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The chaotic low energy region of the Fermi-Ulam simplified accelerator model is characterized by
the use of scaling analysis. It is shown that the average velocity and the roughness (variance of the
average velocity) obey scaling functions with the same characteristic exponents. The formalism is
widely applicable, including to billiards and to other chaotic systems.
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chaotic orbits in the problem of time-dependent potential
wells [15–18] as well as to billiard problems [19,20]. This

the chaotic sea. We investigate the evolution of the veloc-
ity averaged in M initial phases, namely,
Enrico Fermi [1] attempted to describe cosmic ray
acceleration through a mechanism in which a charged
particle can be accelerated by collision with a time-
dependent magnetic field. His original model was later
modified and studied in different versions, based on
different approaches, one of which is the well-known
problem of a bouncing ball or Fermi-Ulam model
(FUM) [2,3]. The main results for this version of the
problem, considering periodic oscillation, can be sum-
marized as follows: (i) It is described via the formalism
of an area-preserving map; (ii) it presents a set of invari-
ant spanning curves in the phase space for high energy;
(iii) a set of Kolmogorov-Arnol’d-Moser islands sur-
rounded by a chaotic sea can be observed in the low
energy regime; and (iv) small chaotic regions limited
by two different invariant spanning curves can be ob-
served at intermediate energies. A related version of this
problem in a gravitational field, sometimes referred to as
a bouncer [4], presents a property, in contradistinction to
the bouncing ball problem, that, depending on both initial
conditions and control parameters, the particle has un-
limited energy gain, i.e., the basic condition needed for
Fermi acceleration. The difference between these appar-
ently very similar models was latter clarified by
Lichtenberg et al. [5]. The quantum problems correspond-
ing to both the FUM and bouncer models have also been
investigated [6–8]. The special interest in studying these
one-dimensional classical systems arises because they
allow direct comparison of theoretical predictions with
experimental results [9,10]. Even more, the formalism
used in the characterization of such models can immedi-
ately be extended to the so-called billiards class of prob-
lems [11–13].

In this Letter, we characterize the average velocity, and
its variance which we will refer to as roughness, within
the chaotic sea of the phase space using scaling functions.
One of our tools, the roughness, is an extension of the
formalism used to characterize rough surfaces [14]
which, as we will show, is immediately applicable to
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scaling scenario represents the first characterization of
the integrability-chaos transition in this problem and
should be applicable to several billiard problems. The
formalism may therefore prove useful in characterizing
classes of universality.

Let us describe the system and how to characterize its
dynamical evolution. It consists of a classical particle
bouncing between two rigid walls, one of which is fixed;
the other moves periodically in time with a normalized
amplitude �. We will describe the system using a map
T�Vn;�n� � �Vn�1; �n�1� which gives the new velocity
of the particle and the corresponding phase of the moving
wall immediately after the particle suffers a collision
with it. We will use a simplification [21] in our description
of this problem: We will suppose that both walls are fixed
but that, when the particle suffers a collision with one of
the walls, it exchanges momentum as if the wall were
moving. This simplification carries the huge advantage of
allowing us substantially to speed up our numerical
simulations compared with the full model. It is usefully
applicable because the main dynamical properties of the
system are preserved under such conditions. Incorporat-
ing this simplification in the model and using dimension-
less variables, the map is written as [2]

T :

�
Vn�1 � jVn � 2� sin��n�1�j

�n�1 � �n �
2
Vn
mod 2�: (1)

The term 2=Vn specifies the length of time during which
the particle travels between collisions, while
�2� sin��n�1� gives the corresponding fraction of veloc-
ity gained or lost in the collision. The modulus function is
introduced to avoid the particle leaving the region be-
tween the walls. We stress that the approximation of using
the simplified FUM is valid in the limit of small �. So, the
transition from integrability (� � 0) to chaos (� � 0),
characterizing the birth of the chaotic sea, can be well
described.

