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This paper derives asymptotic normality of a class of M-estimators in the gener-
alized autoregressive conditional heteroskedastic ~GARCH! model+ The class of
estimators includes least absolute deviation and Huber’s estimator in addition to
the well-known quasi maximum likelihood estimator+ For some estimators, the
asymptotic normality results are obtained only under the existence of fractional
unconditional moment assumption on the error distribution and some mild smooth-
ness and moment assumptions on the score function+

1. INTRODUCTION

Volatility or the instantaneous variability of a financial time series is an impor-
tant concept in many econometric models+ In his seminal work, Engle ~1982!
modeled volatility of a series $Xt ;1 � t � n% as a linear function of the squares
of past observations and called it the autoregressive conditional heteroskedas-
tic ~ARCH! model+ Later Bollerslev ~1986! proposed a useful extension of the
ARCH model called the generalized ARCH ~GARCH! model where the vola-
tility is a linear function of both the squares of past observations and past vol-
atility+ In the GARCH~ p,q! model, where p, q � 1 are known integers, the
following representation of the series $Xt ; t � Z % is assumed:

Xt � st et , (1.1)

where $et ; t � Z % are unobservable independent and identically distributed ~i+i+d+!
errors symmetric about zero and

st
2 � v0 � �

i�1

p

a0i Xt�i
2 � �

j�1

q

b0jst�j
2 , t � Z, (1.2)

with v0, a0i , b0j � 0, ∀i, j+ In this paper, we are concerned with the problem
of robust M-estimation of some function of the model parameter vector

u0 � @v0 ,a01, + + + ,a0p ,b01, + + + ,b0q #
' (1.3)
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based on the observations $Xt ;1 � t � n% and with deriving its asymptotic
properties+

Gaussian likelihood is routinely used to estimate parameters of the GARCH
model+ Here the estimator is obtained as a maximizer of the logarithm of a
standard Gaussian likelihood function of the errors, and the resulting estimator
is called the quasi maximum likelihood estimator ~QMLE!+ The asymptotic nor-
mality of the QMLE was established by Weiss ~1986! for the ARCH model and
by Lee and Hansen ~1994! and Lumsdaine ~1996! for the GARCH ~1,1! model
using its special structure and also the assumption on unit variance and the
existence of unconditional moments of order at least 4 for the error distribu-
tion+Asymptotics of the QMLE were discussed by Jeantheau ~1998! and Comte
and Lieberman ~2003! for the multivariate GARCH~ p,q! model under strong
assumptions on the error distribution and by Hall and Yao ~2003! for the
GARCH~ p,q! model under heavy-tailed error distribution+ Berkes, Horvath, and
Kokoszka ~2003! ~hereafter BHK! derived many nice technical results on the
GARCH model ~1+1! and ~1+2! and used them to derive the asymptotic normal-
ity of the QMLE+ Straumann and Mikosch ~2006! studied the QMLE under
general conditional heteroskedastic models based on stochastic recurrence equa-
tions, and Robinson and Zaffaroni ~2006! derived the asymptotic normality of
the QMLE for the ARCH~`! model, which includes GARCH as a very special
case+

Several studies on financial data have suggested that the existence of the
fourth moment needed for the asymptotic normality of the QMLE is not
tenable quite often in practice, and the Gaussian likelihood is often not appro-
priate because of the large number of outliers in the variable+ Engle and
Gonzalez-Rivera ~1991! advocated the need for alternative estimators that can
improve on QMLE+ Consequently, Newey and Steigerwald ~1997! considered
a parametric family of densities for the errors and used this family of densi-
ties to construct pseudo maximum likelihood estimators ~PMLEs!+ Li and Tur-
tle ~2000! considered an estimating function approach to estimate the parameters
of the ARCH model based on some conditional moments assumptions as an
attempt to improve on the QMLE for non-Gaussian errors+ Peng and Yao ~2003!
considered least absolute deviation ~LAD!–type estimators of three differ-
ent varieties, and Berkes and Horvath ~2004! considered the PMLE for the
GARCH~ p,q! model where p, q � 1+ Berkes and Horvath ~2004! derived
asymptotic normality of some of the PMLEs under the existence of a frac-
tional unconditional moment of the error distribution when the score function
is three times differentiable over ~0,`!+ Their class of estimators includes
both LAD and QMLE and also some other important score functions+ How-
ever, the identifiability condition of the parameters to be estimated stipulates
that the value for the unconditional error ~or function of error! moment such
as E~e2! � 1 or E~6e 6! � 1 or E $6e 60~1 � 6e 6!% is known; see the general
condition ~1+16! and displays ~2+1!–~2+3! of specific examples in Berkes and
Horvath ~2004!+ Clearly, such conditions are impossible to verify and hence
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are very undesirable+ This motivates us to derive the asymptotics of the PMLE,
or, more generally, of the M-estimators, without making such assumptions+

In both Peng and Yao ~2003! and Berkes and Horvath ~2004!, it was implicit
that a reparametrization of the underlying parameters is necessary to derive the
asymptotics+ In this paper we show that an M-estimator based on a score func-
tion H consistently estimates

u0H � @cHv0 , cHa01, + + + , cHa0p ,b01, + + + ,b0q #
', (1.4)

where cH is a constant that depends on the score function H through the error
distribution+ In particular, an M-estimator can estimate u0 if and only if cH � 1+
Hence, using the QMLE, we can estimate u0 if and only if the error variance is
unity, which is a standard assumption in the literature+

Our formulation allows us to consider an M-estimator based on signed score
or LAD and Huber’s k-score, among others+ For the score functions, we do not
assume strong conditions such as monotonicity or continuity; however, we
impose mild differentiability conditions on them outside a finite number of points
and also skew-symmetry around zero+ In this way, we can include wide range
of score functions such as LAD, QMLE, MLE, and so on, and also nonmono-
tone score function+ Our method of proof is also different than the usual method
of showing uniform convergence of M-scores and their derivatives to their cor-
responding expectation+ It should be mentioned here that the results of this paper
and also those of Berkes and Horvath ~2004! cannot be applied to ARCH mod-
els readily because here it is assumed that q � 1 and all parameters are nonzero+

