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A unified approach to quintessence and inflation is investigated with the
use of a single scalar field. It is argued that successful potentials have to ap-
proximate a combination of exponential and inverse power-law decline in the
limit of large values of the scalar field. A class of such potentials is studied
analytically and it is found that quintessential inflation is indeed possible.
Successful models, not involving more than two natural mass scales, are ob-
tained, which do not require fine-tuning of initial conditions and do not result
in eternal acceleration.
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1 Introduction

Recent observations suggest that the Universe at present is dominated by Dark Energy
[1] and undergoes accelerated expansion [2]. This can be attributed to the presence
of a non-vanishing cosmological constant Λ, which, however, has to be extremely fine-
tuned Λ2 ∼ 10−120M4

P , where MP = 1.22 × 1019GeV is the Planck mass. Therefore, the
existence of a cosmological constant is not favoured by theorists, who prefer to account
for the presence of Dark Energy by different means. One novel idea is to consider a
dynamical, time-varying Λ = Λ(t) [3]. The most straightforward realization of this idea is
to suppose that Λ(t) is due to the potential energy of a scalar field, called quintessence [4],
which comes to dominate the energy density of the Universe at present and drive the latter
into a late-time accelerated expansion. However, quintessence too suffers from fine-tuning
problems [5], so it is not clear that it is a better alternative to the cosmological constant.

A compelling way to minimize the fine-tunings of quintessence is to link it with in-
flation. This seems natural since both quintessence and inflation are based on the same
idea; namely that the Universe undergoes accelerated expansion when dominated by the
potential energy density of a scalar field, which slowly rolls-down its almost flat potential.
Unification of inflation and quintessence is achieved by using a single scalar field φ to
drive both. There are many merits to quintessential inflation. Firstly, one avoids the
introduction of yet again another unobserved scalar field, whose nature and origin are un-
accounted for. Furthermore, a single theoretical framework may be used to construct the
scalar potential V (φ). Moreover, it is possible to minimize the fine-tunings of quintessence
by linking them with the ones of inflation and by introducing only few mass scales and
parameters in V (φ). Finally, certain fine-tunings are automatically dispensed with, such
as, for example, the tuning of initial conditions for quintessence.

Apart from satisfying the requirements of inflation and quintessence, quintessential
inflation needs to incorporate an additional number of features. One such requirement is
that the scalar field should not be coupled to any of the standard model fields. This is so
because it is necessary for φ to avoid decay and survive until today. The additional advan-
tage of such a “sterile” inflaton is that one dispenses with the fine-tuning of the couplings
between φ and the standard model fields, otherwise unavoidable in order to preserve the
flatness of the inflationary potential and also because the ultra-light quintessence field
would correspond to a long-range force that could violate the equivalence principle at
present. Natural candidates for a sterile inflaton are hidden sector fields, moduli fields,
the radion and so on. Another requirement of quintessential inflation is that the minimum
of the potential (taken to be zero, i.e. there is no residual cosmological constant) should
not have been reached until today, so that V (φ) may dominate the Universe at present.
In order to achieve this, the minimum is typically placed at infinity. Thus, the potential
features two flat regions, the inflationary plateau and the quintessential “tail”.

It is not easy to construct successful quintessential inflationary models and this is why
only few such models exist in the literature. Most of the existing models, however, man-
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age to satisfy the requirements of inflation and quintessence by considering multi-branch
potentials that change form when the field moves from the inflationary to the quintessen-
tial phase of its evolution. This is achieved either “by hand” [6] or by a phase transition
[7]. In these models information is not communicated between the inflationary and the
quintessential part of the field’s evolution. Another option, is constructing complicated
models involving a large number of parameters, usually due to the theoretical framework
used, which have to be tuned correctly to achieve the desired results [8].

We adopt a different approach and attempt to formulate a single-branch potential with
minimal parameter content [9]. Such a minimalistic approach avoids the large number of
fine-tunings inherent in other models, and renders our quintessential inflationary models
preferable compared to the cosmological constant alternative.

