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Proportional-integral-plus (PIP) control of time
delay systems

C J Taylor, A Chotai and P C Young
Centre for Research on Environmental Systems and Statistics (CRES), Lancaster University

Abstract: The paper shows that the digital proportional-integral-plus (PIP) controller formulated
within the context of non-minimum state space (NMSS) control system design methodology is directly
equivalent, under certain non-restrictive pole assignment conditions, to the equivalent digital Smith
predictor (SP) control system for time delay systems. This allows SP controllers to be considered
within the context of NMSS state variable feedback control, so that optimal design methods can be
exploited to enhance the performance of the SP controller. Alternatively, since the PIP design strategy
provides a more flexible approach, which subsumes the SP controller as one option, it provides a
superior basis for general control system design. The paper also discusses the robustness and disturb-
ance response characteristics of the two PIP control structures that emerge from the analysis and
demonstrates the efficacy of the design methods through simulation examples and the design of a
climate control system for a large horticultural glasshouse system.

Keywords: Smith predictor, proportional-integral-plus (PIP), time delay systems, pole assignment,
robustness

NOTATION n order of model denominator poly-
nomial

pPIP , pSP PIP and SP–PIP open-loop charac-A(z−1) denominator polynomial of system
teristic polynomial coefficientstransfer function

P estimated parameter covarianceB(z−1) numerator polynomial of system
matrixtransfer function

u(k) control inputÂ(z−1), B̂(z−1) estimated polynomials
v(k) load disturbancedPIP , dSP vectors of PIP and SP–PIP desired
w state space command input vectorclosed-loop coefficients
x(k) state vectorD(z−1) desired closed-loop characteristic
y(k) measured outputpolynomial
yd(k) command (desired) inputF state transition matrix
z(k) integral of error stateF(z−1) PIP control feedback polynomial
z−i backward shift operator, z−iy(k)=FS(z−1) SP–PIP control feedback polynomial

y(k− i )g state space input vector
G(z−1) PIP control feedforward polynomial

V difference operator =1−z−1GS(z−1) SP–PIP control feedforward poly-
SPIP , SSP PIP and SP–PIP pole assignmentnomial

matricesk control gain vector
t time delaykPIP , kSP PIP and SP–PIP control gain vectors

kI PIP integral gain
1 INTRODUCTIONkS SP–PIP integral gain

h state space observation vector
Pure time delay or ‘dead-time’ is a common feature ofm order of model numerator poly-
many physical systems and is a major concern in controlnomial
system design. When the time delay is short in compari-
son with the dominant time constants of the system itThe MS was received on 14 March 1997 and was accepted for publication

on 29 August 1997. can be handled fairly easily. For instance, in the case of
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discrete-time, sampled data control systems, where the its practical embodiment in the non-minimum state
space (NMSS) approach to control system design [e.g.time delay can be approximated by an integral number

of sampling intervals, transfer function or state space see references (2) to (4)]. Although the approach can be
applied directly to multivariable systems described bydesign methods are able to easily absorb the time delay

into the system model. In the situation where the time backward shift (3), continuous-time or delta (5) oper-
ator models, for the purposes of the present paper thedelay is much larger than the dominant time constants

of the system, however, it represents an important chal- discussion is restricted to the standard, backward shift
operator, transfer function representation of an nthlenge since the enlarged model will result in a very high

order control system design. order, linear, single-input, single-output system, i.e.
Over many years, the Smith predictor (SP) has proven

to be one of the most popular approaches to the design y(k)=
(b

t
z−1+ ·· ·+b

t+m−1z−m)z−t+1
1+a1z−1+ ·· ·+a

n
z−n u(k)

of controllers for time delay systems. Although initially
formulated for continuous time systems (1), the SP can

=
B(z−1)z−t+1

A(z−1)
u(k)