In Section 2, we define the class of M-estimators and examples+ Section 3
contains the assumptions and main results concerning its asymptotic distribu-
tion+ Section 4 contains detailed discussions of the examples+ In Section 5, we
report the results of a simulation study and compute M-estimates based on three
different score functions in the context of a real data set containing monthly
log returns of the IBM stock from 1926 to 1999 for which a GARCH~1,1! model
is assumed+ Section 6 states the main conclusions+ The details of proofs are
given in the Appendix+

2. M -ESTIMATORS

Throughout this paper, for a function g, _g and ]g will denote the first and sec-
ond derivatives, respectively, whenever they exist+ Also log�~x! :� I ~x � 1!
log~x! and sign~x! :� I ~x � 0! � I ~x � 0!+ For a vector or a matrix A, 6A6
will denote the largest absolute value of the entries of A, and A' will denote its
transpose+ Moreover, e will denote a random variable having same distribution
as $et , � Z % +

Let c : IR r IR be a skew-symmetric function ~i+e+, c~�x! � �c~x!, ∀x �
IR � $0%! that is differentiable in all but a finite number of points+ Let D � IR
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denote the set of points where c is differentiable and let OD denote its comple-
ment+ Let H~x! :� xc~x!, x � IR+ Note that H~�x! � H~x!, ∀x+ The function
H will be called the “score function” for the M-estimation in the scale model+
Examples are as follows+

Example 1

LAD score+ Let c~x! � sign~x!+ Then OD � $0% and H~x! � 6x 6+

Example 2

Huber’s k-score+ Let c~x!� xI ~6x 6� k!� k sign~x!I ~6x 6 � k!, where k � 0 is
known+ Then OD � $�k, k% and H~x! � x 2I ~6x 6 � k! � k 6x 6I ~6x 6 � k!+

Example 3

QMLE+ Let c~x! � x+ Then H~x! � x 2 +

Example 4

Score function for the maximum likelihood estimation ~MLE!+ Let c~x! �
� ^f0~x!0f0~x!, where f0 is the true density of e, assumed to be known+ Then
H~x! � x$� ^f0~x!0f0~x!% +

Example 5

Score function for the exponential PMLE+ Let c~x! � a 6x 6b�1 sign~x!, where
a � 0 and 1 � b � 2 are known constants+ Such a score can be motivated from
the class of densities considered by Nelson ~1991! and Robinson and Zaffaroni
~2006! to model the innovations of the exponential GARCH model+ Here
OD � $0% and H~x! � a 6x 6b +

Example 6

Score function for the Cauchy PMLE+ Let c~x! � l sign~x!0~1 � 6x 6!, where
l � 1 is known+ Then OD � $0% and H~x! � l 6x 60~1 � 6x 6!+ Note that here c
is a decreasing function on ~0,`!+

Next we define M-estimators+ Recall that in the location model, an M-estimator
is defined as the solution to a certain system of equations involving residual
functions+ To follow the same approach, we first discuss the concept of vari-
ance function as follows+ First assume that for some k � 0,

E @6e 6k # � `+ (2.1)

Then from Lemma 2+3 and Theorem 2+1 of BHK, st
2 of ~1+2! has the following

unique almost sure representation:
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st
2 � c0 � �

j�1

`

cj Xt�j
2 , t � Z, (2.2)

where $cj ; j � 0% are defined in ~2+7!–~2+9! of BHK and in ~2+5!, which follows+
Let Q be a compact subset of ~0,`!1�p � ~0,1!q + A typical element in Q is

denoted by u � @v,a1, + + + ,ap,b1, + + + ,bq#
' + Define the variance function on

Q by

vt ~u! � c0~u!� �
j�1

`

cj ~u!Xt�j
2 , u � Q, t � Z, (2.3)

where the coefficients $cj~u!; j � 0% are given in BHK ~Sect+ 3 and display
~3+1!! with the property

cj ~u0 ! � cj , ∀j � 0+ (2.4)

Hence the variance functions satisfy vt~u0!� st
2 , t � Z+As an example of this,

for the GARCH~1,1! model, with u � ~v,a,b!' ,

c0~v,a,b! � v0~1 � b!, cj ~v,a,b!� ab j�1, j � 1+ (2.5)

Using ~2+4!, ~1+1! can be rewritten as

Xt � $vt ~u0 !%
102et , 1 � t � n+ (2.6)

In ~2+6!, if f denotes the error density, then the conditional density of Xt given
information available up to time t � 1 will be vt

�102~u0 ! f $vt
�102~u0 !Xt %, 1 �

t � n+ Hence, motivated by the maximum likelihood estimator, one can define
a random quantity as a minimizer of the negative log likelihood function
~10n!�t�1

n @~ 2
1
�! log vt ~u! � log f $Xt 0vt

102~u!%# , u � Q, or as a solution of its
derivative function

�
t�1

n �1

2
� @1 � H *$Xt 0vt

102~u!%#$ _vt ~u!0vt ~u!% � 0,

where H *~x! :� x$� ^f ~x!0f ~x!% +
More generally, with a score function H, we can then define un in the model
~2+3! and ~2+6! as a solution of the equation

�
t�1

n �1

2
�$1 � H$Xt 0vt

102~u!%%$ _vt ~u!0vt ~u!% � 0+ (2.7)

Note however that un’s are noncomputable because vt~u!’s are nonobservable+

1534 KANCHAN MUKHERJEE



Next consider an observable approximation $ [vt~u!% of the process $vt~u!%
defined by

[vt ~u! � c0~u!� I ~2 � t ! �
j�1

t�1

cj ~u!Xt�j
2 , u � Q 1 � t � n+

Then an M-estimator Zun is defined as a solution of

�
t�1

n �1

2
�$1 � H$Xt 0 [vt

102~u!%%$ _ [vt ~u!0 [vt ~u!% � 0+ (2.8)

For H~x!� x 2 of Example 3, Zun is the celebrated QMLE as discussed by Engle
~1982! and Weiss ~1986!+ For H~x! � 6x 6 of Example 1, Zun can be called the
LAD estimator+

