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Wavelet bispectral analysis for the study of interactions among oscillators whose basic
frequencies are significantly time variable
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Bispectral analysis, recently introduced as a technique for revealing time-phase relationships, is extended to
make use of wavelets rather than Fourier analysis. It is thus able to encompass instantaneous phase-time
dependence for the case of two or more coupled nonlinear oscillators. The method is demonstrated and
evaluated by use of test signals from a pair of coupled Poincaré oscillators. It promises to be useful in a wide
range of scientific contexts for studies of interacting oscillators whose basic frequencies are significantly time

variable.
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I. INTRODUCTION

Coupled oscillatory systems are found in a diversity of
different contexts in science and technology, including, e.g.,
engineering structures such as bridges [1,2], the flashing of
male fireflies [3], the mammalian cardiorespiratory system
[4,5], the physics of plasmas [6], laser arrays [7], and chaos
[8]. Their understanding requires a knowledge of the int-
eroscillator interactions, and a common problem lies in ex-
tracting this information from measurements of oscillator co-
ordinates, usually recorded in the form of time series. Where
bivariate data are available for a pair of interacting oscilla-
tors (i.e., where the coordinate of each of them can be mea-
sured separately), phase relationships can be obtained by use
of the methods recently developed for analysis of synchroni-
zation, or generalized synchronization, between chaotic
and/or noisy systems. Not only can the interactions be de-
tected [9], but their strength and direction can also be deter-
mined [10]. The next logical step in studying the interoscil-
lator interactions from measured data was to determine the
type of the couplings [11], as the methods developed for
synchronization analysis are not capable of answering this
question.

Systems are usually taken to be stationary. In reality, how-
ever, mutual interactions among their subsystems often result
in time variability of the characteristic frequencies. Fre-
quency and phase couplings sometimes occur only tran-
siently, and the strength of coupling between pairs of indi-
vidual oscillators may change with time. Under these
circumstances, conventional bispectral analysis for stationary
signals, based on time averages, is no longer sufficient.
Rather, the time evolution of the bispectral estimates is
needed. Priestley and Gabr [12] were probably the first to
introduce the time-dependent bispectrum for harmonic oscil-
lators. Most subsequent work has been related to the time-
frequency representation and is based on high-order cumu-
lants [13]. An extensive overview can be found in [14].

Schack et al. [15] have recently introduced a time-varying
spectral method for estimating the bispectrum and bicoher-
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ence: they obtain estimates by filtering in the frequency do-
main and then obtaining a complex time-frequency signal by
inverse Fourier transform. They assume, however, that the
interacting oscillators are harmonic. Millingen et al. [16] in-
troduced the wavelet bicoherence and were the first to dem-
onstrate the use of bispectra for studying interactions among
nonlinear oscillators. They used the method to detect peri-
odic and chaotic interactions between two coupled van der
Pol oscillators, but without concentrating on time-phase re-
lationships in particular.

In an earlier paper [11], we extended bispectral analysis to
encompass time dependence, and demonstrated the potential
of the enhanced technique to determine the types of coupling
among interacting nonlinear oscillators. Time-phase cou-
plings can be observed by calculating the bispectrum and
adapted bispectrum, thereby obtaining the time-dependent
biphase and biamplitude. This method has the advantage that
it allows an arbitrary number of interacting oscillatory pro-
cesses to be studied. It is applicable both to univariate (a
single signal from the coupled system), and to multivariate
data (a separate signal from each oscillator). It yields results
that are applicable quite generally to any system of coupled
nonlinear oscillators.

In the present paper, we introduce a new technique likely
to be useful for studying complex oscillatory systems whose
characteristic frequencies vary in time, e.g., the human car-
diovascular system [5]. It is able to reveal both the existence
of interactions among the subsystems, and also the nature of
the interactions. Cardiovascular signals are highly complex
from the nonlinear dynamics point of view. Their frequencies
and amplitudes, and the couplings among the subsystems,
are all time variable. To be able to cope with this type of
signal we have incorporated wavelets into the technique and
further extended it for studying the instantaneous phase cou-
plings.

In what follows, however, we are mainly concerned with
basic principles, and in demonstrating and testing the tech-
nique on a well-characterized simple model. Application to
the more challenging problems posed by, e.g., the cardiovas-
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cular system itself, currently in progress, will be described
elsewhere.

In Sec. I we introduce the technique and in Sec. III we
describe how it has been tested on a model coupled-oscillator
system. The relative advantages and disadvantages of the
Fourier and wavelet bispectral methods are discussed in Sec.
IV. Finally, in Sec. V we summarize the results obtained and
draw conclusions.

II. METHOD
A. Time-phase bispectral analysis

We start by summarizing briefly the salient features of
time-phase bispectral analysis as based on the Fourier trans-
form. For a detailed discussion, see [11].

The classical bispectrum estimate is obtained as an aver-

age of estimated third-order moments (cumulants) Mg(k,l)

[17],

B(k,]) = EM' (k,1), (1)

where the third-order moment estimate M. g(k, 1) is performed
by a triple product of discrete Fourier transforms (DFTs) at
discrete frequencies k, [, and k+1,

150k, ) = X)X (DX (K +1). (2)

Here i=1,...,K label the time segments into which the sig-
nal has been divided. The bispectrum B(k,l) is a complex
quantity, defined by magnitude A and phase ¢,

B(k,1) = |B(k,)]e!“B*D = Ael?. 3)

For each (k,l), the value of B(k,I) can be represented as a
point in the space, Re[B(k,[)] versus Im[B(k,[)], thus defin-
ing a vector whose magnitude (length) is known as the bi-
amplitude. The phase is determined by the angle between
this vector and the positive real axis and for the bispectrum is
called the biphase.