(1)

be implemented in any digital control scheme, such as
conventional digital PI/PID (proportional-integral/

where t>0 is the pure time (transport) delay in sam-proportional-integral-derivative) controllers or the more
pling intervals of Dt time units. It is easy to show thatsophisticated proportional-integral-plus (PIP) control-
the model (1) can be represented by the following NMSSlers proposed in recent years [e.g. see references (2) to
equations:(4)]. The present paper goes further, however, and

demonstrates how, under certain non-restrictive pole
assignment conditions, the PIP controller is exactly

x(k)=Fx(k)+gu(k−1)+wyd(k)

y(k)=hx(k)
(2)

equivalent to the digital SP controller but has much
greater inherent flexibility and robustness in design where the n+m+t−1 dimensional NMSS state vector
terms. In particular, the inherent state space formulation x(k) is defined as follows:
of the PIP controller allows for the application of all
methods of state space control optimal design. In x(k)= [y(k) y(k−1) ·· · y(k−n+1) u(k−1)
addition, optimal selection of the weighting matrices in

u(k−2) · ·· u(k−m−t+2) z(k)]T
(3)

the optimal criterion function can allow for the achieve-
ment of multiple objectives (5). in which z(k) is the integral of error between the refer-

ence or command input yd(k) and the sampled output
y(k), i.e.

2 PROPORTIONAL-INTEGRAL-PLUS (PIP)
z(k)=z(k−1)+ [yd(k)−y(k)] (4)CONTROL

When t>1, the state matrices are defined as follows [for
A number of previous papers have been concerned with brevity, the case when t=1 is not shown, but is straight-
the true digital control (TDC) design philosophy and forward to obtain; see reference (2)]:

F=

t
N
N
N
N
N
N
N
N
N
N
N
N
v

−a1 −a2 · ·· −a
n−1 −a

n
0 0 · ·· 0 b

t
b
t+1 · ·· b

t+m−2 b
t+m−1 0

1 0 ·· · 0 0 0 0 ·· · 0 0 0 ·· · 0 0 0

0 1 ·· · 0 0 0 0 ·· · 0 0 0 ·· · 0 0 0

e e P e e e e P e e e P e e e
0 0 ·· · 1 0 0 0 ·· · 0 0 0 ·· · 0 0 0

0 0 ·· · 0 0 0 0 ·· · 0 0 0 ·· · 0 0 0

0 0 ·· · 0 0 1 0 ·· · 0 0 0 ·· · 0 0 0

0 0 ·· · 0 0 0 1 ·· · 0 0 0 ·· · 0 0 0

e e P e e e e e e e e e e
0 0 ·· · 0 0 0 0 ·· · 0 0 0 ·· · 1 0 0

a1 a2 · ·· a
n−1 a

n
0 0 · ·· 0 −b

t
−b

t+1 · ·· −b
t+m−2 −b

t+m−1 1

u
N
N
N
N
N
N
N
N
N
N
N
N
w

BCCCCCCCCCCCA BCCCDA BCCCCCCCCCCCCCCCCA
n t−2 m

g= [0 0 · ·· 0 1 0 0 ·· · 0 0 0]T

d= [0 0 · ·· 0 0 0 0 ·· · 0 0 1]T

h= [1 0 · ·· 0 0 0 0 ·· · 0 0 0]

(5)
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The proportional-integral-plus (PIP) controller is simply
the state variable feedback (SVF) control law associated
with this NMSS model, i.e.

u(k)=−kTx(k) (6)

where k is the (n+m+t−1)-dimensional SVF control
gain vector, i.e.

k= [f0 f1 · ·· f
n−1 g1 g2 ·· · g

m+t−2 −kI ]T
(7)

Fig. 1 PIP control with feedback structure
Since all the state variables in x(k) are readily stored in
the digital computer, the PIP controller (6) is easy to
implement in practice. Moreover, the inherent SVF for-

It is straightforward to eliminate the inner loop ofmulation allows for the exploitation of any SVF design
Fig. 1 to form a single forward path (or pre-compen-procedure: e.g. optimization in terms of linear quadratic
sation) transfer function form of the controller (6). One(LQ), linear quadratic Gaussian (LQG), H

