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I study two-stage hybrid inflation driven by moduli fields, corresponding to flat directions of

supersymmetry, lifted by supergravity corrections. The first stage corresponds to a period

of either fast-roll or ‘locked’ inflation, induced by an oscillating inflaton. This is followed by

a second stage of fast-roll inflation. Enough total e-foldings to encompass the cosmological

scales are achieved. Structure in the Universe is generated due to a curvaton field.

1 Introduction

The latest CMB observations suggest that structure formation in the Universe is due to the
existence of a superhorizon spectrum of curvature perturbations. This strongly implies that,
during the early stages of its evolution, the Universe underwent a period of cosmic inflation.

According to the inflationary paradigm, inflation is realized through the domination of the
Universe by the potential density of a light scalar field, which is slowly rolling down its almost
flat potential. One of the reasons for using a flat potential is that one requires inflation to
last long enough for the cosmological scales to exit the horizon during the period of accelerated
expansion, so as to solve the horizon and flatness problems. Thus, inflation seems to require
the presence of a suitable flat direction in field space. Unfortunately, this is hard to attain in
supergravity because Kähler corrections generically lift the flatness of the scalar potential 1.

Still, there have been attempts to overcome this so-called η-problem of inflation. A first
step toward inflation without a flat direction is fast-roll inflation 2, which, however, may last
only for a limited number of e-foldings and, hence, it is probably not capable to explain the
observations. Recently, another mechanism for inflation without a flat direction was suggested3.
Rapid oscillations in a hybrid-type potential keep the field ‘locked’ on top of a saddle point and
prevent it from rolling toward the minima. Unfortunately, oscillatory inflation is also too brief.
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In this paper 4 we point out that in a hybrid-type non-flat potential one can have two
consecutive stages of inflation. Depending on the curvature of the potential, the first stage is
a period of either fast-roll or oscillatory ‘locked’ inflation. This is followed by a second period
of tachyonic fast-roll inflation. In total, inflation may last long enough to solve the horizon and
flatness problems, without imposing stringent bounds on the curvature of the potential. Since
our inflaton is not a light field it cannot be responsible for the observed spectrum of curvature
perturbations. We, therefore, consider that these perturbations are due to a curvaton field 5.

2 Fast–Roll versus Locked Inflation

Consider two moduli fields, which parameterize flat directions of supersymmetry (whose flatness
is lifted by supergravity corrections) with a hybrid type of potential of the form

V (Φ, φ) = 1
2 m2

ΦΦ2 + 1
2 λΦ2φ2 + 1

4 α(φ2 − M2)2 , (1)

where Φ and φ above are taken to be real scalar fields with mΦ ∼ M2
S/mP ∼ m3/2, M ∼ mP ,

α ∼ (MS/mP )4, λ ∼ 1 and MS ∼ √
m3/2mP ∼ 1011GeV corresponding to gravity mediated su-

persymmetry breaking, where m3/2 ∼ TeV. The tachyonic mass of φ is mφ ∼ √
α M ∼ m3/2.

The above potential has global minima at (Φ, φ) = (0,±M) and an unstable saddle point at

(Φ, φ) = (0, 0) similarly to hybrid inflation 6. However, in contrast to regular hybrid inflation,
for |Φ|, |φ| ≤ mP , the potential does not satisfy the slow-roll requirements.

Now, since the effective mass–squared of φ is (meff
φ )2 = λΦ2 − αM2, φ is driven to zero

if Φ > Φc ≡
√

α/λ M ∼ m3/2. Suppose, that originally the system lies in the regime, where,
m3/2 < Φ ≤ mP and φ ≃ 0. With such initial conditions the effective potential for Φ becomes:

V (Φ, φ = 0) = 1
2m2

ΦΦ2 + M4
S . Since Φ < mP , when φ remains at the origin, the scalar potential

is dominated by a false vacuum density Vinf ≃ M4
S , resulting in a period of inflation. During this

period, we have Vinf ∼ (mP Hinf)
2, which means that Hinf ∼ m3/2. This is why there is no slow

roll; because all the masses are of the order of the Hubble parameter, as expected by the action
of supergravity corrections 1. And yet, there is inflation as long as φ remains at the origin.