We will concentrate on the scaling behavior present in
2004 The American Physical Society 014101-1



P H Y S I C A L R E V I E W L E T T E R S week ending
2 JULY 2004VOLUME 93, NUMBER 1
V�n; �; V0� �
1

M

XM
j�1

Vn;j; (2)

where V0 is the initial velocity and j refers to a sample of
the ensemble. In order to define the roughness [14], we
first consider the average of velocity over the orbit gen-
erated from one initial phase,

V�n; �; V0� �
1

n

Xn
i�0

Vi: (3)

We then evaluate the interface width around this averaged
velocity. Finally, the roughness is defined by considering
an ensemble of M different initial phases:

!�n; �; V0� �
1

M

XM
j�1

��������������������������������������������������������
V2

j�n; �; V0� � V2
j �n; �; V0�

q
:

Figure 1 shows the behavior of the roughness for two
different control parameters. We can see in Fig. 1(a) that
the roughness grows for small iteration number n and then
saturates at large n. The change from growth to saturation
is characterized by a crossover iteration number nx. We
can also see that different values of the control parameter
� generate different behaviors for short n. This indicates
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FIG. 1 (color online). (a) Behavior of the roughness ! as a
function of the iteration number n. (b) Behavior of ! as a
function of n�2. Both curves were derived from an ensemble
average of 50 000 different initial conditions starting with
V0 � 0.
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that n is not a scale variable. However, it turns out that the
transformation n ! n�2 coalesces the curves for small n
as illustrated in Fig. 1(b). We therefore infer (i) that for
n 	 nx the roughness grows according to

!�n�2; �; V0� / �n�2��; (4)

where exponent � is called the growth exponent; (ii) that,
as the iteration number increases, for n � nx, the rough-
ness reaches a saturation regime that is describable as

!sat��� / ��; (5)

where � is the roughening exponent; and (iii) that the
crossover iteration number nx marking the approach to
saturation is

nx��; V0� / �z; (6)

where z is called the dynamical exponent. With these
initial suppositions, we can now describe the roughness
formally in terms of a scaling function,

!�n�2; �; V0� � l!�lan�2; lb�; lcV0�; (7)

where l is the scaling factor and a, b, and c are referred to
as scaling dimensions. It is important to stress that these
scaling dimensions a, b, and c must be related to the
characteristic exponents �, �, and z. All of the above
discussion is also valid for the average velocity V. To
relate the exponent � to the scaling dimensions, we chose
l � �n�2���1=a�. This allows us to rewrite (7) as

!�n�2; �; V0� � �n�2���1=a�!1��n�
2���b=a��; �n�2���c=a�V0�:

(8)

The function !1 � !�1; �n�2���b=a��; �n�2���c=a�V0� is
supposed constant for n 	 nx. Comparing Eqs. (8) and
(4), we can, however, conclude that � 1

a � �. Choosing
l � ���1=b�, we have that

!�n�2; �; V0� � ���1=b�!2��n�2����a=b�; ���c=b�V0
; (9)

where !2 � !��n�2����a=b�; 1; ���c=b�V0
 is assumed con-
stant for n � nx. Comparison of Eqs. (9) and (5) shows
that � 1

b � �. It is less straightforward to obtain the
exponent c. To do so, we use a result from a recent paper
where two of us [22] utilized a connection with the well-
known standard model (SM) [2] to describe the position
of the first invariant spanning curve (FISC) above the
chaotic sea in the FUM. It was shown that the control
parameter � could be related to a typical mean velocity on
the FISC in the FUM to give an effective control parame-
ter Keff � 4�=V�2 � 0:97 . . . which is gratifyingly close
to the value of the control parameter Kc � 0:9716 . . . at
which the SM exhibits a transition from local to globally
stochastic behavior [23]. We can thus rewrite the effective
control parameter Keff in terms of scaled variables as

Keff �
4�lb��

�lcV0�
2 �

4�

V2
0

lb

l2c
; (10)
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which implies that b� 2c � 0. Using our result for the
exponent b, we find c � � 1