3. ASYMPTOTIC DISTRIBUTION OF Zun

The results of this paper are derived under the following assumptions+
Model assumptions+ The parameter space Q is a compact set, and its interior
Q0 contains both u0 and u0H of ~1+3! and ~1+4!, respectively+ Moreover, ~2+1!,
~2+3!, and ~2+6! hold, and $Xt % are stationary and ergodic+

Conditions on the score function
Identifiability condition+ Corresponding to the score function H, there exists

a unique number cH � 0 satisfying

E @H~e0cH
102!# � 1+ (3.1)

Moment conditions

E @H~e0cH
102!# 2 � ` and 0 � E $~e0cH

102!Ĥ~e0cH
102!% � `+ (3.2)

Smoothness conditions

Condition SM1. There exists a function L satisfying

6H~es!� H~e!6 � L~e!6s 2 � 16, e � IR1, s � 0, (3.3)

where

E log�$L~e0cH
102!% � `+ (3.4)

Condition SM2. There exists a function L such that for e � IR1, s � 0,
es, e � D,

6Ĥ~es!� Ĥ~e!6 � L~e!6s � 16, (3.5)

where

E $6e0cH
102 6L~e0cH

102!% � `+ (3.6)
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Condition SM3. There exists a function L* satisfying

6L~e � es!� L~e!6 � L*~e!s, e � IR1, s � 0, (3.7)

where

E log�$L*~e0cH
102!% � `+ (3.8)

Remark 3.1. Recall that if f is a nondecreasing and odd score function
satisfying some smoothness conditions, then there exists a point uf such that
E @f~e � uf!# � 0+ Because a location estimation problem, say, xt � u � et
can be rewritten as xt � ~u� uf!� ~et � uf!, a location-invariant M-estimator
based on f estimates u � uf+ Condition ~3+1! is a natural counterpart of the
location model in the scale estimation problem+ To illustrate, suppose that the
score function H in a scale estimation problem is nondecreasing on @0,`!
with limcr0� H~e0c102! � H~`! and limcr`H~e0c102! � H~0! and suppose
that the expectation function g~c! � E $H~e0c102!% satisfying H~0! � g~c! �
H~`! has a range containing 1+ Then, there exists a point cH � 0 satisfying
E @H~e0cH

102!# � 1 that is assumed unique in ~3+1!+ Consequently, the scale-
invariant M-estimator based on H actually estimates u0H +

In other words, the assumption E @H~e0cH
102!# � 1 is essentially an identifia-

bility condition and determines what the M-estimator can consistently estimate+
It is used for showing that n�1M̂n~u0H ! r 0 almost surely ~a+s+! in ~A+21! in
the Appendix+ It corresponds to the identification condition that the quasi-log-
likelihood have a unique maximum at the true conditional mean and relative
scale parameters as considered by Newey and Steigerwald ~1997! and Berkes
and Horvath ~2004!+ Li and Turtle ~2000, p+ 177! imposed a similar condition
on the conditional fourth moment of Xt ’s+

Bougerol and Picard ~1992! discussed necessary and sufficient conditions for
the existence of a stationary solution to ~1+1! and ~1+2!+ Giraitis, Kokoszka, and
Leipus ~2000! discussed necessary and sufficient conditions for a stationary solu-
tion under E~X1

2! � `+

To state our main results on Zun of ~2+8!, define the score function factor

s 2~H ! :� 4 var $H~e0cH
102!%0@E $~e0cH

102!Ĥ~e0cH
102!%# 2,

where var $H~e0cH
102!% is assumed to be positive in the moment condition+ Also,

define

G :� E $ _v1~u0H ! _v1
' ~u0H !0v1

2~u0H !%+

THEOREM 3+1+ Suppose that the model assumptions, the identifiability con-
dition, the moment conditions, and the smoothness conditions SM1–SM3 hold.
Then

n102~ Zun � u0H !r N @0,s 2~H !G�1 # . (3.9)
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Remark 3.2. The preceding result states that using the score function H
we can consistently estimate u0H + With H~x! � x 2 , cH � E~e2!, and hence,
using the QMLE, we can consistently estimate @E ~e 2 !v0 ,E ~e 2 !a01, + + + ,
E~e2!a0p,b01, + + + ,b0q#

' + Note that E~e2! � 1 is a standard assumption in the
literature, except in Berkes and Horvath ~2004!, where known value of cH is
assumed for different H+ Hence, when the error variance is unity, we can esti-
mate u using the QMLE+ We can estimate u using any other score function H
whenever cH � 1 for the corresponding error distribution+

Note that Theorem 3+1 is derived under weak moment assumptions on the
error distribution+We imposed conditions on the score function H that, in most
examples discussed in Section 4, are translated to very mild moment assump-
tions on the error distribution+ In Example 6, existence of Condition ~2+1! is
enough to have asymptotic normality of the estimators, where k can be a frac-
tion and need not even be of known value+

Consistent estimator of s 2~H !G�1 can be obtained as follows+ From ~2+6!
and ~A+2! of the Appendix, et 0cH

102 � Xt 0vt
102~u0H !+ Because

s 2~H ! � 4@E $H~e0cH
102!%2 � 1# @E $~e0cH

102!Ĥ~e0cH
102!%#�2,

it can be estimated based on residuals by

Zs 2~H ! � 4�~10n!�
t�1

n

$H~Xt 0 [vt
102~ Zun !!%

2 ��~10n!�
t�1

n

H~Xt 0 [vt
102~ Zun !!�2�

� �~10n!�
t�1

n

$~Xt 0 [vt
102~ Zun !!Ĥ~Xt 0 [vt

102~ Zun !!%��2

+

Also, G�1 can be estimated by ~ ZG!�1 where

ZG � ~10n!�
t�1

n

$ _ [vt ~ Zun ! _ [vt
'~ Zun !0 [vt

2~ Zun !%+

The following result is obtained by strengthening ~3+4! to

E $L~e0cH
102!% � ` (3.10)

and also under the condition

E~X0
2! � `+ (3.11)

PROPOSITION 3+1+ In addition to the assumptions and conditions of Theo-
rem 3.1, assume that (3.10) and (2.11) hold. Then Zs 2~H !~ ZG!�1 converges in
probability to s 2~H !G�1.