During this period the Klein-Gordon equation for Φ is: Φ̈ + 3HinfΦ̇ + m2
ΦΦ = 0, which has

a solution of the form Φ ∝ eωt, where ω = −3
2Hinf

[

1 ±
√

1 − 4
9(mΦ/Hinf)2

]

. Therefore, the

evolution of Φ depends on whether mΦ is larger or not from 3
2Hinf .

2.1 Fast–Roll Inflation (mΦ ≤ 3
2Hinf)

In this case, there are two exponential solutions to the Klein-Gordon equation, both decreasing
with time. The solution with the positive sign decreases faster and rapidly disappears. Thus,

Φ = Φ0 exp(−FΦ∆N) , with FΦ ≡ 3
2

[

1 −
√

1 − 4
9(mΦ/Hinf)2

]

, (2)

where, ∆N ≡ Hinf∆t. Therefore, the total number of e-foldings of fast-roll inflation is

NFR = − 1
FΦ

ln(Φend/Φ0) ≃ 1
FΦ

ln(mP /m3/2) , (3)

where Φ0 ∼ mP and Φend = Φc ∼ m3/2. The larger mΦ is the smaller is the number NFR of
the total e-foldings of fast-roll inflation. However, this number cannot become arbitrarily small
because, if mΦ is bigger than 3

2Hinf , then the dynamics of Φ becomes distinctly different.



2.2 Locked Inflation (mΦ > 3
2Hinf)

In this case the Klein-Gordon equation for Φ is solved by an equation of the form:

Φ = Φ0 e−
3

2
∆N cos(ωΦ∆t) , with ωΦ = Hinf

√

(mΦ/Hinf)2 − 9
4 ≈ mΦ . (4)

The field is oscillating instead of rolling toward the true minimum of the potential because,
provided the frequency of the oscillations is large enough, the time (∆t)s that the system spends
on top of the saddle point is too small to allow its escape from the oscillatory trajectory. Indeed,
(∆t)s ∼ Φc/mΦΦ̄ ∼ Φ̄−1, where Φ̄ is the amplitude of the oscillations. Originally Φ̄ ∼ mP but
the expansion of the Universe dilutes the energy of the oscillations and Φ̄ decreases, which means
that (∆t)s grows. However, until (∆t)s becomes large enough to be comparable to m−1

φ , φ has

no time to roll away from the saddle. Hence, the oscillations continue until Φ̄end ∼ m3/2 ∼ Φc,
at which point φ departs from the origin and rolls down toward its VEV.

During the oscillations the density of the oscillating Φ is ρΦ = 1
2Φ̇2 + 1

2m2
ΦΦ2 ≃ 1

2m2
ΦΦ̄2.

Hence, for Φ̄ < mP , the overall density is dominated by Vinf , which remains constant as long as
φ remains locked at the origin. Consequently, the Universe undergoes inflation when Φ̄ lies in
the range Φ̄ ∈ (m3/2,mP ). Therefore, the total number of e-foldings of locked inflation is

Nlock = 2
3 ln(mP /m3/2) ≃ 24 . (5)

Hence, NFR > Nlock, i.e. Nlock is the minimum number of e-foldings that the Universe inflates
while φ remains at the origin. Thus, regardless of the curvature along the Φ-direction, a min-
imum number of e-foldings is guaranteed. However, locked inflation alone cannot provide the
necessary number of e-foldings corresponding to the cosmological scales. Fortunately, there is a
subsequent period of inflation, driven by the scalar field φ after it departs from the origin.

3 Tachyonic Fast–Roll Inflation

The potential for φ is: V (φ) = Vinf − 1
2 |(meff

φ )2|φ2 + 1
4αφ4. Since the roll of φ begins after

Φ̄ < Φc, we have |(meff
φ )2| ∼ m2

φ. The Klein-Gordon satisfied by φ is: φ̈ + 3Hinf φ̇ − m2
φφ = 0,

which admits solutions of the form φ ∝ eωφt with ωφ = −3
2 Hinf

[

1 ±
√

1 + 4
9(mφ/Hinf)2

]

. The

positive sign solution corresponds to the decreasing mode which rapidly disappears. Hence,

φ = φ0 exp(Fφ∆N) , with Fφ ≡ 3
2

[
√

1 + 4
9(mφ/Hinf)2 − 1

]

. (6)

From the above, we see that the total number of e-foldings of tachyonic fast-roll inflation is

Nφ = 1
Fφ

ln(φend/φ0) ≃ 1
Fφ

ln(M/mφ) , (7)

where the final value of φ is its VEV: M ∼ mP , while the initial value of φ is determined by the
tachyonic fluctuations which send it off the top of the potential, and is given by 7 φ0 = mφ/2π.

