Lancaster EPrints

Emission rates of C8-C15 VOCs from seaweed and sand in the inter-tidal zone at Mace Head, Ireland.

Sartin, J. H. and Halsall, Crispin J. and Hayward, S. and Hewitt, C. Nicholas (2002) Emission rates of C8-C15 VOCs from seaweed and sand in the inter-tidal zone at Mace Head, Ireland. Atmospheric Environment, 36 (34). pp. 5311-5321. ISSN 1352-2310

Full text not available from this repository.

Abstract

Emission fluxes for a range of C8–C15 volatile organic compounds (VOCs) were determined from the seaweed Fucus spiralis (spiral wrack) and an adjacent sand surface during low tide on the coastline of Mace Head, Ireland. These two surface types, assessed using dynamic flux chamber systems, are typical of the Mace Head inter-tidal zone. A range of n-alkanes and oxygenates were routinely identified in the measurement of chamber air. Examination of the odd/even n-alkane ratios and use of the carbon preference index (CPI) suggested a biogenic source for these compounds (CPIs >2 in for all samples). Fluxes of n-pentadecane, the most predominant n-alkane, ranged from 0.2 to 5.1 μg m−2 h−1 (0.9–24 nmol m−2 h−1), while oxygenates such as nonanal and decanal had fluxes ranging from <0.1 to 4.4 μg m−2 h−1 (<0.1–31 nmol m−2 h−1) and <0.1 to 4.6 μg m−2 h−1 (<0.1–30 nmol m−2 h−1), respectively. Seaweed emission rates for n-pentadecane were correlated with photosynthetically active radiation (PAR) (rs=0.94) while emissions from sand showed correlation with temperature (rs=0.85). This suggests a possible biochemical route controlling the release of n-pentadecane from spiral wrack, and temperature-driven volatilisation from sand. Volatilisation from residual seawater trapped in the sand may explain the comparable flux of both n-alkanes and oxygenates from this surface. Unlike the n-alkanes, oxygenate fluxes from sand correlate with PAR, suggesting a photodependent production from organic carbon residues present in seawater. Comparison with previous flux estimates from coastal seawater indicates that the two source types (Fucus spiralis and bare sand) are significant but not dominant sources of these VOCs.

Item Type: Article
Journal or Publication Title: Atmospheric Environment
Uncontrolled Keywords: n-Alkanes ; Oxygenated organic compounds ; Coastal boundary layer ; Photosynthetically active radiation (PAR) ; Fucus spiralis (spiral wrack)
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 21497
Deposited By: ep_ss_importer
Deposited On: 16 Jan 2009 15:30
Refereed?: Yes
Published?: Published
Last Modified: 06 Sep 2013 18:29
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/21497

Actions (login required)

View Item