Remark 3.3. Note that ~3+10! does not impose any extra condition on the
error distributions for the six examples discussed in the next section+ Condition

M -ESTIMATION IN GARCH MODELS 1537



~3+11! is standard in the literature for proving the asymptotic normality of esti-
mators; see, for example, Giraitis et al+ ~2000!, Hall and Yao ~2003!, and Peng
and Yao ~2003!+ However, we assumed this condition only to estimate the asymp-
totic standard errors ~SEs! of the M-estimators+ It is stronger than ~2+1! when,
for example, k is a fraction+

4. DISCUSSION ON EXAMPLES

We now discuss the results of Section 3 with the following choices of c+

Example 1

LAD+ Assume that

E~e1
2! � `+ (4.1)

Here ~3+1! holds with cH
102 � E~6e 6!+ Under ~4+1!, ~3+2! holds+ Because

6H~es!� H~e!6 � a6e 6 6~s � 1!6� a6e 6 6~s � 1!6~s � 1!� a6e 6 6s 2 � 16,

~3+3! is satisfied with L~e! � 6e 6+ Because E6e 6 � `, ~3+4! holds+ Because
Ĥ~es! � Ĥ~e! � 0, ~3+5! is satisfied with, say, L~e! � 1+ Consequently, condi-
tions ~3+6!–~3+8! are trivially satisfied+

Remark 4.1. Peng and Yao ~2003! defined three different types of LAD esti-
mators based on regression relationships after a reparametrization so that the
errors or their appropriate functions have median zero+ The LAD of this paper
is defined without assuming such relationship because, in practice, the error
distribution is unknown+ Peng and Yao ~2003, Remark 1! did mention that a
LAD estimator of our Example 1 can be considered, but its asymptotic proper-
ties are complex and this was not pursued+

Example 2

Huber’s estimator+ Assume that

E~e1
2! � `+ (4.2)

To verify ~3+1!, define a function g on ~0,`! by

g~c! :� E @H~ce!#� c2�
�k0c

k0c

x 2 f ~x! dx � kc�
k0c

`

xf ~x! dx

� kc�
�`

�k0c

~�x! f ~x! dx+
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Note that under ~4+2!, limcr0� g~c! � 0 and limcr` g~c! � `+ Moreover, g is
continuous and strictly increasing because

_g~c! � 2c�
�k0c

k0c

x 2 f ~x! dx � c2$~�k0c2 !~k0c!2 f ~k0c!� ~k0c2 !~�k0c!2 f ~�k0c!%

� k�
k0c

`

xf ~x! dx � kc~�k0c2 !~k0c! f ~k0c!

� k�
�`

�k0c

~�x! f ~x! dx � kc~k0c2 !~k0c! f ~�k0c!

� 2c�
�k0c

k0c

x 2 f ~x! dx � k�
k0c

`

xf ~x! dx � k�
�`

�k0c

~�x! f ~x! dx � 0+

Hence cH in ~3+1! is unique+ Under ~4+2!, ~3+2! holds+ Next we verify ~3+3! with
L~e! � e2 + Here

H~es!� H~e! � e2s 2I ~6e 6� k0s!� k 6es6I ~6e 6 � k0s!� e2I ~6e 6� k!

� k 6e 6I ~6e 6 � k!+

Case 1. 6e 6 � k0s and 6e 6 � k+ Here H~es! � H~e! � e2~s 2 � 1!+

Case 2. 6e 6 � k0s and 6e 6 � k+ Here s � 1; H~es! � H~e! � ~es!2 � k �
�6e 6 � ~k!2 � k � �k � 0+ Hence 6H~es! � H~e!6 � k � 6e 6 � e2s 2 � 6e 6 �
6e 6 � e2s 2 � e2~1 � s 2!+

Case 3. 6e 6 � k0s and 6e 6� k+ Here s � 1; H~es!� H~e!� k � 6es6� e2 �
k � k � k 2 � 0+ Hence 6H~es! � H~e!6 � k � 6es6 � e2 � 6es6 � 6es6 � e2 �
e2~s 2 � 1!+

Case 4. 6e 6 � k0s and 6e 6 � k+ Here H~es! � H~e! � k 6e 6~s � 1!, and so

6H~es!� H~e!6 � k � 6e 6 6~s � 1!6� 6e 6� 6e 6 6~s � 1!6~s � 1!� e2 6s 2 � 16+

In a similar fashion one can verify ~3+5! and ~3+6! with L~e!� C 6e 6 where C is
a large positive constant and ~3+7! and ~3+8! with L*~e! � C 6e 6+

Example 3

QMLE+ Assume that

E~e4 ! � `+ (4.3)

Here ~3+1! holds with cH � E~e2!+ Under ~4+3!, ~3+2! holds+ Assumptions ~3+3!
and ~3+4! hold with L~e!� e2, and ~3+5! and ~3+6! hold with L~e!� 26e 6+ Finally,
~3+7! and ~3+8! hold with L*~e! � 26e 6+
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Example 4

MLE+ Note that integration by parts yields that E @H~e!# � 1 and so cH � 1
under the uniqueness assumption+ The validity of ~3+2!–~3+8! needs to be veri-
fied when the explicit form of f0 is given+

Example 5

Exponential PMLE+ Assume that

E6e 62b � `+ (4.4)

Under ~4+4!, ~3+1! and ~3+2! hold with cH � $aE6e 6b%20b + Also ~3+3! and ~3+4!
hold with L~e! � a 6e 6b + Using sign ~es! � sign ~e! sign ~s! and s � 0, ~3+5!
and ~3+6! hold with L~e! � ab 6e 6b�1 + Finally, using the mean value theorem
on the function g~s! � ~1 � s!b�1 at s � 0, ~3+7! and ~3+8! hold with L*~e! �
ab~b � 1!6e 6b�1 +

The usefulness of the preceding estimators can be further demonstrated by
considering a family of t-density with n � 0 degrees of freedom where the
density of the error random variable e is proportional to