From Eqs. (3), (5) and (7) we see that the total number of inflationary e-foldings is

Ntot = NΦ + Nφ ≃
(

1
FΦ

+ 1
Fφ

)

ln(mP /m3/2) , (8)

where FΦ ≥ 3
2 and NΦ ≡ max{NFR, Nlock} corresponds to the first stage of inflation. It is Ntot

that has to be compared to the necessary e-foldings for the cosmological scales.



4 The necessary e-foldings

The inflationary period has to be sufficiently long to encompass the cosmological scales. This
results in the following lower bound on the total number of e-foldings of inflation 8:

NC = 72 − ln
(

mP /V
1/4
inf

)

− 1
3 ln

(

V
1/4
inf /Treh

)

, (9)

where Treh ∼
√

ΓmP , is the reheat temperature, Γ ≃ g2mφ is the decay rate for the inflaton field
φ (corresponding to the last stage of inflation) and g is the coupling of φ to the decay products.
If the coupling of the field to other particles is extremely weak then φ decays gravitationally, in
which case Γ ∼ m3

φ/m2
P . Thus, the effective range for g is: m3/2/mP ≤ g ≤ 1.

Using that Vinf ∼ M4
S , we find: NC = 54 − 1

3 ln g. Demanding that Ntot > NC provides an
upper bound on mφ, which is more stringent the smaller NΦ is. Hence, the tightest bound
corresponds to NΦ = Nlock. After a little algebra we obtain the bound

mφ/Hinf < 3
2

{[(

108+ln
√

g
ln(mP /m3/2) − 7

4

)

−1
+ 1

]2
− 1

}1/2
. (10)

Considering the range of g it is easy to check that the above bound interpolates between 2
and 3. Thus, it is possible to satisfy the cosmological observations with mΦ ∼ mφ ∼ m3/2 ∼ Hinf .
Hence, the combination of locked and fast-roll inflation is capable of providing enough e-foldings
to encompass the cosmological scales without the use of any flat direction. If the mass of Φ is
below 3

2Hinf then NΦ is given by NFR > Nlock. In this case the bound on mφ is further relaxed
(Nφ does not need to be as large). Hence, regardless of mΦ, the required e-foldings corresponding
to the cosmological scales, can be obtained only with a mild upper bound on mφ.

5 Discussion and conclusions

Using natural values for the parameters and a generic, hybrid-type potential we showed that
moduli fields, corresponding to flat directions of supersymmetry, whose flatness is lifted by
supergravity corrections, can naturally generate enough e-foldings of inflation to solve the horizon
and the flatness problems with only a mild upper bound on the tachyonic mass of the inflaton and
without employing slow roll at all. That way inflation can escape from the famous η-problem.

Structure formation, in our model, is due to the existence of a curvaton field, which is not
linked to the moduli inflatons. The curvaton must be a flat direction. Being unrelated to infla-
tionary dynamics, the curvaton can be protected by a symmetry (other than supersymmetry),

which may even be exact during inflation (e.g. a global U(1) for a PNGB curvaton 9).

The tachyonic fluctuations at the phase transition which terminates the first stage of inflation
can generate primordial black holes with mass comparable to the mass of the horizon volume
at the time of their creation 10. Hence, the earlier they form the smaller they are and the
sooner they evaporate. Therefore, to protect nucleosynthesis, Vinf has to be bounded from

below as 11 V
1/4
inf

>∼ 1011GeV, which our model marginally satisfies. Problems may also arise
from the possible formation of topological defects at the phase transition, depending on their
stability. Nevertheless, both black holes and defects can be avoided provided that φ0 > mφ.
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