To encompass time dependence within bispectral analysis
in analogy with the short-time Fourier transform, we can
move a time window w(n) of length M across the signal x(n)
and calculate the discrete Fourier transform at each window
position,

M-1

1%[ S x(ipw(i - )2, )

i=0

X(n,k) =

where k is the discrete frequency and n the discrete time. The
instantaneous biphase calculated from Egs. (1) and (3) is
then

(k,1,n) = ¢y(n) + ¢(n) = i (n). (5)

Simultaneously, we observe the instantaneous biamplitude,
from which it is possible to infer the relative strength of the
interaction. It is thus possible to detect and quantify the pres-
ence of coupling among the oscillators and to follow its per-
sistence in time.
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B. Wavelet bispectrum

The Fourier transform is based on the presumptions of (a)
periodicity and (b) infinite length of the signal series [18,19].
Because neither assumption can be strictly true for any mea-
sured signal, the determination of separate frequencies in a
system that possesses strong couplings is very demanding.
The difficulty is greater in the low-frequency range, which is
of particular interest to us, because the characteristic fre-
quencies are close to each other and are therefore even
harder to separate. The uncertainty principle governing the
Fourier transform limits its ability to separate harmonic com-
ponents in the frequency domain of the bispectrum [20,21].
This might cause problems for detection of quadratic phase
couplings in the case of frequency pairs that are close to-
gether. To ensure good resolution of low frequencies, we
need longer sections for calculation of the discrete Fourier
transform. This immediately decreases the number of sec-
tions possible and weakens the bispectrum estimation. How-
ever, we cannot use longer signals, because they lead to non-
stationarity, and the variance consequently becomes even
larger [22]. One way of accommodating these conflicting
demands is through the introduction of wavelet analysis.

Wavelet analysis can be seen as a generalization of Fou-
rier analysis [21] by the addition of time resolution—in a
more fundamental way than is permitted by the short-time
Fourier transform (STFT) [23]. Wavelet analysis has been
applied with considerable success to cardiovascular data
[24]. A generalization of bispectral analysis, based on wave-
lets, may be expected to be able to detect temporal variations
in phase coupling, or short-lived couplings, and to cope with
broadened and coalescing peaks that cannot be resolved due
to the time-frequency resolution restrictions that govern the
STFT-based bispectrum.

Wavelet analysis was first introduced by Morlet [25]. Tt
enables the window length to be adjusted to the frequency
currently being analyzed. It is a scale-independent method. It
uses a window function known as the mother wavelet, or
basic wavelet ¢(u), which can be any function that satisfies
the wavelet admissibility condition [21]. This function intro-
duces a scale s (its width) into the analyses. Commitment to
any particular scale is avoided by using all possible scalings
of (u). The mother wavelet is also translated along the sig-
nal to achieve time localization. Thus, a family of generally
nonorthogonal basis functions is obtained,

W(s,1) = |s|‘P¢//( ) (6)

The parameter p is an arbitrary non-negative number, used
for normalization. Values of p of 0, 1/2, and 1 are encoun-
tered in the literature [26]. The prevailing choice of p=1/2
yields a factor |s|~'? and ensures energy conservation. In this
case, the L2 norm of the wavelet, and thus its energy, is
unaffected by the scaling operator s. The continuous wavelet
transform W,(s,#) of a signal g(7) is defined as:

W,(s,1) = j W*( )g(r)dr (7)

and is a mapping of the function g(r) onto the time scale
plane.
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In numerical applications, the scale s and time ¢ are re-
stricted to take discrete values. A natural discretization of the
scaling parameter is s,,=0”, where m € Z, and the step is a
positive number o # 0, 1. Within the scale ¢”, the signal is
sampled only at times t,=no™, which means that the sam-
pling rate is automatically adjusted to the scale [21].

For different values of m and n, we obtain the discrete
wavelet family

W) = 0" P(o™"u ~ n7), (8)

where we have set p=1/2. The discrete wavelet transform,
defined by this family, is simply a sampled version of
W,(s,). By choosing o near 1, we can obtain a representa-
tion close to the continuous transform.

1. Direct relationship between the scale and the frequency using
Morlet wavelets

Coupling between wavelets makes sense when a fre-
quency can be assigned to the wavelet. We restrict our atten-
tion to wavelets whose Fourier transforms exhibit a single
dominant peak, and we define the location of that peak as
being the corresponding frequency. In the literature [21], sev-
eral suitable wavelets are mentioned. Following earlier en-
ergy density studies of measured cardiovascular signals, the
Morlet mother wavelet was chosen [24].

Morlet proposed the use of a Gaussian function modu-
lated by a sine wave. Its Fourier transform is a shifted Gauss-
ian, adjusted slightly so that the admissibility condition

#(0)=0 is satisfied:

n 1 : :
Wf) = \@4,——( o= fo) 12 _ ATF2 _ e4n2f§/2)_ 9)
o

The corresponding time domain expression is

W) = 7 (e 2o _ e4ﬂ2f§/2) o2 (10)

The choice of f, represents a compromise between localiza-
tion in time and in frequency. For smaller f,, the shape of the
wavelet favors localization of singular time events whereas,
for larger f,,, more periods of the sine wave within the win-
dow improve the frequency localization. For f;>0.8, the
value of the second term in (10) is so small that it can be
ignored in practice, and a simplified expression for the Mor-
let wavelet in the time domain is

Wu) = W—l/4e—j27rf0ue—u2/2. (11)