~1 � x 20n!�~n�1!02+ (4.5)

Note that E6e 6m � ` for all 0 � m � n, E~e! � 0 for n � 1, and Var~e! �
n0~n � 2! for n � 2+

When ~2 � n � 4!, for any b such that 2 � 2b � n, E6e 62b � ` but
Ee4 � `+ Therefore, the PMLE satisfies ~3+9!, whereas the asymptotic nor-
mality of the QMLE does not hold+

Example 6

Cauchy PMLE+ For ~3+1!, consider the function g~c!� E $6e 60~c � 6e 6!% + Note
that g~0!� 1 and by the bounded convergence theorem limcr` g~c!� 0+More-
over, assuming that the differentiation and expectation can be interchanged,

_g~c! � �E $6e 60~c � 6e 6!2 % � 0+

Hence there is a unique c satisfying g~c! � 10l, and thus ~3+1! is verified+
Because

6H~es!� H~e!6 � 6�$l 6e 6 6s � 16%0$~1 � 6e 6s!~1 � 6e 6!%6

� l$6e 60~1 � 6e 6!%6s � 16 � l 6s 2 � 16,

~3+3! and ~3+4! hold with L~e! � l+ Similarly, ~3+5! and ~3+6! hold with a con-
stant function L, and so ~3+7! and ~3+8! hold trivially+
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The preceding class of estimators is useful for error distributions for which k
in ~2+1! is possibly a fraction and even unknown+ For illustration, suppose that
the error density satisfies ~4+5! for some unknown n with 0 � n � 4+ Because
~2+1! holds with k � n02, the estimator based on any known l � 1 satisfies
~3+9!, whereas the asymptotic normality of the QMLE does not hold+

5. SIMULATION AND DATA ANALYSIS

Simulation study+ We simulated n observations from a GARCH~1,1! model of
~1+1! and ~1+2! R times ~replication! and computed the QMLE, LAD, and Huber’s
estimates with k � 1+5 for each replication+ We use variants of the iteratively
weighted least squares method to compute these three M-estimates+ These meth-
ods are motivated by an algorithm proposed by Mak, Wong, and Li ~1997! to
compute the QMLE for a general nonlinear time series model with conditional
heterogeneous variances; for details of our algorithms and the corresponding
programs written using the software R, see Iqbal and Mukherjee ~2007!+ We
report here the simulation results when the true parameters are v0 � 1+5,
a0 � 0+15, and b0 � 0+55 and ~i! Scheme N where the error distribution is
standard normal and ~ii! Scheme T where the error distribution is a standard-
ized t-distribution with 4 degrees of freedom; for simulation results under other
parameter combinations and error distributions, see Iqbal and Mukherjee ~2007!+

In Table 1, we have reported mean squared errors ~MSEs! based on R repli-
cations with score function H when ~i! H~x! � x 2 ~QMLE!, ~ii! H~x! � 6x 6
~LAD!, and ~iii! the Huber’s score function with k � 1+5+ From ~3+9!, ~i! the
QMLE estimates ~v0,a0,b0!, ~ii! the LAD estimates ~cLv0, cLa0,b0! where
cL � 20p under Scheme N and 0+55 under Scheme T, and ~iii! the Huber’s
score estimates ~cHUv0, cHUa0,b0! where cHU � 0+825 under Scheme N and
cHU � 0+725 under Scheme T+ Note that in the last few cases, cL and cHU do not
have closed form expressions and so their numerical values are obtained by
solving equations that are a law of large numbers version of ~3+1!, namely,
~10I !�i�1

I $H~ei 0c102 !%� 1 � 0, using the simple bisection method for solving
univariate equations+ Finally, for example, the MSE of the Huber’s estimator of
v is computed as �r�1

R ~ [vr � cHUv0!
20R where [vr is the Huber’s estimate from

the r th replication, 1 � r � R+

Table 1. Estimated MSEs of the M-estimators in the GARCH~1,1! model

Scheme N n � 1,000 R � 21 Scheme T n � 1,000 R � 71

Estimand QMLE LAD Huber QMLE LAD Huber

cHv 0+3768809 0+1484265 0+2208393 0+9456990 0+0907649 0+1785953
cHa 0+0018090 0+0007984 0+0016491 0+0079990 0+0008005 0+0021937
b 0+0214904 0+0215348 0+0227471 0+0443205 0+0239880 0+0277554
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Discussion+ From Table 1 and some other simulation results it turns out that
even for normal error density and large n, the QMLE performs worse than the
LAD with the exception that it performs slightly better while estimating b+ Under
Scheme T when the fourth moment of the error density is infinite, the perfor-
mance of the QMLE is even worse, as expected, and in this case LAD outper-
forms the Huber’s estimator also+

IBM data and estimates+ Next we consider the monthly log returns of IBM
stock from 1926 to 1999 ~888 observations $rt ,1 � t � n � 888% with r1 �
�1+0434 and rn � 4+5633!+ Tsay ~2005, Ch+ 3, Examp+ 3+4! has analyzed this
important data set and fitted various types of conditional heteroskedastic mod-
els to it+ The data can be found at http:00faculty+chicagogsb+edu0ruey+tsay0
teaching0fts20m-ibmsplnsu+dat+ Tsay ~2005! used an autoregressive model of
order one with intercept and with GARCH~1,1! errors to model these data
as rt � m � rrt�1 � Xt with Xt � st et and st

2 � v0 � a0 Xt�1
2 � b0st�1

2 ,
1 � t � n+ Using the Gaussian likelihood for errors, Tsay ~2005! obtained [m�
1+23, [r� 0+099, [v0 � 3+206, [a0 � 0+103, and Zb0 � 0+825 with respective stan-
dard errors ~SEs! 0+222, 0+037, 0+947, 0+021, and 0+037+ To compare M-estimates
with Tsay’s estimates, we use $rt�1 � 1+23 � 0+099rt ,1 � t � ~n � 1!% as our
observations and compute ~i! the QMLE, ~ii! the LAD, and ~iii! the Huber’s
estimate with k � 1+5 for the parameters of the GARCH~1,1! model+ In Table 2
we report M-estimates and their estimated SEs+