2
, or other

way of representing the forward path controller is illus-cost functions such as the linear exponential of quadratic
trated in Fig. 2a: this shows how the model (with theGaussian (LEQG). However, the present paper concen-
circumflexes denoting the estimated parameter poly-trates initially on the case of pole assignment, where the
nomials and estimated time delay) acts as a source ofalgebraic results are most transparent. In this context,
information on the state variables, while the measuredthe desired closed-loop characteristic polynomial is
output is also fed back to ensure that, at steady state,defined as follows:
the desired command level is maintained despite any dis-

D(z−1)=1+d1z−1+ ·· ·+d
n+m+t−1z−(n+m+t−1) turbance inputs. The forward path controller may also

(8) be arranged into an equivalent internal model structure
[e.g. see reference (7)], with a feedback of the model

where, as usual in pole assignment design, the coefficients mismatch, as illustrated in Fig. 2b.
d1 , d2 , .. ., d

n+m+t−1 are selected to ensure that the
closed-loop poles are at positions in the complex z plane,
which provide satisfactory closed-loop performance.

3.1 Closed-loop behaviour

Naturally, the closed-loop forms of Fig. 2 are only ident-3 THE IMPORTANCE OF STRUCTURE IN PIP
ical to those given by equation (10) for the case of zeroCONTROL DESIGN
model mismatch. The choice of structure, therefore, has
important consequences, both for the robustness of theThe PIP controller is so called because, in the more
final design to parametric uncertainty and for the dis-conventional block diagram terms shown in Fig. 1, it
turbance rejection characteristics. In particular, thecan be considered as one particular extension of the PI
results discussed later, together with practical experiencecontroller, in which the PI action is enhanced by higher-
of these systems, has suggested that the feedback formorder forward path and feedback compensators
illustrated in Fig. 1 is generally more robust to uncer-1/G(z−1) and F1(z−1) respectively, where
tainty in the estimated system dynamics. As usual and
not surprisingly, the internal model structure, which isF1(z−1)= f1z−1+ f2z−2+ ·· ·+ f

n−1z−(n−1)
G(z−1)=1+g1z−1+ · ··+g

m+t−2z−(m+t−2) (9) inherent in the forward path form, yields a controller
that is relatively sensitive to uncertainty in the estimate
of A(z−1), especially for marginally stable or unstableDefining F(z−1)= f0+F1(z−1), the closed-loop transfer
systems (6).function of the PIP controlled system takes the following

By contrast, in the case of zero mismatch, the unitygeneral form:
feedback aspect of the forward path form offers disturb-
ance rejection characteristics that are usually superior toy(k)=

kIB(z−1)z−t+1
V[G(z−1)A(z−1)+F(z−1)B(z−1)z−t+1 ]

+kIB(z−1)z−t+1
yd(k)

those of the feedback form, since they are similar in
dynamic terms to those associated with the designed
command response. This is clear if the closed-loop trans-(10)
fer functions are considered for the feedback yFB(k) and
forward path yFP(k) structures in the case of a loadwhere V=1−z−1 is the difference operator and kI is the

integral of error gain. disturbance v(k), i.e.
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(a)

(b)

Designed TF:
kIB̂(z−1)z−t̂+1

V [G(z−1)Â(z−1)+F(z−1)B̂(z−1)z−t̂+1]+kIB̂(z−1)z−t̂+1
Fig. 2 Two identical structures for forward path PIP control

yFB(k)=
VG(z−1)A(z−1)

V[G(z−1)A(z−1)+F(z−1)B(z−1)z−t+1)+kIB(z−1)z−t+1 v(k) (11)

yFP(k)=
V[G(z−1)A(z−1)+F(z−1)B(z−1)z−t+1]

V[G(z−1)A(z−1)+F(z−1)B(z−1)z−t+1 ]+kIB(z−1)z−t+1 v(k) (12)