The corresponding wavelet family consists of Gaussians cen-
tered on a time r and with standard deviation s. In the fre-
quency domain, we have Gaussians with a central frequency
f=fo/s and a standard deviation of 1/2\2s. Thus, applica-
tion of the wavelet transform at a given scale s can also be
interpreted as bandpass filtering, giving an estimation of the
contribution to the frequencies in this band. The relationship
between the scale and the central frequency for the Morlet
wavelet is then

F==2. (12)
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The frequency resolution changes with frequency. At low
frequencies (large scales), the resolution is better than at the
high frequencies (small scales). Accordingly, the time reso-
lution is better for high-frequency than it is for low-
frequency components. In order for peaks to be detected at f;
and f, (f;>f>), they must be separated by at least one-half
of the standard deviation of the peak at the higher frequency,
thus requiring f,—f>=f,/4mf,. The choice of f,, determines
the current frequency resolution. By choosing f,=1, we ob-
tain a simple relation between scale and frequency, f=1/s.
Slow events are examined with a long window, while a
shorter window is used for faster events. The Morlet wavelet
provides optimal time-frequency localization within the lim-
its imposed by the uncertainty principle.

2. Definition of the wavelet bispectrum

For the case of the wavelet bispectrum, the definitions are
analogous to those used in Fourier-based bispectral analysis
[16,17]. The wavelet bispectrum (WB) By, is given by

BW(Sl’S2)=J Wg(Sl,T)Wg(SZ,T)WZ(S,T)dT, (13)
T

where

1,11 ”
S; Sy S
The WB measures the amount of phase coupling in the in-
terval T that occurs between wavelet components of scale
lengths s, s,, and s of a signal g(¢), in such a way that the
frequency sum rule (14) is satisfied. It is a complex quantity,
defined by its magnitude A and phase ¢:

By(s1,52) = |Byy(s1,55) [/ <012 = Al (15)
The instantaneous biphase calculated from (13) and (15) is
¢(S1,S2,t) = ¢s1(t) + ¢s2(t) - (ﬁs(l‘). (16)

If two scale components s; and s, are scale and phase
coupled, ¢,= ¢51+ d)sz, it holds that the biphase is 0
(27) rad. For our purposes, the phase coupling is less strict
because scale-dependent components can be phase delayed.
We consider phase coupling to exist if the biphase is constant
(but not necessarily 0 rad) for at least several periods of the
highest scale component.

Simultaneously, we observe the instantaneous biampli-
tude, from which it is possible to infer the relative strength of
the interaction

A(Sl,52,t):|Bw(S1,S2,I)|. (17)

Analogously to the case of the Fourier cross bispectrum, one
can define a wavelet cross bispectrum as

Bchgg(Sl’52)=f Wi(sy, )W(s5, DW,(s, 7)d7.  (18)
T

For ease of interpretation, the WB is plotted in the (f;,f>)
plane, rather than in the (s;,s,) plane. It possesses the same
symmetries in the frequency domain as the Fourier-based
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FIG. 1. Variation of the lengths Ny, of Morlet-like wavelets with
frequency (scale): Morlet wavelet (solid line); adapted Morlet
wavelet (dotted line); and fixed wavelet length for high frequencies
(dash-dotted line)

bispectrum (FB) By [27]. The nonredundant region of the
WB is called its principal domain. The principal domain can
be further divided into two triangular regions in which the
WB has different properties [28]: the inner triangle (IT), and
the outer one. Our interest centers on the IT [22,29].

3. Wavelet bispectrum adapted to real signals

The relationship between the frequency (scale) and the
width of the window used for calculation of the wavelet
transform is hyperbolic. A log-log scale is therefore a natural
choice for its presentation. However, to be able to comply
with the frequency (scale) sum rule (14), we need to achieve
better frequency (scale) resolution for high frequencies (low
scales) as can be effected by use of the Morlet wavelet when
fo is chosen to be 1. Otherwise, nearby peaks at high fre-
quencies cannot be resolved. For this purpose we introduce
parameters d and a,, into the Morlet wavelet

u?ld

Y1) = @ cpe ™0 (19)

where the constant ¢,=3.94877 /4. The parameter d deter-
mines the exponential decay of the Gaussian. This attenuates
the Morlet wavelet, and thus permits the choice of a suitable
combination of time and frequency (scale) resolution. The
time resolution is Ar=sd, given by the decay of the exponen-
tial part of the wavelet. As d increases (d> 1), the frequency
(scale) resolution improves, whereas the time resolution de-
teriorates; d is set such that the Gaussian function decays to
0.001 for each scale. A high value of d would cause a non-
zero value of the Morlet window at its edges, resulting in
side lobes on the WB. If d were infinite, the Morlet window
would become a unit window, and the wavelet transform
would become the selective discrete Fourier transform
(SDFT) [31]. We wish to choose the frequencies in the analy-
sis procedure freely, i.e., not restricted to s €{2"}, which im-
plies a certain redundancy in the wavelet transform coeffi-
cients.

The frequency resolution at high frequencies is still insuf-
ficient: it is necessary to increase the length of the Morlet
wavelet for high frequencies. This can be achieved in differ-
ent ways. Figure 1 shows the hyperbolic decay of the Morlet
wavelet length with increasing frequency (solid line). The
wavelet length can be multiplied by a factor a,,, equal to that
for the lowest frequency of interest, and then increased with
increasing frequency,

PHYSICAL REVIEW E 76, 046221 (2007)

a,, = 21'8(f_fmin)/(fmax_fmin) s (20)

where f=1/s is the frequency of observation, and f,,;, and
Jfmax define the frequency range of interest. The constant, 1.8,
is set experimentally. In this way, we obtain the dotted line in
Fig. 1. As the wavelet length is prolonged for high frequen-
cies, the frequency resolution increases, whereas the time
resolution deteriorates. Another way to obtain the necessary
frequency resolution is to use a fixed wavelet length for all
high frequencies, as shown by the dash-dotted line in Fig. 1.