Discussion+ The QMLE estimates that we obtained are slightly different from
those of Tsay ~2005! for two main reasons+ First, Tsay ~2005! performed sim-
ultaneous estimation of intercept and other parameters of the autoregressive
and GARCH~1,1! models, whereas we assumed that the intercept and slope
parameters of the autoregressive models are known+ Second, Tsay assumed
E~e2! � 1, whereas we just assumed that E~e2! � `+ From Remark 3+2, the
QMLE actually estimates ~E~e2!v0,E~e2!a0,b0!+ Under E~e2! � 1, it esti-
mates ~v0,a0,b0!+

Notice that in a GARCH~1,1! model, any M-estimator should consistently
estimate the third coordinate of u0H � ~cHv0, cHa0,b0! and this is reflected in
the last row of Table 2 as the three different M-estimates are 0+84, 0+86, and
0+81 which are quite close to each other+

Table 2. QMLE, LAD, and Huber’s estimates from the IBM data and
their SEs

Parameter QMLE SE LAD SE
Huber’s
estimate SE

cHv 2+9606623 1+3854702 2+0682954 0+9445278 2+8448848 1+1873861
cHa 0+0974596 0+0309250 0+0912957 0+0251676 0+1236431 0+0323297
b 0+8357814 0+0529580 0+8598516 0+0391407 0+8109211 0+0493048
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6. CONCLUSIONS

In this paper we showed, among other things, that using the commonly used
QMLE, we can consistently estimate the parameters of the GARCH models
only up to a multiplicative constant when fourth moment exists for the error
distributions+ However, under the existence of some fractional error moment, it
is still possible to estimate consistently scaler multiples of the GARCH param-
eters; what we estimate depends very much on the score function used for esti-
mation, and this is different from what we observe in the M-estimation of
parameters in the usual linear regression and autoregressive models+
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APPENDIX

In this section, first we state several results from BHK that will be useful in deriving the
theoretical results of this paper+ Throughout, C, C1, and so on, will denote generic pos-
itive constants whose values will possibly change from expression to expression+

Fact 1+ Let $~At ,Bt ,Ct !; t � 0% be a sequence of identically distributed random vari-
ables+ If E log� A0 � E log� B0 � E log� C0 � `, then for any 6r 6 � 1,

�
t�0

`

~At � Bt Ct !r
t converges with probability 1+ (A.1)

Consider the variance function vt~u! � c0~u! � �j�1
` cj ~u!Xt�j

2 defined in ~2+3!+
Fact 2+ The coefficients $cj~u!% and vt~u! are differentiable in the interior Q0 of Q for

all t � Z+ Moreover,

vt ~u0H ! � cH vt ~u0 !+ (A.2)

Fact 3+ Let 0 � u* � 1 be defined by

u* � min$v,a1, + + + ,ap ,b1, + + + ,bq ; u� @v,a1, + + + ,ap ,b1, + + + ,bq #
' � Q%+

Then there is a number 0 � r � 1 such that ∀u � Q0,

C1~u* !
j � cj ~u!� C2~r!

j, ∀j � 0, (A.3)

6 _cj ~u!6 � C3~r!
j, ∀j � 0, (A.4)

and

6 ]cj ~u!6 � C4 r
j, ∀j � 0+ (A.5)
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Fact 4+ There exist random variables Z0 and Z1, both independent of $et ; t � 1% , such
that

0 � vt ~u!� [vt ~u!� r t Z0 (A.6)

and

6 _vt ~u!� _ [vt ~u!6 � r t Z1+ (A.7)

Fact 5+ For any n � 0

E @sup $6 _v1~u!0v1~u!6n u � Q0 %# � ` (A.8)

and

E @sup $6 ]v1~u!0v1~u!6nu � Q0 %# � `+ (A.9)

Let h~x! � ~ 12
_ !$1 � H~x!% and G~x! � xĤ~x!+ Using

G~es!� G~e! � se$Ĥ~es!� Ĥ~e!%� eĤ~e!~s � 1!

and

G~es1!� G~es2 ! � ~s1 � s2 !e$Ĥ~es1!� Ĥ~e!� Ĥ~e!%

� es2 $Ĥ$~s1 0s2 !~es2 !%� Ĥ~es2 !%

and the smoothness conditions SM1–SM3, we obtain the following facts+
Fact 6+

6G~es!� G~e!6 � 6s � 16 6e 6$sL~e!� 6Ĥ~e!6%, (A.10)

and

6G~es1!� G~es2 !6 � 6s1 � s2 6 6e 6$6s1 � 16L~e!� 6Ĥ~e!6� L~es2 !%+ (A.11)

There are several ways to derive the asymptotic distribution of estimators obtained
through the roots of certain equations+ In the present case the criterion equations of
~2+8! are smooth functions of u+ Hence to derive the asymptotic distribution of Zun we
use a modified result of Klimko and Nelson ~1978, Thm+ 2+1, Cor+ 2+1 and Thm+ 2+2!
that discusses the asymptotic distribution of a sequence of solutions $ [an% to some esti-
mating equations defined by a smooth criterion function $Qn% + See also Hall and Heyde
~1980!+

Accordingly, let Qn;S r IR be a criterion function where S is a compact subset
of IRd + Let Qn be twice differentiable with respect to a in a d-neighborhood
$a; 7a � a07 � d% � S of a0 � S with partial derivatives Q̂n and \Qn and having the
following representation:
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Qn~a! � Qn~a0 !� ~a� a0 !
'Q̂n~a0 !� �1

2
�~a� a0 !

' \Qn~a0 !~a� a0 !

� �1

2
�~a� a0 !