Straightforward algebraic manipulation of equation (12) shows that

yFP(k)=G1−
kIB(z−1)z−t+1

V[G(z−1)A(z−1)+F(z−1)B(z−1)z−t+1]+kIB(z−1)z−t+1H v(k) (13)

whereas such a simple result is not possible in the case of 4 THE SP–PIP CONTROLLER FOR TIME DELAY
equation (11). In other words, the disturbance response SYSTEMS
in the forward path case is equal to one minus the designed

The PIP controller automatically handles a pure timecommand response, thus ensuring similar disturbance
delay by simply feeding back sufficient past values ofresponse dynamics to those specified by the designer in
the input variable to span the time delay. However, inrelation to the command input response.
the case of systems with a long time delay, where theAs will be seen later, another very desirable character-
choice of a coarser sampling interval is not possible asistic of the forward path structure is that, in general, the
a means of reducing the dimension of the NMSS, thisactuator signal is much smoother than that produced by
may require an excessive definition of the NMSS orderthe feedback form of the controller. This has important
and, consequently, an unacceptably large number ofpractical implications for reducing actuator wear (3, 6).
gains in the G(z−1) filter. In this situation, it seemsIn the case of the feedback structure the situation is more
more efficient and parsimonious to employ an SP-typecomplex, however, since past, noisy values of the dis-
controller in the standard manner to deal with the timeturbed output are involved in the control signal synthesis
delay. In the resulting SP–PIP controller (9), the delaybecause of the feedback filter F(z−1). In practice, this
is external to the control loop when there is no modelmay result in a less desirable disturbance response to
mismatch, as shown in Fig. 3, and so the specificationthat obtained with the forward path form, as illustrated
of system performance is obtained by defining anin Section 7 below. Although not considered in the pre-
(n+m)-dimensional non-minimal state vector, basedsent paper, the disturbance response characteristics of
on the unit delay model [i.e. equation (1) withthe two structures can also be compared in standard

(Bode/Nyquist) frequency domain terms (8). t=1].
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FS(z−1)= fs0+ fs1z−1+ fs2z−2+ ·· ·+ fs
n−1z−(n−1)

GS(z−1)=1+gs1z−1+ ···+gs
m−1z−(m−1)

Fig. 3 PIP control with the Smith predictor (the SP–PIP system)

The closed-loop transfer function in the SP–PIP case control system are constrained to be the same as
those of the SP–PIP case.reduces to the standard PIP closed-loop (10), but with

B(z−1)z−t+1 replaced by just B(z−1) in the denomi- Moreover, under these simple conditions, the standard
nator, i.e. PIP gain vector kPIP is given by

y(k)= kPIP=S−1PIP ΩSSP ΩkSP (15)

where SPIP , which is defined in the Appendix, is the par-kSB(z−1)z−t+1
V [GS(z−1)A(z−1)+FS(z−1)B(z−1)]+kSB(z−1)

yd(k)
ameter matrix employed for the design of a pole assign-

(14) ment controller for the standard PIP control system (2),
SSP is the parameter matrix employed for the design ofwhere FS(z−1), GS(z−1) and kS are the PIP filters
a pole assignment controller for the SP–PIP controldesigned in this manner. Note that here the SP–PIP
system (defined in a similar manner to SPIP but based onand standard PIP control gain vectors have been calcu-
the unit delay model ) and kSP is the SP–PIP gain vector.lated from models with different numerator orders, so
The proof of this theorem is given in the Appendix.that if t>1 the order of the G(z−1) filter will be higher

than GS(z−1).