WB estimation using the Morlet mother wavelet encoun-
ters a normalization problem. For each scale, a window of
different length is used. In the case of a signal composed of
different frequency components, but equal Fourier powers,
this would result in different wavelet spectral energies for
different frequencies. Two couplings among different fre-
quencies with the same Fourier powers and the same nature
of coupling, would result in different coupling strengths in
the wavelet bispectrum. In (6), a factor |s|~/% is used to en-
sure energy preservation. We choose to use a factor 1/Ny
instead, where Ny, is the Morlet window length. In this way,
we can compare results obtained using FB and WB, since
both preserve energy.

Normalization of the WB is achieved in the same way as
for the FB [11]. The normalized WB indicates the average
level of quadratic nonlinear phase coupling and, in a way,
serves as an indicator of how non-Gaussian the signal is [32].
The critical values for the WB and biamplitude estimates
were normalized to 1. If the estimated value is higher than
the average value of WB in the IT, then it is taken as valid.
By critical value, we mean that a value exceeds the noisy
background (other than Gaussian), rounding, and estimation
errors.

4. Instantaneous frequency

The bispectrum is sensitive to time variations of the fre-
quency components, and it acquires a characteristic diagonal
elongation of peaks. Bifrequencies where peaks in the
bispectrum (wavelet) provide evidence of possible phase
and/or frequency interactions are further studied by calcula-
tion of the biphase and biamplitude as functions of time. In
doing so we do not follow time variations of the frequencies
in the bifrequency pair when estimating time-biphase or
-biamplitude dependence. They are estimated only for the
peak bifrequency, i.e., where the average amplitude in the
bispectrum takes its highest value. If the bifrequencies
change considerably during the time of observation, such an
approach can yield misleading results. It is of course possible
to calculate the biphase and biamplitude for all the bifre-
quencies near the peak bifrequency and to plot them simul-
taneously in a graph, thus obtaining the time variations of the
coupled frequency components and the evolution of the bi-
phase and biamplitude. The interpretation, however, is rather
difficult.

To be able to trace changes in the bifrequency (f,f>)
under study, we need to incorporate the instantaneous fre-
quencies [33] f,(r) and f,(¢) into the bispectral analysis. In
this way we can calculate the instantaneous biphase and in-
stantaneous biamplitude for the instantaneous bifrequency

046221-4



WAVELET BISPECTRAL ANALYSIS FOR THE STUDY OF...

(f1(2),f>(1)). Such an approach should lead to better results
for the time dependence of the biphase and biamplitude.
There are two main methods to determine the instantaneous
frequency of an oscillatory process, based on (i) marked
events, and (ii) an analytic signal.

The marked events method involves marking events that
indicate completion of one cycle of oscillation. The frequen-
cies determined from sequential pairs of marked events are
then linearly interpolated to obtain instantaneous values.
Minimal or maximal values of the signal are usually taken as
marked events. For instance, the R peak is strongly pro-
nounced in an electroencephalogram (ECG) signal. It is eas-
ily distinguishable and can be automatically detected. The
marked events approach can be applied easily in the case of
signals where one oscillatory component dominates. How-
ever, not all processes in the blood distribution system can be
measured selectively. Most of the quantities that can be mea-
sured, such as cardiovascular signals [24], contain multiple
oscillatory processes and maxima and minima are no longer
uniquely determined.

The second approach is based on the Hilbert transform
[34]. From the signal under observation, x(f), we construct
an analytic signal

1) = x(0) + ix"(1) = A1) e/ *, (21)

which is a complex function of time. The function x(7) is
the Hilbert transform of x(r): A(z) and ¢(r) are, respectively,
the instantaneous amplitude and phase. The instantaneous
frequency f(z) can be obtained by numerical differentiation
of ¢(¢). In general, this may result in very large fluctuations
in the estimate of f(¢) due to the influence of noise and/or the
complicated form of the signal. Although ¢(z) can be calcu-
lated formally for arbitrary x(z), it has a clear physical mean-
ing if x(¢) is a narrowband signal, in which case the instan-
taneous frequency corresponds to that of the maximum in the
instantaneous spectrum. Several methods are available for
estimation of f(¢) in the (usual) case where we are not inter-
ested in the behavior of a frequency on time scales smaller
than its characteristic oscillation period [35].

We suggest a combination of both methods to obtain the
instantaneous frequencies of oscillatory processes in the car-
diovascular system, depending on the shape of the signal
under scrutiny. The instantaneous frequency of cardiac oscil-
lations is best calculated from ECG and blood pressure sig-
nals using the marked events method. Marked events can
also be used to obtain the instantaneous frequency of the
respiratory oscillations directly from the respiration signal,
whereas the analytic signal procedure is best applied to cal-
culate the instantaneous respiratory frequency from blood
flow signals. In the latter case the signal must first be band-
pass filtered in the frequency domain, by assigning zero val-
ues to all amplitudes outside the respiratory frequency range
[30].

Note that the phase can also be obtained by direct use of
the coefficients of the complex continuous wavelet transform
[36], a method that has been shown to yield a precision com-
parable to that obtained by the marked events method and
the Hilbert transform. The combination of the wavelet trans-
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form and the bispectral analysis may further improve the
precision of phase detection, as the phases obtained are con-
tinuous and the trade-off between frequency and time local-
ization may further be optimized by taking account of the
second-order statistics of the bispectra. However, this is a
matter that needs additional investigation and will be re-
ported elsewhere in due course.

