practical applications.

For hidden Markov models, prs(zc,i, θ) = P(ok = s|o1, . . . , ok−1). If we define a vector ξ, with rth entry

ξr = P (xk−1 = r|o1, . . . , ok−1), thenP(ok = l|o1, . . . , ok−1) =

R
∑

j=1

R
∑

s=1

ξjpjs(tk−1, tk)πsl, (A.1)

where tk−1 and tk are the (k − 1)th and kth observation times for the subject, pjs(tk−1, tk) is the (j, s)

entry of transition probability matrix P (tk−1, tk; θ) and πsl is the (s, l) entry in the matrix of classification

probabilities. The derivative of A.1 can therefore be found using the product rule.

Calculation of
∂ξj

∂θm
can be done iteratively. Lystig and Hughes (2002) showed that the Forward algorithm

for computing the likelihood of a HMM can be generalized to compute the first and second derivatives. Let

αk(i) = P(X(tk) = i, o1, . . . , ok)

and

φk(θm, i) =
∂

∂θm

P(X(tk) = i, o1, . . . , ok).

Then

αk(j) =
R
∑

j=1

αk−1(i)pij(tk − tk−1)πjok

and

φk(θm, i) =

R
∑

i=1

pij(tk − tk−1)

(

φk−1(θm, i)πjok
+ αk−1(i)

∂πj,ok

∂θm

)

+αk−1(i)πjok

∂pij(tk − tk−1)

∂θm

Since ξi = αk(i)
P

R
j=1 αk(i)

,

∂ξi

∂θm

=
(
∑R

j=1 αk(j))φk(θu, i) − αk(i)
∑T

j=1 φk(θm, j)

(
∑R

j=1 αk(j))
,
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and can therefore be computed for each k by iteratively computing α and φ.

Finally, the expected Fisher information for both Markov and hidden Markov models is given byE(−
∂2l

∂θu∂θv

) =
∑

i,c

R
∑

l=1

1

pl(zc,i, θ)

∂pl(zc,i, θ)

∂θu

∂pl(zc,i, θ)

∂θv

so only requires calculation of first derivatives.
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