2 Requirements of inflation and quintessence

Recent CMB observations [10] suggest that we live in a spatially-flat FRW Universe. We
model the Universe content as a collection of perfect fluids, the background fluid with
density ρB comprised by matter (including baryons and CDM) and radiation (includ-
ing relativistic particles) and the scalar field φ with density ρφ ≡ ρkin + V and pressure
pφ ≡ ρkin − V , where ρkin ≡ 1

2
φ̇2. The evolution of φ is determined by the equation,

φ̈ + 3Hφ̇ + V ′ = 0 (1)

where H ≡ ȧ/a is the Hubble parameter with a(t) being the scale factor of the Universe
and the prime {dot} denotes derivative with respect to φ {the cosmic time t}.

2.1 Inflationary requirements

During inflation V (φ) dominates the Universe and the above equation becomes,

3Hφ̇ ≃ −V ′(φ) (2)

Inflation occurs when |ε|, |η| < 1, where, ε ≡ 1√
6
mP (V ′/V ) and η ≡ 1

3
m2

P (V ′′/V ).

2.1.1 Horizon and flatness problems

The horizon and flatness problems are solved if the scale that corresponds to the observable
Universe at present did exit the horizon during inflation. The number of e-foldings before
the end of inflation when this happened is estimated as NH ≃ ln(t0TCMB

) − Nreh, where t0
is the age of the Universe according to the Hot Big Bang, T

CMB
is the temperature of the

CMB at present and Nreh ≡ ln(Treh/Hend) with Treh being the reheating temperature and
Hend the Hubble parameter at the time tend when inflation ends.

To solve the horizon and flatness problems the total number of inflationary e-foldings
has to be larger than NH , which translates into a constraint on the initial value of φ.
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2.1.2 COBE normalization

This constraint corresponds to the amplitude of the density perturbations as deduced by
the CMB temperature anisotropies observed by COBE. The constraint reeds,

∆T

T

∣

∣

∣

∣

dec

≃ δρ

ρ
(N

CMB
) ≃ 2 × 10−5 (3)

where
δρ

ρ
≃ H2

πφ̇

∣

∣

∣

∣

∣

exit

≃ − 1√
3π

V 3/2

m3
P V ′

(4)

and N
CMB

≃ ln(tdecTdec) − Nreh, with Tdec ≡ T (tdec) being the temperature of the last scat-
tering surface and tdec being the time of decoupling between matter and radiation. Typi-
cally, the COBE normalization constraint determines the inflationary energy scale.

2.1.3 Spectral index

It can be shown that the spectral index ns of the density perturbations is given by,

ns − 1 ≃ 6(η − 3ε2) (5)

Large scale structure and CMB observations provide the following constraint for ns,

|n(N
CMB

) − 1| ≤ 0.1 (6)

which constraints the slope and curvature of the potential |V ′| and |V ′′| respectively.

2.2 Quintessential requirements

2.2.1 Coincidence

The scalar field should account for the required Dark Energy at present. Thus, ρφ needs to
be comparable with ρB today, but subdominant during the Hot Big Bang. The constraint
reeds, V (φ0) = Ωφρ0, where φ0 ≡ φ(t0), ρ0 is the overall energy density of the Universe at
present and Ωφ ≈ 2/3 is the currently observed abundance of Dark Energy [1].

2.2.2 Acceleration

The SN Ia observations suggest that the Universe at present is undergoing accelerated
expansion [2]. In order to achieve this we need ρφ(t0) > ρB(t0) and also −1 ≤ wφ(t0) < −1

3
,

where wφ ≡ pφ/ρφ. String theory considerations disfavor eternal acceleration because it
results in the existence of a future event horizons [11]. If we take this constraint into
account we can allow only for a brief acceleration period occurring today.
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3 Evolution

The particular characteristics of quintessential inflationary potentials result in a particular
scenario for the Universe evolution, which imposes a few additional constraints.