II1. ANALYSIS
A. Test signal

To illustrate the essence of the method, and to test it, we
use a generic model of two interacting systems whose basic
unit is the Poincaré oscillator

X =—x1q) — o1y + m(x) —xp)7 + (1),

V1==y1q1 + o1x; + 7y _y2)2,

Xp==X2(qr — WrY7,
V2 == Yogs + x5,

qi= a(\x} +y7 - ay). (22)

The activity of each subsystem is described by the two state
variables x; and y;, where i=1,2 denotes the subsystem, «;,
a; and w; are constants, and 7, is the coupling amplitude.
The parameters of the model are set to a;=1, a;=0.5, and
a,,a,=1. Here &(f) is zero-mean white Gaussian noise
(&(1))=0, (&(r), £0)y=D8(t), and D=0.08 is the noise inten-
sity.

The test signal is the variable x,4(¢) of the first oscillator,
recorded as a continuous time series as shown in Fig. 2(a).
Prior to analysis, the signal was first normalized between 0
and 1 and its mean value was subtracted. For the first 400 s,
there was quadratic coupling with 7,=0.2. After a further
400 s, the forcing was removed by setting 7,=0. During the
last 400 s, the coupling was increased again to 7,=0.2. In the
latter case the characteristic frequency of the second oscilla-
tor was both modulated and linearly increased from f,
=0.25 to 0.35 Hz, as shown in Fig. 3(a). The first 15 s of
each of the three coupling modes are shown in Fig. 2(a), with
the corresponding power spectra in Fig. 2(b).

A standard fourth-order Runge-Kutta method (RK4) was
used for the numerical integration. The initial values and step
size were set to x;=-0.1, y;=1.0, x,=-0.1, y,=1.0, h
=0.01. The signal x; was than resampled to 10 Hz.

B. Wavelet bispectrum

A quadratic nonlinear interaction between linear or
weakly nonlinear oscillatory systems generates higher-
harmonic components in addition to the characteristic fre-
quencies [22,37]. Figure 2(b) illustrates the changes in the
power spectra caused by the coupling. The peaks at f;
=1.1 Hz and f,=0.25 Hz refer to the first and second oscil-
lators, respectively. These frequencies are deliberately cho-
sen to approximate an integer ratio 1:4 to ensure frequency
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FIG. 2. Simulation results for a pair of quadratically coupled
Poincaré oscillators in the presence of additive Gaussian noise. (a)
The test signal x;4(¢) from the first oscillator, after normalization
and subtraction of its mean value. The first oscillator has a charac-
teristic frequency f;=1.1 Hz. That of the second oscillator is f,
=0.25 Hz. The oscillators are unidirectionally and quadratically
coupled with three different coupling strengths: in column (1) 7,
=0.2, (2) 0, and (3) 0.2. In column (3) the characteristic frequency
of the second oscillator is linearly increased from f,=0.25 to 0.35
while being at the same time modulated with 0.0013 sin(270.017).
Each coupling lasts for 400 s. The sampling frequency f;=10 Hz.
Only the first 15 s are shown in each case. (b) The corresponding
power spectra of xj4(2).

coupling. The test signal x;, clearly has richer harmonic
structure in the presence of nonlinear coupling. In addition to
the characteristic frequency of the first oscillator, it contains
components with frequencies 2f}, 2f5, fi+f>, and fi—f>. As
well as having a particular harmonic structure, the compo-
nents of the signal x;, also have related phases 2¢;, 2¢,,
d1+ ¢y, and ;- o,

For bispectral analysis the whole signal is analyzed as a
single entity, after the transients caused by the changes in
coupling strength have been removed. First the WB is esti-
mated, as shown in Figs. 4(a) and 4(b). Close inspection
shows that all the peaks expected to arise from bispectral
analysis of the nonlinear interaction between the two oscil-
lators f; and f, are indeed present. Quadratic coupling has
already been discussed in detail in [11] and is not a subject of
this paper.

Bifrequencies where peaks provide evidence of possible
frequency interactions are then further studied by calculation
of the biphase and biamplitude as functions of time. Diago-
nal elongation of peaks in the bispectrum demonstrates time
variation of the corresponding frequency components. The
characteristic frequency of the second oscillator f, varies

f1
X2 —(Hz
®

0372 400 800 1200b
» g (b)
0.25 — ‘ ]

0 400 Time (s) 800 1200

FIG. 3. Instantaneous frequencies of (a) the first oscillator f; and
(b) the second oscillator f,, used for generating the test signal x;,.
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FIG. 4. (a) The modulus of the wavelet bispectrum |By]| calcu-
lated for K=34 segments, 67% overlapping, with 7,,=8 s, G,
=0.001, using a fixed Morlet wavelet length of 7y=40 s for cal-
culation of the high frequencies. (b) A contour plot of the WB.
Above f,>0.9 Hz, the wavelet bispectrum is removed because the
triplet (1.1 Hz, 1.1 Hz, 1.1 Hz) produces a high peak that is not
physically significant. (c) The biphase ¢; and (d) the biamplitude
A, for the bifrequency (1 Hz, 0.25 Hz) peak 1, calculated using a
0.1 s time step. These calculations make no allowance for variations
in instantaneous frequencies.

within 0.25-0.35 Hz. Our primary interest lies in the bifre-
quency (f;,f>). The time evolution of its biphase and biam-
plitude are shown in Figs. 4(c) and 4(d). The results for
nonzero coupling are quite different from those where cou-
pling is absent (the second 400 s). The biphase is constant in
the presence of quadratic coupling (first 400 s) and the bi-
amplitude is above zero. Let us concentrate on the third 400
s, where one of the bifrequency components is varying. In
the bispectrum we concentrate on the peaks where possible
phase and/or frequency couplings are occurring. Here, we
estimate the time evolution of the biphase for the peak bifre-
quency, i.e., where the average biamplitude takes its highest
value. This is why, near 800 s where the characteristic fre-
quency of the second oscillator f, has not risen much above
0.25 Hz, we obtain constant biphase and high biamplitude as
shown in Figs. 4(c) and 4(d). As f, continues to grow lin-
early (but with modulation) to 0.35 Hz, the biamplitude
drops toward zero and the biphase exhibits phase slips,
falsely suggesting that there is no coupling.

