Lancaster EPrints

Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants.

Tardieu, F. and Davies, W. J. (1993) Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant, Cell and Environment, 16 (4). pp. 341-349. ISSN 0140-7791

Full text not available from this repository.

Abstract

We describe here an integration of hydraulic and chemical signals which control stomatal conductance of plants in drying soil, and suggest that such a system is more likely than control based on chemical signals or water relations alone. The determination of xylem [ABA] and the stomatal response to xylem [ABA] are likely to involve the water flux through the plant. (1) If, as seems likely, the production of a chemical message depends on the root water status (Ψr), it will not depend solely on the soil water potential (Ψs) but also on the flux of water through the soil-plant-atmosphere continuum, to which are linked the difference between Ψr and Ψs. (2) The water flux will also dilute the concentration of the message in the xylem sap. (3) The stomatal sensitivity to the message is increased as leaf water potential falls. Stomatal conductance, which controls the water flux, therefore would be controlled by a water-flux-dependent message, with a water-flux-dependent sensitivity. In such a system, we have to consider a common regulation for stomatal conductance, leaf and root water potentials, water flux and concentration of ABA in the xylem. In order to test this possibility, we have combined equations which describe the generation and effects of chemical signals and classical equations of water flux. When the simulation was run for a variety of conditions, the solution suggested that such common regulation can operate. Simulations suggest that, as well as providing control of stomatal conductance, integration of chemical and hydraulic signalling may also provide a control of leaf water potential and of xylem [ABA], features which are apparent from our experimental data. We conclude that the root message would provide the plant with a means to sense the conditions of water extraction (soil water status and resisance to water flux) on a daily timescale, while the short-term plant response to this message would depend on the evaporative demand.

Item Type: Article
Journal or Publication Title: Plant, Cell and Environment
Uncontrolled Keywords: ABA • root-to-shoot communication • leaf water potential • root water potential • stomatal conductance • modelling
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Departments: Faculty of Science and Technology > Lancaster Environment Centre
VC's Office
ID Code: 22697
Deposited By: ep_ss_importer
Deposited On: 15 Jan 2009 15:19
Refereed?: No
Published?: Published
Last Modified: 17 Sep 2013 08:18
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/22697

Actions (login required)

View Item