3.1 After the end of inflation

Reheating, in quintessential inflation, is due to the gravitational production of non-
conformally invariant, effectively massless fields, facilitated by the change of the vacuum
at the end of inflation [12]. The reheating temperature is, Treh = α(Hend/2π), where
α ∼ 0.01 is an (in)efficiency factor [13]. Therefore, Nreh = ln(α/2π) ≃ −6 regardless of
the inflationary energy scale, so that, NH ≃ 74 and N

CMB
≃ 69.

3.1.1 Kination

Because, at the end of inflation, ρB(tend) ∼ T 4
reh ≪ Vend the Universe remains φ–dominated.

However, after the end of slow roll we have kination with ρkin ≫ V [13] and (1) becomes,

φ̈ + (φ̇/t) ≃ 0 (7)

Thus, the evolution of φ is independent of V (φ). Because ρkin ∝ a−6 soon ρB comes to
dominate and the Hot Big Bang begins. The temperature at the end of kination is,

T∗ = π

√

g∗
30

T 3
reh

V
1/2

end

=
α3

72π2

√

g∗
30

Vend

m3
P

(8)

where Vend ≡ V (tend) and g∗ is the number of relativistic degrees of freedom, which, for
the standard model in the early Universe, is g∗ = 106.75. Kination has to be over before
Big Bang Nucleosynthesis (BBN). Therefore, T

BBN
< T∗, where T

BBN
≃ 0.5 MeV is the

temperature at the onset of BBN. The BBN constraint provides a lower bound on Vend.

3.1.2 Hot Big Bang

After the end of kination ρkin ∝ t−3 so that φ̇ → 0 rapidly. Consequently, the scalar field
freezes at some value φF , estimated as,

φF ≃ φend + 2

√

2
3

[

1 +
3

2
ln

(12π

α2

√

30
g∗

)

+ 3 ln
( mP

V
1/4

end

)

]

mP ≫ mP (9)

where mP ≡ MP /8π and φend ≡ φ(tend).

3.2 Attractors and trackers

During the quintessential part of its evolution the scalar field is again dominated by its
potential energy density so that (2) is still applicable. However, during the Hot Big Bang,
H ∝ t−1 and the roll of the field is not as much restrained as in inflation.
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3.2.1 Attractor solution

The solution of (2) is of the form, f(φ(t)) − f(φF ) = F (t), where F (t) ≡ 1

4
(1 + wB)t2 and

f(φ) ≡ − ∫ ′ dφ/V ′ and the prime on the integral means that one should not consider
constants of integration. The above suggests

φ(t) ≃











φF when f(φF ) ≫ F (t) Frozen Quintessence

φatr(t) when f(φF ) ≪ F (t) Attractor Quintessence
(10)

where φatr(t) is the solution of

f(φ) ≃ F (t) ⇔ 1

4
(1 + wB)t2 = −

∫ ′ dφ

V ′(φ)
(11)

referred to as attractor solution [14]. Because F (t) is a growing function of time, even
though initially the field remains frozen at φF , later on it unfreezes and starts follow-
ing the attractor. This occurs when Vatr ≡ V (φatr) ≃ VF ≡ V (φF ) so that, at all times,
V (φ) =min{VF , Vatr}. Note that the attractor solution is independent of initial conditions.

3.2.2 The choice of the quintessential tail

Depending on the slope of the quintessential tail Vatr may fall more {less} rapidly than
ρB. We will call such an attractor steep {mild}. If the attractor is steep, only frozen-
quintessence may achieve coincidence. However, steep attractors begin soon after the end
of inflation. Hence, potentials with steep quintessential tails are ruled out. Mild attractors
are different. Such attractors assist φ to eventually dominate ρB and, hence, they are
called “trackers” [14]. Mild quintessential tails and all cases of frozen-quintessence result
in eternal acceleration, disfavored by string theory [11], and are, therefore, also ruled out.∗