6 THE COMPLETE EQUIVALENCE OF PIP AND
SP–PIP CONTROLLERS5 RELATIONSHIP BETWEEN THE PIP AND

SP–PIP CONTROL GAINS
To consider the more general case, when there is model
mismatch, the SP–PIP controller is simply converted intoThe characteristic polynomial of the SP–PIP system is
a unity feedback, forward path pre-compensationof the order n+m, compared with n+m+t−1 in the
implementation. In this case, the control law (whichstandard PIP case. However, equivalence between the
remains identical to that illustrated in Fig. 3) takes thetwo may be obtained by the following theorem.
form

u(k)=
kSÂ(z−1)

V [GS(z−1)Â(z−1)+FS(z−1)B̂(z−1)]+kS [B̂(z−1)−B̂(z−1)z−t̂+1 ]
[yd(k)−y(k)] (16)

Theorem 1 has already established that, with appropriate
Theorem 1 selection of poles, the SP–PIP closed-loop transfer func-

tion must be identical to the closed-loop transfer func-
When there is no model mismatch nor any disturbance

tion resulting from standard PIP control in the case of
input, the closed-loop transfer function (TF ) of the stan-

a perfectly known model. Clearly, for this result to hold
dard PIP control system (10) for a SISO, discrete time

when both controllers are implemented in a forward path
delay system described by transfer function model (1) is

form [see Fig. 2 for PIP, equation (16) for SP–PIP], then
identical to that of the SP–PIP closed-loop TF (14), if:

the control filter in each case must be identical. Moreover,
this result applies even in the case of mismatch and dis-1. The (t−1) poles in the standard PIP control system

are assigned to the origin of the complex z plane. turbance inputs, since the control filter is invariant to such
effects. In other words, the PIP controller implemented2. The remaining (n+m) poles of the standard PIP
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with the forward path structure is always completely (Fig. 1), thus requiring much reduced actuator move-
ment and resulting in less actuator wear.identical to the SP–PIP controller. However, it is import-

ant to stress that this is not the case for the standard
feedback structure of the PIP controller.

7.1 Robustness to parametric uncertainty

7 EXAMPLES An important practical consideration in model-based
control system design is the robustness of the control

In order to illustrate clearly the results obtained in pre- system performance to uncertainty associated with the
vious sections, it is advantageous to consider first the model parameters. This problem can be handled in many
following marginally stable, non-minimum phase model, ways but, with the current wide availability of powerful
which has a total of five samples of pure time delay desktop computers, Monte Carlo (MC) analysis pro-
(t=5): vides one of the simplest and most attractive approaches

to the problem. The MC analysis employed in the pre-
y(k)=

−z−5+2z−6
1−1.7z−1+z−2 u(k) (17) sent paper is based on the parameter covariance matrix

P generated by the parameter estimation algorithm used
for data-based modelling. In other words, the model par-When the four closed-loop poles for the SP–PIP control

system are all assigned to 0.5, while the additional four ameters for each realization in the MC analysis are selec-
ted randomly from the joint probability distributionpoles in the standard PIP case are set to zero, as dis-

cussed in Section 5, the closed-loop transfer function is defined by the P matrix and the sensitivity of the PIP
controlled system to parametric uncertainty is thenidentical for all three cases of Figs 1, 2 and 3. However,

in the presence of model mismatch or disturbance inputs evaluated from the ensemble of resulting closed-loop
response characteristics (e.g. time domain, frequencyto the system, the SP–PIP and feedback PIP closed-loop

transfer functions are different, while, as expected, the domain, pole-zero positions, etc.).
In the present context, this kind of MC analysis isPIP controller implemented in the forward path form

remains identical to the SP–PIP case. useful for evaluating the performance differences
between the PIP and SP–PIP control structures. ZeroFor example, Fig. 4 illustrates the response of the two

formulations to a load disturbance, where, as mentioned mean, white noise, with unity variance, is added to the
output of the system (17) to provide a noise–signal ratioin Section 3 and following from equation (13), the for-

ward path form of the controller (i.e. Fig. 2 or Fig. 3) of 0.2 and the refined instrumental variable (RIV )
identification algorithm (10) is used to obtain estimatesresults in a smoother response than the feedback form

Fig. 4 Comparison of feedback PIP (thin trace) and SP–PIP (thick trace) control of equation (17); both
the system output (top) and control input (bottom) are shown. A load disturbance of magnitude 0.5
is added to the output from the fiftieth to the hundredth samples
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of the model parameters and their associated covariance made it more sensitive to the parametric uncertainty.
Note that although the forward path time responses inmatrix P. In order to better illustrate the effects of uncer-

tainty, however, P is artificially inflated by a factor of 4 Fig. 5 appear relatively well behaved, slowly growing
oscillations can be seen in the Monte Carlo envelope andbefore being employed in the MC studies.