C. Instantaneous frequency

Figures 5(a) and 5(b) show the biphase and biamplitude,
taking explicit account of the instantaneous bifrequency. In
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FIG. 5. Wavelet bispectral estimates based on the instantaneous
frequencies f(¢) and f,(z), which were obtained using the marked
events method. (a) The instantaneous biphase ¢; and (b) the instan-
taneous biamplitude A, for the bifrequency (1.1 Hz, 0.25 Hz) peak
1, calculated for K=34 segments, 67% overlapping, with 7,,=8 s,
G,=0.001, using a fixed Morlet wavelet length of Tp;=40 s for the
calculation of high frequencies and a 0.1 s time step.

doing so, the instantaneous frequencies f,(r) and f,(¢) [Figs.
3(a) and 3(b)] were both obtained using the marked events
method. The results for nonzero coupling are quite different
from those where coupling is absent (second 400 s). The
biphase is constant in the presence of quadratic coupling
(first 400 s) and the biamplitude takes a finite value. During
the final 400 s, when there is a large time-frequency variation
of the second oscillator’s frequency, the biamplitude is again
above zero and the biphase remains constant during the
whole time of observation—both features being clearly re-
solved despite the nonlinear coupling. Bispectral analysis
was also performed using instantaneous frequencies f; () and
f>(1), where both of them were obtained directly from Egq.
(22). The results were exactly the same.

IV. COMPARISON OF FOURIER- AND WAVELET-BASED
BISPECTRA

We now present some simulation results to illustrate the
main reason for sometimes preferring to use wavelet-based
rather than Fourier-based bispectra. We then discuss the main
strengths and weaknesses of the two methods.

We again use the same generic model, Eq. (22) with qua-
dratic coupling, now taking f;=1.1 Hz and f,=0.24 Hz.
The model parameters «;, a;, and D are the same as for the
test signal x;, [Fig. 2(a)]. In this way, we obtain the test
signal x,z(¢) shown in Fig. 6(a) from the first oscillator, re-
corded as a continuous time series. The two coupling
strengths of 7,=0 (no coupling) and 7,=0.2 (weak cou-
pling) are interchanging every 20 s. Only the first 15 s of
x,5(2) are shown for each coupling mode. The corresponding
power spectra are shown on Fig. 6(b).

Figures 7(a) and 7(b) show the FB in perspective and
contour plots, respectively, for the test signal x;z. We con-
centrate on the bifrequency of primary interest, f;(z),f>(¢). In
the first case a 100 s window was used for estimating DFTs.
Details of how to choose the window length are given in
[37]. The calculated instantaneous biamplitude and biphase
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FIG. 6. Simulation results for time-intermittent quadratic cou-
plings in the presence of additive Gaussian noise. (a) The test signal
x15(¢) from the first oscillator, with characteristic frequency f;
=1.1 Hz. The characteristic frequency of the second oscillator was
f>=0.24 Hz. The oscillators are unidirectionally and quadratically
coupled with two different coupling strengths: column (1) 7,=0;
and (2) 7,=0.2. The coupling in column (2) is present every 20 s
and lasts for 20 s. The signal is 1200 s long and sampled with
sampling frequency f,=10 Hz. Only the first 15 s are shown in
each case. (b) The corresponding power spectrum of x, (7).

are presented in Figs. 7(c) and 7(d). The biphase increases
monotonically and there are no episodes of constant biphase,
although the biamplitude remains high during the whole time
of observation.

In a second set of calculations, a 130 s window was used
for estimating DFTs. The corresponding biamplitude and bi-
phase are shown in Figs. 7(e) and 7(f). The biphase tends to
be constant (remains within a 7r/2 range) and the biampli-
tude is high (more than twice the average value of the FB
within the inner triangle).

It is evident that, for the detection of short episodes (<%
the DFT window length) of nonlinear coupling, the FT
method is not appropriate. It can lead to misleading interpre-
tation of the bispectral estimates, either of no coupling in the
first case or of quadratic coupling in the second case.

Figures 8(a) and 8(b) show the WB in perspective and
contour views, respectively, for the same signal x;z. The
wavelet-based method clearly gives the same information
about the peak’s relative amplitude and bifrequency as the
Fourier-based method, but the frequency resolution is evi-
dently lower than in the latter case. The calculated instanta-
neous biamplitude and biphase are presented in Figs. 8(c)
and 8(d) respectively. They clearly reveal the intervals dur-
ing which the coupling is present or absent. By increasing
the time resolution for calculation of the WB at high frequen-
cies, we obtain precisely the times at which the intermittent
quadratic coupling occurs, i.e., every 20 s, Fig. 8(e) and 8(f).

A. Overview of main advantages and weaknesses of Fourier
and wavelet bispectra

We now overview the relative strengths and weaknesses
of the Fourier-based and wavelet-based methods of calculat-
ing bispectra. There are several points to consider.