2� . Note that all scaling
dimensions are therefore determined if we can obtain
the exponents � and � numerically. The exponent � is
obtained in the asymptotic limit of large iteration number
and it is independent of V0. Figure 2(a) illustrates an
attempt to characterize this exponent using the extrapo-
lated saturation roughness. Extrapolation is required be-
cause, even after 103nx iterations, the roughness has still
not quite reached saturation. From a power law fit, we
obtain � � 0:512�3� � 1=2. We can thus rewrite Eq. (7)
as

!�n�2; �; V0� � �n�2��g��n�2��2��; �n�2���V0
: (11)

In order to obtain �, we observe that we have two ‘‘time’’
scales in Eq. (11), namely, n0x and n00x , and that the second
one (n00x ) is basically zero if we chose V0 � 0. Then we
determine � from the short time behavior (n 	 n0x).
After averaging over different values of the control pa-
rameter � in the range � 2 �10�4; 10�1
, we then obtain
� � 0:496�6� � 1=2. Therefore, the scaling dimensions
describing the scaling of the chaotic sea in the limit of
small � are a � b � �2 and c � �1. From Eqs. (6) and
(8), we find that the scaling relation for the exponent z is
z � �=�� 2. Considering the previous values of both �
and �, we obtain z � �1. The exponent z can also be
obtained numerically. Figure 2(b) shows the behavior of
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FIG. 2 (color online). (a) Plot of !sat against the control
parameter �. (b) The crossover iteration number nx as a
function of �.
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the crossover iteration number nx as function of the con-
trol parameter �. The power law fit gives us z � �1:01�2�,
in good accord with the scaling result. The scaling for
V0 � 0 is demonstrated in Fig. 3, where the three differ-
ent curves for the roughness in (a) are very well collapsed
onto the universal curve seen in (b) when we normalize
the quantities with a � b � �2.

The case with initial velocity V0 � 0 is better illus-
trated by the average velocity (see Fig. 4). Now, we must
consider two time scales, namely, n0x / 1=� and n00x /
V2
0=�

2. From Eq. (10) (see also Ref. [22]), the maximum
initial velocity inside the chaotic sea is V0;max � 2�1=2

implying that the second time scale has a maximum value
of (n00x � 4n0x). So we observe that two different kinds of
behavior may occur, for n00x < n0x or n00x � n0x. When V0 �
10�6, we have n00x � 0, and we can see in Fig. 4(a) that the
curves for � � 10�4 and � � 10�3 show only two re-
gimes: (i) a growth in power law for n 	 n0x and (ii) the
saturation regime for n � n0x. Considering V0 � 10�3

and � � 10�4, we have n00x < n0x, and we can see three
regimes for such a curve in Fig. 4(a). For n 	 n00x , the
average velocity is basically constant. When n00x < n < n0x,
the curve grows and begins to follow the curve of V0 �
10�6 and the same �. In this window of n, we have a
growth with a smaller effective exponent �. Finally, for
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FIG. 3 (color online). (a) Roughness evolution for different
values of the control parameter �. (b) Collapse of the curves
from (a) onto a universal curve. Both (a) and (b) were obtained
using V0 � 0.
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FIG. 4 (color online). Behavior of the average velocity V as a
function of n for different values of � and V0. (a) The original
time series. (b) Collapse of the data onto a universal curve.
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n � n0x, we have the saturation regime. It is shown in
Fig. 4(b) that the collapse of the curves holds even for
V0 � 0, implying that the inferred scaling form
V�n�2; �; V0� with exponents a � b � �2 and c � �1
is also correct.

In summary, we have characterized the average veloc-
ity and its variance (roughness) in the chaotic sea in the
simplified FUM by use of a scaling function. We show
that the critical exponents �, �, and z are connected by a
scaling relation. We emphasize that this behavior is valid
for small values of � and it is immediately extendable to
other average quantities. We have characterized, for the
first time, the scaling appearing in the integrability !
chaos transition (from � � 0 to � � 0) of the FUM. The
scaling scenario should also hold for billiard systems, so
that this kind of formalism should be useful for character-
izing asymptotic properties in such problems. It should be
possible to extend it to encompass time-dependent
Hamiltonian systems and a huge class of other problems
exhibiting chaotic behavior.
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