Therefore, the only acceptable case is to consider attractors according to which Vatr

falls as rapidly as ρB (see Fig. 1), so that Vatr/ρB = constant. This corresponds to expo-
nential quintessential tails [16], for which the attractor (11) in the matter era is,

ρB

Vatr

= 4ε2 = constant (12)

Although it may explain the missing Dark Energy, the exponential attractor is seemingly
unable to result in accelerated expansion, because it mimics ρB and, hence, wφ(t0) ≃ 0.
However, a brief period of acceleration is indeed possible to achieve if the field unfreezes
at present [17]. This is because, when unfreezing, the field oscillates briefly around the
attractor. Thus, at first crossing of VF and Vatr the field remains “super-frozen” and dom-
inates the Universe, causing accelerated expansion. Soon, however, it settles onto the at-
tractor and acceleration is terminated (Fig. 2). Thus, coincidence requires φatr(t0) ≃ φF .
Moreover, “super-freezing” results in wφ(t0) ≃ −1 which guarantees acceleration.

∗Quintessential tails, which change slope from mild to steep [15], may be constructed only at the
expense of additional mass-scales and parameters, which contrasts our minimalistic approach.
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Figure 1: Exponential attractor (dashed line). After the end of kination, ρφ (solid line)
remains frozen until today, when it begins to mimic the evolution of ρB (dash-dot line).

Therefore, we are led to try a quintessential tail of the form, V (φ ≫ φend) ≃ Vend e−λφ/mP

where λ > 0 is a parameter for which ε = −λ/
√

6. In order to avoid frozen quintessence
we require Vatr

<∼ ρB, which means that λ should be close but not smaller than
√

3/2.
However, it turns out that the corresponding value for Vend cannot satisfy the BBN con-
straint. Fortunately, one can overcome this difficulty by modifying the the quintessential
tail in a way that preserves the exponential attractor. This is achieved by introducing an
Inverse Power-Law (IPL) factor so that, V (φ ≫ φend) ≃ Vend e−λφ/mP (m/φ)k, where k ≥ 1
is an integer and m ≤ mP . The attractor for this quasi-exponential tail is identical with
the pure exponential case because φF ≫ mP suggests,

V ′(φF ) = − V

mP

[

λ + k
(mP

φF

)]

≃ −λV

mP
(13)

The quasi-exponential behaviour cannot carry over to the inflationary era because of
the steepness it results to. Thus, both the exponential and the IPL features have to
be modified in inflation. This modification is not trivial because of the huge difference
Vend ≫ VF ∼ ρ0 as required by BBN and coincidence. A steep inflationary plateau results
either in too brief inflation or in strongly super-Planckian inflationary energy scale. A
flat inflationary plateau, however, because it has to “prepare” for the deep dive towards
VF , typically features a large value of |V ′′|, which results in too large ns [c.f. (5)].

4 A concrete example

Designing a quintessential inflationary potential is not easy, let alone using few mass scales
and parameters. Nevertheless, it is indeed possible. For example, consider the potential,
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ρ
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Figure 2: At unfreezing, ρφ (dash-dot line) briefly oscillates around the attractor (dotted
line), which mimics ρB (dashed line). Consequently, there is a “bump” on the overall
density ρ (solid line). During the “bump”, wφ ≃ −1, which results into brief acceleration.

V (φ) = M4[1 − tanh(φ/mP )]
[

1 − sin
( πφ/2√

φ2 + m2

)]k
(14)

where −∞ < φ < +∞, M, m < mP and k > 0 is an integer (Fig. 3). The asymptotic
forms of the above far from the origin are,

V (φ ≪ 0) ≃ 2k+1M4

[

1 − e2φ/mP − kπ2

64
(
m

φ
)4

]

≃ 2k+1M4 (15)

and
V (φ ≫ 0) ≃ 21−k(

π

4
)2ke−2φ/mP M4

(m

φ

)4k ∝ e−2φ/mP (m/φ)4k (16)

Thus, for negative values of φ the potential approaches a constant, non-zero, false vacuum
energy density responsible for inflation, whereas for positive values of φ the potential
attains the desired quasi-exponential form with λ = 2. Enforcing the constraint (3) gives,

2
k+1

2√
3 π

( M

mP

)2

(N
CMB

+ 1/3) = 10−5 ⇒ M ∼ 1015GeV (17)
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= 4k

k
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M

F

end

4

∞+

Figure 3: Artist’s view of model (14) for k = 2, 4 (solid,dashed line respectively).