(1) Time and frequency resolution. To observe a given
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FIG. 7. Analyses of the test signal with time-intermittent qua-
dratic couplings, in the presence of additive Gaussian noise using
the Fourier-based bispectral method. (a) The Fourier-based bispec-
trum |Bg| for signal x, calculated with K=33 segments, 66% over-
lapping and using the Blackman window to reduce leakage and (b)
its contour view. The part of the bispectrum above f,>1.0 Hz has
been cut because the triplet (1.1 Hz, 1.1 Hz, 1.1 Hz) produces a
high peak that is physically meaningless. (c) The biphase ¢,. (d)
The biamplitude A, for the bifrequency (1.1 Hz, 0.24 Hz), calcu-
lated with a 100-s-long window for estimating DFTs. (e) The bi-
phase and (f) the biamplitude calculated with a 130 s window for
estimating DFTs. In both cases, a 0.3 s time step was used and the
Blackman window was applied.

frequency, the signal must be observed over at least one pe-
riod of this frequency, which inevitably limits time localiza-
tion. Due to the uncertainty principle [21], sharp localization
in time and frequency are of course mutually exclusive:

1
AtAf=—, (23)
41

where ¢ is the time interval and f is the frequency band. The
equality holds if and only if the window is Gaussian.
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FIG. 8. Analyses of a test signal for time-intermittent quadratic
couplings in the presence of additive Gaussian noise using the
wavelet bispectral method. (a) The wavelet bispectrum |By,| calcu-
lated with K=33 segments and 66% overlapping. The part of the
bispectrum above f,>1.0 Hz is removed, because the triplet (1.1
Hz, 1.1 Hz, 1.1 Hz) produces a high peak that is physically mean-
ingless. (c) The biphase ¢ and (d) biamplitude A, for bifrequency
(1.1 Hz, 0.24 Hz), calculated with G,=0.01. (e) The biphase ¢ and
(f) biamplitude A;, calculated with G,=0.0001. In both cases, the
time step was 0.1 s, 7,,=8 s, and a Tyr=20 s fixed Morlet wavelet
length was used for estimating high frequencies.

In general, the WB detects intermittent phase couplings
well, whereas the FB averages out most of the time-relevant
information. The triplet (f},f,,f3) results in a high peak in
the bispectrum if the coupling condition f3=f;+f5, is satis-
fied (within the frequency resolution). Because the frequency
resolution changes with frequency, this condition is less strict
for WB analysis. If there is a mismatch in the coupling fre-
quency f such that f3=f,+f,+Af, where Af is larger than the
frequency resolution of the FB but smaller than the WB fre-
quency resolution, then the WB will peak for the triplet
(f1.f2./3), whereas the FB will not. By increasing the fre-
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quency resolution of the WB (increasing the length of the
Morlet wavelet for high frequencies) we obtain approximate
results, as can also be obtained with the FB.

On the other hand, if there is a brief episode of coupling
between the oscillators, the FB-based method cannot detect it
from the signal due to the large time window used, whereas
the WB will detect it, down to a certain minimum duration.
Thus the WB allows intermittent couplings to be detected.
When applying the FB to real data, we have to ensure the
necessary frequency resolution to be able to distinguish sepa-
rate frequency components and at the same time achieve suf-
ficient time resolution to be able to detect the onset of cou-
plings among the cardiovascular oscillators. The scope for
choice of window length is limited by the uncertainty prin-
ciple [21], and compromise is inevitably needed between
time and frequency resolution.

In contrast to the FB, the WB based on Morlet’s mother
wavelet enables us to enjoy optimal time and frequency reso-
lution at the same time, which is an obvious advantage com-
pared to the FB.

Since the time resolution of the WB is higher at high
frequencies compared to the FB, and the frequency resolu-
tion poorer, it is necessary to ensure that there is sufficient
frequency resolution before attempting to interpret the results
obtained. Poor frequency resolution would obviously result
in poor or incorrect localization of the characteristic frequen-
cies. Excessively high time resolution could result in a too-
high sensitivity to noise and statistical error, in turn resulting
in phase slips and incorrect detection of the onset and dura-
tion of the interoscillator coupling. For our purposes, the
time and frequency resolution was set in such a manner that
coupling episodes of approximately ten periods of the lower
frequency are detectable (to overcome coincidence cou-
plings), and the characteristic frequencies can still be esti-
mated to better than 10% [37].

(2) Frequency step. Once the window length is chosen,
the frequency resolution is set and fixed for the FB. This is
not the case when using the wavelet transform. Since the
wavelet transform is continuous, the frequency step can be
arbitrarily chosen. In this way, the transform can be over-
sampled in time for large scales, and we are not concerned
about the inverse transform.

(3) Energy preservation. Cardiovascular signals, which
provided the main motivation for this study, are signals
whose power is of interest [23]. The FB is based on the DFT,
which gives the signal’s energy (power) directly. In the case
of the WB, normalization is necessary to obtain the signal’s
energy (power).

(4) Statistical error. Integration over finite time series in
order to calculate the WB results in an additional noise con-
tribution. It is called the statistical noise level since it is the
value of WB that would be computed for a white noise input
signal, and is caused by the finite statistics (i.e., use of a
limited number of values in the integrating or averaging pro-
cess). In addition, there is also an error equal to the product
of uncertainties in the determination of the individual wave-
let bispectrum coefficients [16,21,22].

