Lancaster EPrints

Magneto-optical study of electron occupation and hole wave functions in stacked self-assembled InP quantum dots

Hayne, Manus and Maes, Jochen and Moshchalkov, Victor V and Manz, Yvonne M and Schmidt, Oliver G and Eberl, Karl (2001) Magneto-optical study of electron occupation and hole wave functions in stacked self-assembled InP quantum dots. Applied Physics Letters, 79 (1). pp. 45-47. ISSN 1077-3118

[img]
Preview
PDF - Published Version
Download (125Kb) | Preview

    Abstract

    We have studied the magnetophotoluminescence of doubly stacked layers of self-assembled InP quantum dots in a GaInP matrix. 4.0±0.1 monolayers of InP were deposited in the lower layer of each sample, whereas in the upper layer 3.9, 3.4, and 3.0 monolayers were used. Low-temperature photoluminescence measurements in zero magnetic field are used to show that, in each case, only one layer of dots is occupied by an electron, and imply that when the amount of InP in both layers is the same, the dots in the upper layer are larger. High-field photoluminescence data reveal that the position and extent of the hole wave function are strongly dependent on the amount of InP in the stack. ©2001 American Institute of Physics.

    Item Type: Article
    Journal or Publication Title: Applied Physics Letters
    Additional Information: A combination of zero and high-field photoluminescence measurements were used to separately determine the location of the electron and hole in stacked self-assembled quantum dots of different sizes. International collaboration. Hayne first author: conceived experiment, supervised Masters student taking the data, wrote the paper. Led to many new collaborations. RAE_import_type : Journal article RAE_uoa_type : Physics © 2001 American Institute of Physics
    Subjects: Q Science > QC Physics
    Departments: Faculty of Science and Technology > Physics
    ID Code: 2284
    Deposited By: ep_importer
    Deposited On: 04 Apr 2008 09:26
    Refereed?: Yes
    Published?: Published
    Last Modified: 09 Apr 2014 20:26
    Identification Number:
    URI: http://eprints.lancs.ac.uk/id/eprint/2284

    Actions (login required)

    View Item