Thus, we see that M is of the scale of grand unification. Now, employing (5) we obtain,

ns(N) − 1 ≃ − 6

3N + 1

[

1 +
9

8(3N + 1)

]

⇒ ns(NCMB
) ≃ 0.97

which is in excellent agreement with the observations [10]. Also, Vend ≃ 2k−1M4 gives,

Treh ≃ α

4

10−5mP
√

N
CMB

+ 1/3
∼ 109 GeV (18)

which saturates but does not violate the gravitino constraint. Using the above, (8) gives,

T∗ ≃
α3π2

96

√

g∗
30

10−10mP

(N
CMB

+ 1/3)2
∼ 10 MeV > T

BBN
(19)

Thus, the BBN constraint is satisfied. Finally, solving the horizon and flatness problems
requires the initial condition for the inflaton, φi ≤ φ(NH) ≃ −3 mP , which does not require
fine-tuning since we expect φi ∼ |MP |. Note that, ns, Treh, T∗ are all k-independent.

Moving on to quintessential requirements, from (11), the attractor for the matter era
is, Vatr/ρB = 3/8. Super–freezing is expected to boost this fraction up to Ωφ ≈ 2/3 and
also to give wφ ≈ −1. The freezing value of φ is found using (9),

φF =
√

6

{

2

3
− 1√

6
ln(2/

√
3) + ln

[

24

α2

√

10
g∗

(

N
CMB

+
1

3

)

× 105

]

}

mP ≃ 67mP (20)

Using the coincidence constraint φ0 ≃ φF and after some algebra one finds,

m ∼ 4 × 102(4 × 1070)1/4k10−30/k mP (21)

which gives,
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k 1 2 3 4
m 108GeV 1015GeV 1017GeV 1018GeV

Thus, we can identify m with M, mP for k = 2, 4 respectively, and obtain the models,

• Model 1:

V (φ) = M4[1 − tanh(φ/mP )]
[

1 − sin
( πφ/2√

φ2 + M2

)]2

(22)

• Model 2:

V (φ) = M4(φ) [1 − tanh(φ/mP )] and M(φ) ≡ M
[

1 − sin
( πφ/2

√

φ2 + m2
P

)]

(23)

5 Conclusions

We have shown that it is indeed possible to unify inflation and quintessence using a single
scalar field without incorporating too many mass scales and parameters. The best ap-
proach suggests a quasi-exponential tail, which manages to meet BBN requirements, while
retaining the pure-exponential attractor solution. The quasi-exponential tail achieves a
brief acceleration period if the scalar field is about to unfreeze today and lies, at present,
in a super-frozen state. Both the exponential and inverse-power law features of the tail
have to be suppressed at the inflationary plateau.

Two successful models are presented, which satisfy all requirements of inflation and
quintessence with the use of only two natural mass-scales: the Planck and the grand
unification scale, and no other parameters. Moreover, no fine tuning of initial conditions
is required. In these models the inflationary scale is that of grand unification, which is low
enough to ensure safety from radiative corrections. Also, Treh ∼ 109GeV, which saturates
the gravitino constraint and ns ≃ 0.97, in excellent agreement with observations. Finally,
we expect wφ ≈ −1 because of super-freezing. Due to the plethora of constraints and
requirements we believe that any successful model should not differ much from the toy-
models presented.

In summary, successful quintessential inflationary models without additional fine-
tuning for quintessence are possible to construct. Such models outshine the cosmological
constant alternative.
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