Lancaster EPrints

An analysis of rapid increases in condensation nuclei concentrations at a remote coastal site in western Ireland.

Grenfell, J. L. and Harrison, R. M. and Allen, A. G. and Shi, J. P. and Penkett, S. A. and O’Dowd, C. D. and Smith, M. H. and Hill, M. K. and Robertson, L. and Hewitt, CN and Davison, B. M. and Lewis, A. C. and Creasey, D. J. and Heard, D. E. and Hebestreit, K. and Alicke, B. and James, J. (1999) An analysis of rapid increases in condensation nuclei concentrations at a remote coastal site in western Ireland. Journal of Geophysical Research: Atmospheres, 104 (D11). pp. 13771-13380. ISSN 0747-7309

Full text not available from this repository.

Abstract

Massive “bursts” in condensation nuclei (CN) concentration were recorded at a remote site on the west Irish coast during campaigns in summer 1996 and spring/summer 1997. Number concentrations of 3–7 nm diameter CN were observed to rise daily from 102–103 up to ∼105 /cm3 for 1–3 hours. Data were collected as part of the Atmospheric Chemistry Studies in the Oceanic Environment program. In a previous paper the burst phenomenon was linked to the movement of the tide, and it was suggested that enhanced biogenic emissions occurred near low tide with concomitant rapid homogeneous gas phase CN formation. In this paper possible chemical mechanisms for the burst phenomenon are investigated. Two approaches are adopted. First, by assuming a 20:80 sulfate:water molar composition and calculating the number distribution using data from condensation particle counters, the total mass of CN formed during a burst is evaluated. This is compared with that mass of sulfate produced by OH-initiated dimethyl sulfide (DMS) oxidation. The procedure is termed “mass balance.” Second, a variety of chemical species are coplotted with tidal height. DMS oxidation is not believed to play a major role in CN formation at this site because (1) the mass balance calculations imply ambient DMS concentrations higher than those observed, and (2) gas phase HCl, HNO3, SO2, and NH3 did not exhibit any discernible correlation with tidal height. Further, none of the suite of observed nonmethane hydrocarbons or DMS showed a tidal relation. No mechanism has to date been convincingly identified for the burst phenomenon.

Item Type: Article
Journal or Publication Title: Journal of Geophysical Research: Atmospheres
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 21709
Deposited By: ep_ss_importer
Deposited On: 04 Feb 2009 16:01
Refereed?: Yes
Published?: Published
Last Modified: 17 Sep 2013 08:17
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/21709

Actions (login required)

View Item