Figure 5 compares the resulting MC responses of the these become more apparent if the time axis is extended
further. In fact, an examination of the closed-loop polesvarious PIP controllers discussed above to a step change

in the command input. Clearly, in this case, the cancel- reveals that 46 per cent of the SP–PIP responses are
unstable, compared to none in the feedback PIP case.lation inherent in the forward path structure (whether

implemented in the form of either Fig. 2 or Fig. 3) has In considering the results of Fig. 5, however, it should

Fig. 5 Comparison of feedback PIP (top: 0 per cent unstable) and SP–PIP (bottom: 46 per cent unstable)
control of the system (17), with 100 Monte Carlo realizations

Fig. 6 Comparison of feedback PIP (thin) and SP–PIP (thick) control of the system (17), with mismatch
in the time delay; both the system output (top) and control input (bottom) are shown
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be emphasized that not only is the system in this case ler design based on the original five-sample delay, but
with the simulated delay changed to t=6.quite difficult to control (with two open-loop poles on

the unit circle in the complex z plane) but the parametric Typically, as in Fig. 6, the forward path controller
performs better than the standard feedback structure. Inuncertainty has been artificially enlarged to facilitate

the comparison. In fact, both forms of PIP control are this example, if the system time delay is increased still
further so that t=7, then the feedback form of the con-very robust to more realistic modelling uncertainties, as

demonstrated in various practical examples [e.g. see troller is unstable, while the response of the alternative
forward path structure remains similar to that illustratedreferences (3) and (8)].
in Fig. 6. In fact, the forward path controller does not
yield an unstable response until the system delay is
increased to greater than t=16 although, by this stage,7.2 Robustness to time delay uncertainty
the performance is severely degraded.

One assumption in the MC analysis discussed above is
that the model parameters are subject to uncertainty but
the structure (n, m, t) remains constant in all the realiza- 7.3 Practical example: control of greenhouse
tions. Within the context of the present paper, however, microclimate
it is interesting to examine the situation where this
assumption is relaxed to allow for uncertainty in the time Conventional greenhouse climate controllers are usually

based on continuous-time PI or PID algorithms, manuallydelay. In particular, the results in Fig. 6 are based on
single simulations using the system (17) with the control- tuned to achieve adequate, although rather poor, tracking

Fig. 7 Performance of PIP control: temperature, relative humidity and carbon dioxide. [Reprinted from
reference (8)]
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of commands. Previous publications [e.g. references (2) formulated within the context of non-minimum state
and (8)] have shown how the model-based PIP method- space (NMSS) digital control system design. This
ology can achieve much tighter control of the climate vari- can be achieved either explicitly, as an SP addition
ables allowing, for example, changing optimal set points to the proportional-integral-plus (PIP) controller, or
to be followed without difficulty. Evaluation of PIP con- implicitly, in a unity feedback gain, forward path
trol on a large horticultural ‘Venlo’ greenhouse at Silsoe implementation of the PIP pole assignment controller.
Research Institute (SRI) was carried out over a 3 month It is felt that this approach provides a more formal and
implementation period during the 1993–4 growing season satisfactory treatment of Smith predictor design than has
with a tomato crop (8). Figure 7 shows the control per- been suggested heretofore, since it allows optimal state
formance of the climate variables over the entire evalu- space design methods to be fully exploited in order to
ation period. Each plot shows the percentage of the enhance the performance of the SP controller. However,
validation period that a control variable was inside a cer- since the PIP design strategy provides a more flexible
tain control limit. For example, air temperature was less and unified approach, which subsumes the SP controller
than 1 °C away from the set point for 98 per cent of the as one option, it provides a superior basis for general
validation period and was never more than 1.5 °C away control system design.
from the desired temperature. It is important to emphasize that PIP pole assignment