'Tn~a
* !~a� a0 !, (A.12)

where a * is an intermediate point satisfying 7a * � a07 � d and Tn~a *! � \Qn~a *! �
\Qn~a0!+ Suppose that a0 � S is the true parameter with the following properties:

n�1Q̂n~a0 !r 0 in probability, (A.13)

~2n!�1 \Qn~a0 !r VQ in probability for some positive definite matrix VQ , (A.14)

lim
nr`

lim
dr0�

sup $~nd!�1 6Tn~a
* !6; 7a * � a07 � d% � ` a+s+ (A.15)

Define a sequence of estimators $ [an% � S as a solution of the set of equations

Q̂n~ [an ! � 0+ (A.16)

THEOREM KN ~Klimko and Nelson!+ Suppose that (A.12)–(A.15) hold. Then the
following conditions hold:

(i) for every e � 0, there is an event E with P~E ! � 1 � e and an n0 such that for
all n � n0, $ [an% satisfies the equation (A.16) and Qn attains a relative minimum
at $ [an% on E. Moreover, [an r a0 in probability.

(ii) In addition, if for some positive definite matrix WQ,

�1

2
�n�102Q̂n~a0 !n N @0,WQ # , (A.17)

then

n102~ [an � a0 !n N @0,VQ
�1 WQ VQ

�1# . (A.18)

Idea of the Proof of Theorem 3.1. Define a function r by r~x! � 	0
xc~t ! dt for

x � 0 and r~x! � r~�x! for x � 0+ Define

mt ~u! � r$Xt 0vt
102~u!%� �1

2
� log vt ~u!, Mn~u!� �

t�1

n

mt ~u!,

[mt ~u! � r$Xt 0 [vt
102~u!%� �1

2
� log [vt ~u!, and ZMn~u!� �

t�1

n

[mt ~u!+

Notice that

M̂n~u! � �
t�1

n �1

2
�$1 � H$Xt 0vt

102~u!%%$ _vt ~u!0vt ~u!%
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and

^ZMn~u! � �
t�1

n �1

2
�$1 � H$Xt 0 [vt

102~u!%%$ _ [vt ~u!0 [vt ~u!%+

Hence, in view of ~A+16!, un from ~2+7! and Zun from ~2+8! can also be considered as
~noncomputable or computable! “M-estimators,” based on criterion functions Mn and
ZMn, respectively+ Therefore, our proof is based on verifications of the conditions of Theo-

rem KN for the criterion functions ZMn+ We do these in two steps+ First we verify the
conditions of Theorem KN for the criterion functions Mn, and then we show that the
difference between ZMn and Mn is small+

Condition ~A+12! is verified for both Mn and ZMn using the differentiability of the
score function H+ To verify ~A+13! for Mn, we use the identifiability condition, whereas
to verify the same for ZMn, we use the smoothness properties of $cj~u!% , Fact 4, and
Fact 6+ Model assumptions involving stationarity and ergodicity of $Xt % and moment
conditions are used in the verification of ~A+14! for Mn, and the smoothness conditions
are used to control the difference between \ZMn~u!� \Mn~u!+ Finally, verification of ~A+15!
is long and is done directly for ZMn; it uses Facts 1–3 to obtain different bounds on
$vt~u! � [vt~u!% and their derivatives and also uses Fact 5+

Verification of (A.12). Note that

_mt ~u! � h$Xt 0vt
102~u!%$ _vt ~u!0vt ~u!%, _[mt ~u!� h$Xt 0 [vt

102~u!%$ _ [vt ~u!0 [vt ~u!%, (A.19)

]mt ~u! � �1

4
�G$Xt 0vt

102~u!%$ _vt ~u! _vt
'~u!0vt

2~u!%

� h$Xt 0vt
102~u!%$vt ~u! ]vt ~u!� _vt ~u! _vt

'~u!%0vt
2~u!,

and

][mt ~u! � �1

4
�G$Xt 0 [vt

102~u!%$ _ [vt ~u! _ [vt
'~u!0 [vt

2~u!%

� h$Xt 0 [vt
102~u!%$ [vt ~u! ] [vt ~u!� _ [vt ~u! _ [vt

'~u!%0 [vt
2~u!+

Hence ~A+12! is satisfied+ �

Verification of (A.13). Here we consider the criterion function ZMn~u! at a0 � u0H

and show that M̂n~u0H !0n � op~1! and

$ ^ ZMn~u!� M̂n~u!%0n � op~1!, ∀u � Q0 + (A.20)

From ~A+2!

Xt 0$vt ~u0H !%
102 � Xt 0$cH vt ~u0 !%

102 � et 0cH
102 ,
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and so we get from ~A+19!

~10n!M̂n~u0H ! � ~10n!�
t�1

n

@h~et 0cH
102!$ _vt ~u0H !0vt ~u0H !%# + (A.21)

Note that $h~et 0cH
102!$ _vt ~u0H !0vt ~u0H !%; t � 1% is a stationary ergodic sequence of vec-

tors+ Moreover, the independence of vt~u0H ! and et , ∀t � Z, ~3+1!, and ~A+8! with n� 1
imply that the vectors have zero mean+ Hence M̂n~u0H !0n r 0 a+s+

Because for vectors vvvv, [vvvv and real numbers h, Zh,

6hvvvv� Zh [vvvv6 � 6h � Zh 6 6vvvv6� 6h 6 6vvvv� [vvvv6� 6vvvv� [vvvv6 6h � Zh 6,

we get from ~A+19!

6 _mt ~u!� _[mt ~u!6 � 6h$Xt 0vt
102~u!%� h$Xt 0 [vt

102~u!%6 6$ _vt ~u!0vt ~u!%6

� 6h$Xt 0vt
102~u!%6 6$ _vt ~u!0vt ~u!%� $ _ [vt ~u!0 [vt ~u!%6

� 6$ _vt ~u!0vt ~u!%� $ _ [vt ~u!0 [vt ~u!%6 6h$Xt 0vt
102~u!%� h$Xt 0 [vt

102~u!%6

� T1t ~u!� T2 t ~u!� T3t ~u!, say+

For T1t , apply the mean value theorem on the function g~v! � h$Xt 0v102% with deriva-
tive _g~v! � ~ 12

_ !~10v!$�Xt 0v102% ĥ$Xt 0v102% + Note that �xĥ~x! � G~x!02 and let u* �
[vt~u! � jt~u! � vt~u! denote the intermediate points of the mean value theorem+ Then

using ~A+6! in the first inequality and ~A+10! in the third inequality,

T1t ~u! � ��1

4
�$vt ~u!� [vt ~u!%$10jt ~u!%G$Xt 0jt

102~u!%�6$ _vt ~u!0vt ~u!%6
� C1 Z0 r

t$6 _vt ~u!0vt ~u!6%6G$Xt 0jt
102~u!%6

� C1 Z0 r
t 6$ _vt ~u!0vt ~u!%6$6G$Xt 0jt

102~u!%� G~et 0cH
102!6� 6G~et 0cH

102!6%

� CZ0 r
t$6 _vt ~u!0vt ~u!6%

� @6~st cH
102!0jt

102~u!� 16$$~st cH
102!0jt

102~u!%6et 0cH
102 6L~et 0cH

102!