To calculate the WB, Eq. (13), the wavelet coefficients are
determined for each of the Ny =Tf, samples in the interval
T: {Ty-T/2=7=Ty+T/2}, and averaged, Eq. (7). If we as-
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sume that all the estimates of the WB are indepen_dent, the
averaged WB will suffer a statistical error of 1/VNy, due to
summation over Ny, values. Similarly, in the FB case the
summation is carried out over N/M ensembles, where M is
the number of points in each statistically independent en-
semble for which an M-point DFT is calculated. The statis-
tical error in the FB decays as V“’M /N, and a factor of M more
points is needed to obtain the same statistical error as with
the WB. From this point of view, the WB represents a sig-
nificant improvement in the time resolution of the bispec-
trum. Although the wavelet coefficients are not all statisti-
cally independent, because the chosen wavelet family is not
orthogonal, the statistical error is not twice as large [16].
This implies that WB analysis is able to detect coherent sig-
nals in extremely noisy data, provided that the coherence
remains constant over sufficiently long intervals, because the
noise contribution falls off rapidly with increasing N.

(5) Bispectrum interpretation. By choosing f,=1 in Eq.
(9) a simple relation between scale and frequency can be
obtained, f=1/s. In this case the interpretation of the WB is
the same as for the FB; otherwise it is not straightforward.

(6) Computation. The default WB window length de-
creases hyperbolically with increased frequency, whereas the
FB uses a fixed window length. The WB is therefore com-
putationally less demanding and much faster (and the same
argument applies for the fast Fourier transform as compared
to the fast wavelet transform). Moreover, relatively short
data sequences are sufficient to perform a WB analysis, in
contrast to the FB, which needs long time series to obtain
both sufficient frequency resolution and adequate statistics.

B. Other possible methods for bispectrum estimation

The selective discrete Fourier transform (SDFT), a hybrid
of the Fourier and wavelet transforms, can also be used for
calculation of the bispectrum. The modified STFT was first
introduced by Keselbrener and Akselrod [31]. Like the STFT
it is a time-dependent Fourier transform. The required time-
frequency sensitivity is obtained by applying a different win-
dow of appropriate length for estimation of each spectral
component. Low frequencies are expected to vary slowly,
whereas high frequencies are expected to vary rapidly, i.e.,
undergo sudden changes. For each frequency of interest, a
DFT calculation is performed, while the time window around
the considered data point is made of length inversely propor-
tional to the frequency of interest. This is actually similar to
the wavelet transform’s stretching and compressing of the
mother wavelet. Therefore narrow windows are used for es-
timating high frequencies and wide ones for low frequencies,
implying that low frequencies are estimated with good fre-
quency resolution and high frequencies with good time reso-
lution.

For each time scale of interest, spectral components are
calculated using different lengths of window, T=N,/f. The
parameter N, N,EZ, is the number of entire periods within
the window. A high value of N, will lead to poor time reso-
lution (wide window), whereas a small value will lead to a
less reliable estimate of the spectral components in the case
of noisy signals. The value needed to produce optimal results

046221-9



JAMSEK, STEFANOVSKA, AND MCCLINTOCK

is determined experimentally and usually lies in the range
4-8.

Leakage may appear in the spectrum if the signal entering
the rectangular window is not periodic or, at least, if the
amplitudes of the end points are unequal. In order to remove
such leakage, the data are usually convolved with some kind
of smoothing window, such as a Hamming, Hanning, or
Blackman window. Their role is to taper the windowed data
in order to make the two end point amplitudes smoothly
equal. Besides the leakage removal, these tapering windows
also improve the time resolution of the time-dependent spec-
tral analysis.

The SDFT and WT provide similar results. Both trans-
forms use a specific window length to estimate each spectral
component. The SDFT uses convolution with a Blackman,
Hanning, Hamming, or other taper window whereas the WT
uses different mother wavelets such as the Morlet. Both
methods allow choice between good time or good frequency
resolution. We can change frequency and time resolution by
changing parameters, but we cannot increase them both si-
multaneously because of the uncertainty principle. The WT
obtained with the Morlet wavelet provides optimal time-
frequency resolution; while when using the SDFT this opti-
mum can also be approached by an appropriate choice of
parameters. They can both be normalized to energy. The
main difference between the transforms is that the WT is
continuous whereas the SDFT is not. Note that the frequency
(scale) sum rule (14) is much easier to comply with if a
continuous transform is used.

V. SUMMARY AND CONCLUSIONS

We have introduced wavelet-based bispectral analysis us-
ing the Morlet mother wavelet, allowing for a clear scale-to-
frequency relationship. Since the time resolution of the
wavelet bispectrum is higher and the frequency resolution
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poorer at high frequencies compared to the Fourier-based
bispectrum, it is necessary to ensure sufficient frequency
resolution to preserve the scale (frequency) sum condition by
increasing the length of the Morlet wavelet for high frequen-
cies. When the characteristic frequencies vary in time over a
significant frequency interval the bifrequency (f},f>) also
has to be time sensitive, and we therefore introduced the
instantaneous bifrequency (f,(7),f>(¢)) into the wavelet
bispectral analysis.

The advantages of wavelet- over Fourier-based bispectral
analysis are significant. Using the wavelet bispectrum, inter-
mittent phase couplings can be detected, whereas the Fourier
bispectrum averages out most of the time-relevant informa-
tion. The WB allows an arbitrary frequency step to be cho-
sen, thus ensuring optimal time and frequency resolution.
There is a simple relationship between scale and frequency;
it has a smaller statistical error and is computationally less
demanding than for the FB. The only drawbacks are that it
has to be normalized to obtain signal energy and is nonor-
thogonal. However normalization can be performed since we
are not concerned with the inverse wavelet transform.

In general, the proposed wavelet bispectral analysis pro-
vides a promising tool for studying the type of coupling be-
tween two or more nonlinear oscillators whose basic fre-
quencies change considerably in time. We conclude that
wavelet-based bispectral analysis has potential for useful ap-
plication to complex interacting systems that yield multivari-
ate time series. The method enables several aspects of the
interaction to be characterized simultaneously.
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