In the case of temperature control, the linear control design of this SP type, in which the closed-loop poles
model of the form (1), identified from experimental data associated with time delay are assigned to the origin of
collected in the greenhouse at SRI, is characterized by the complex z plane, is not necessarily the most robust
time delays of up to 30 min. In addition, control system solution to the control design problem. In particular, the
design is complicated by the fact that the internal climate alternative LQ optimal PIP control system design, which
of the greenhouse is affected to a large extent by external effectively subsumes the SP approach in the time delay
weather disturbances, particularly solar radiation. It is situation, will normally yield better and more robust
clear from the results of the Venlo experiments that, in

closed-loop behaviour, making it more desirable for
the case of internal air temperature, the forward path

practical applications. The advantage of the PIPform of PIP control and its equivalent SP–PIP
approach (without an explicit SP) is that full order poleimplementation are superior to the standard feedback
assignment or LQ control can be handled in either thePIP controller. In particular, these forward path control-
feedback or the forward path form, the structure beinglers yield a similar closed-loop temperature response, but
chosen according to the control objectives and the par-there is a significant reduction in valve aperture move-
ticular system in question. For example, when the timement, as illustrated in Fig. 8.
delay is large, the order of the closed loop can be kept
low by employing the forward path PIP controller

8 CONCLUSIONS designed according to Theorem 1.
It should be noted that the present paper has not

addressed the question of a non-constant time delay. TheThis paper has shown how the Smith predictor (SP)
approach to the control of time delay systems can be results obtained in Section 7.2 suggest that the SP–PIP

Fig. 8 Greenhouse temperature results for 14 December 1993 ( left) and 13 December 1993: comparison of
standard feedback ( left) and forward path (right) PIP control at 10 min sampling. [Forward path
response reprinted from reference (3) with kind permission from Elsevier Science Limited, The
Boulevard, Langford Lane, Kidlington OX5 1GB, UK]
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3 Young, P. C., Lees, M., Chotai, A., Tych, W. and Chalabi,controller can handle changes in the time delay, but
Z. S. Modelling and PIP control of a glasshouse micro-further research is required to evaluate its sensitivity in
climate. Control Engng Practice, 1994, 2(4), 591–604.this regard. In practice, it seems likely that significant

4 Taylor, C. J., Young, P. C. and Chotai, A. On the relation-temporal changes to the time delay will require some
ship between GPC and PIP control. In Advances in Model-form of adaptive adjustment.
Based Predictive Control (Ed. D. W. Clarke), 1994,In demonstrating its ability to mimic exactly the SP
pp. 53–68 (Oxford University Press, Oxford).

approach, within an NMSS state space setting, the pre- 5 Tych, W., Young, P. C. and Chotai, A. TDC: computer
sent paper has illustrated the power and flexibility of the aided true digital control of multivariable delta operator
PIP controller, which can be considered as the natural, systems. In Proceedings of 13th IFAC World Congress, 1996,
model-based, successor to the classical PI and PID con- paper 5c-01 5 (Elsevier Science, Oxford).
trollers. In other words, the results presented in this 6 Taylor, C. J., Young, P. C., Chotai, A., Tych, W. and Lees,
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APPENDIX

The S matrix and proof of Theorem 1

The SPIP matrix which appears in equation (15) of the main text has the following form:

