Lancaster EPrints

Drought and air pollution affect nitrogen cycling and free radical scavenging in Pinus halepensis (Mill.).

Wellburn, Florence A. M. and Lau, Ka-Keung and Milling, Penny M. K. and Wellburn, A. R. (1996) Drought and air pollution affect nitrogen cycling and free radical scavenging in Pinus halepensis (Mill.). Journal of Experimental Botany, 47 (9). pp. 1361-1367. ISSN 1460-2431

Full text not available from this repository.

Abstract

Fumigation of Aleppo pines with episodes of O3 (up to 110 nl l–) causes immediate depressions of in vivo nitrate reductase (NaR) activities, slightly delayed reductions in the rates of ethene emissions (typical of O3 plants), steady accumulations of total polyamines (although putrescine declines), and increases in pool sizes of reduced glutathione (GSH) and ascorbate in current year needles. Severe droughting produces smaller plants with reduced stomatal conductance and CO2 assimilation rates as well as lower protein contents. Their roots have low rates of nitrate uptake but virtually no root NaR activities, while levels of shoot activities and NaR-associated proteins are unaffected although they have no substrate. Less severe droughting allows a restricted uptake of nitrate which is still reflected in reduced NaR activities, protein and total N contents, but the additional presence of O3 (up to 120 nl l–1) has no interactive effect on N cycling. Drought and O3 together, however, depress CO2 assimilation still further, which can not be accounted for by additional stomatal closure, but the interactive effects of drought and air pollution reduce levels of total phenols, GSH and ascorbate which, combined with a 12-fold reduction in glutathione reductase-(GR)-associated proteins, point to an increased susceptibility of Aleppo pines to photoinhibition as a reason for their current decline in Mediterranean areas.

Item Type: Article
Journal or Publication Title: Journal of Experimental Botany
Uncontrolled Keywords: Aleppo pine ; ascorbate ; ELISA ; ethene ; glutathione reductase ; nitrate reductase
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 22195
Deposited By: ep_ss_importer
Deposited On: 12 Feb 2009 15:20
Refereed?: No
Published?: Published
Last Modified: 26 Jul 2012 15:57
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/22195

Actions (login required)

View Item