SPIP= [Sf | Sg | Sk ]

where

Sf=

t
N
N
N
N
N
N
N
N
N
N
N
N
N
N
v

0 0 0 ·· · 0 0

e e e e e e
0 0 0 ·· · 0 0

b
t

0 0 · ·· 0 0

b
t+1−b

t
b
t

0 ·· · 0 0

e e b
t

·· · 0 0

b
t+m−1−b

t+m−2 b
t+m−2−b

t+m−3 e ·· · 0 0

−b
t+m−1 b

t+m−1−b
t+m−2 e ·· · 0 0

0 −b
t+m−1 b

t+m−1−b
t+m−2 ·· · b

t
0

0 0 −b
t+m−1 ·· · b

t+1−b
t

b
t

e e e · ·· e e
0 0 0 ·· · −b

t+m−1 b
t+m−1−b

t+m−2
0 0 0 0 0 −b

t+m−1

u
N
N
N
N
N
N
N
N
N
N
N
N
N
N
w

BCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
n

Proof of Theorem 1

The characteristic polynomial of the SP–PIP system is
of the order n+m, compared with n+m+t−1 in the
standard PIP case. From equations (10) and (14), and
with the conditions of Theorem 1, the following equality
is obtained:Sg=

t
N
N
N
N
N
N
N
N
N
N
v

1 0 ··· 0 0

a1−1 1 · ·· 0 0

a2−a1 a1−1 ·· · 0 0

e e e e e
e e e a1−1 1

e e e a2−a1 a1−1

−a
n

a
n
−a

n−1 e e e
0 −a

n
e e e

e e e −a
n

a
n
−a

n−1
0 0 0 0 −a

n

u
N
N
N
N
N
N
N
N
N
N
w

V[G(z−1)A(z−1)+F(z−1)B(z−1)z−t+1 ]

+kIB(z−1)z−t+1
=V[GS(z−1)A(z−1)+FS(z−1)B(z−1)]+kSB(z−1)BCCCCCCCCCCCCCCCCCA

m+t−2
(18)

so that both closed-loop systems have exactly the same
denominator dynamics. Moreover, since both systems
have a steady state gain of unity, by virtue of the inherent
integral action, then kS must always equal kI and so the
closed-loop numerators are also identical. From the

Sk=

t
N
N
N
N
N
N
N
N
N
N
N
v

0

e
0

b
t

b
t+1
e

b
t+m−1

0

0

e
0

u
N
N
N
N
N
N
N
N
N
N
N
w

standard PIP pole assignment algorithm, it is well known
(2) that

SPIPkPIP=dPIP−pPIP (19)

where dPIP and pPIP are the vectors of coefficients of the
desired closed-loop characteristic polynomial of the
standard PIP system and the open-loop characteristic
polynomial of the NMSS model (2) respectively, i.e.Note that the first t−1 rows of Sf and Sk are zero.
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From conditions (1) and (2) of Theorem 1,

d1=d ∞
1
, d2=d ∞

2
, .. ., d

n+m−1=d ∞
n+m−1,

d
n+m=d∞

n+m
dPIP
= [d1 d2 · ·· d

n+m−1 d
n+m ·· · d

n+m+t−2 d
n+m+t−1]T

pPIP
=[a1−1 a2−a1 · ·· a

n
−a

n−1 −a
n

0 · ·· 0 · ·· 0]T

and

d
n+m+1=d

n+m+2= ·· ·=d
n+m+t−2=d

n+m+t−1=0
(20) If SSP and kSP are padded with an appropriate number

of zeros, in order to ensure that the matrices and vectorsThe equivalent result for the SP–PIP case is
are all of the same order, then

SSP ΩkSP=dSP−pSP (21)
SPIP ΩkPIP=SSP ΩkSP (23)

where
Note that the SPIP matrix is always invertible if the
system satisfies the NMSS controllability conditions, i.e.dSP= [d∞

1
d ∞
2

· ·· d ∞
n+m−1 d ∞

n+m]T

pSP= [a1−1 a2−a1 · ·· a
n
−a

n−1 −a
n

0 · ·· 0]T pole assignability conditions (11). Hence,

kPIP=S−1PIP ΩSSP ΩkSP (24)(22)
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