� 6et 0cH
102 6 6Ĥ~et 0cH

102!6%� 6G~et 0cH
102!6#

� C1r
t Z0 $6 _vt ~u!0vt ~u!6%@~st � C2 !$st 6et 0cH

102 6L~et 0cH
102!

� 26et 0cH
102 6 6Ĥ~et 0cH

102!6%# +

Using ~A+8! and other moment conditions on L and Ĥ, and so on, and finally ~A+1!, we
get �t�1

n T1t ~u! � Op~1! and hence n�1 �t�1
n T1t ~u! � op~1!+
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For T2 t~u! we first bound 6$ _vt~u!0vt~u!% � $ _ [vt~u!0 [vt~u!%6+ Because for vectors w, [w
and real numbers v � 0, [v � 0,

6~w0v!� ~ [w0 [v!6 � $6w � [w 60 [v%� ~10 [v!6v� [v6 6w0v6,

we get using ~A+6! and ~A+7!

6$ _vt ~u!0vt ~u!%� $ _ [vt ~u!0 [vt ~u!%6

� 6 _vt ~u!� _ [vt ~u!60 [vt ~u!� $10 [vt ~u!%6vt ~u!� [vt ~u!6$6 _vt ~u!60vt ~u!%

� Cr t @Z1 � Z0 $6 _vt ~u!60vt ~u!%# + (A.22)

Moreover, 6h$Xt 0vt
102~u!%6 is bounded by

6h$Xt 0vt
102~u!%� h~et 0cH

102!6� 6h~et 0cH
102!6

� C @$L~et 0cH
102!~st

2 � 1!%� $6H~et 0cH
102!6� C1%# +

Therefore

T2 t ~u! � Cr t @Z1 � Z0 $6 _vt ~u!60vt ~u!%#$L~et 0cH
102!~st

2 � 1!� 6H~et 0cH
102!� C16%,

and hence �t�1
n T2 t ~u!� Op~1!+ Therefore n�1 �t�1

n T2 t ~u!� op~1!+ In a similar fashion,
we can show that n�1 �t�1

n T3t ~u! � op~1!+ Therefore ~A+20! is satisfied+ �

Verification of (A.14). Note that

\Mn~u0H ! � �1

4
��

t�1

n

@Ĥ~et 0cH
102!~et 0cH

102!$ _vt ~u0H ! _vt
'~u0H !0vt

2~u0H !%#

� �
t�1

n

@h~et 0cH
102!$vt ~u0H ! ]vt ~u0H !� _vt ~u0H ! _vt

'~u0H !%0vt
2~u0H !# +

Similar to ~A+21!, \Mn~u0H !0~2n! r V, where

V � IaG and Ia � E $~e0cH
102!Ĥ~e0cH

102!%08 � 0, (A.23)

by ~3+2!+ Moreover, similar to ~A+20!,

$ \ ZMn~u!� \Mn~u!%0n � op~1!, ∀u � Q0 + (A.24)

Hence ~A+14! is satisfied with V :� VM � IaG+ �

Verification of (A.15). Here, unlike using the triangulation by Mn~u! as in ~A+20!
and ~A+24!, we will verify ~A+15! directly for ZMn~u!+We will bound ~nd!�1 6Tn~u!6 by a
sequence of random variables that are free from d and of the form of the average of
stationary random variables with finite expectation and hence are finite a+s+

Note that a d-neighborhood of u0H is Nd � $u0H � dw; 7w7 � 1% , d � 0+ In what
follows, the supremum is taken on u � Nd+
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First, using the mean value theorem on the function g~u!� [v�102~u! with intermedi-
ate points Du0H ,

$10 [vt ~u!%102 � $10 [vt ~u0H !%
102 � �1

2
�~u� u0H !

' _ [vt ~ Du0H !0$ [vt ~ Du0H !%
302+

Because the coefficients $cj~u!% are continuously differentiable functions,

lim
uru0H

[vt ~u! � lim
uru0H

�c0~u!� �
j�1

t�1

cj ~u!Xt�j
2 �� [vt ~u0H !+

Hence substituting u � u0H � dw, with 7w7 � 1,

lim
dr0�

sup $d�1 6$10 [vt ~u!%102 � $10 [vt ~u0H !%
102 6% � C 6 _ [vt ~u0H !60$ [vt ~u0H !%

302+ (A.25)

Next

\ ZMn~u!� \ ZMn~u0H !

� �1

4
��

t�1

n

@$G$Xt 0 [vt
102~u!%� G$Xt 0 [vt

102~u0H !%%� $ _ [vt ~u! _ [vt'~u!0 [vt2~u!%#

� �
t�1

n

@G$Xt 0 [vt
102~u0H !%$$ _ [vt ~u! _ [vt'~u!0 [vt2~u!%� $ _ [vt ~u0H ! _ [vt

'~u0H !0 [vt
2~u0H !%%#

� �
t�1

n

@$h$Xt 0 [vt
102~u!%� h$Xt 0 [vt

102~u0H !%%$ _ [vt ~u! _ [vt'~u!� [vt ~u! ] [vt ~u!%0 [vt2~u!#

� �
t�1

n

@h$Xt 0 [vt
102~u0H !%

� $$ _ [vt ~u! _ [vt'~u!� [vt ~u! ] [vt ~u!%0 [vt2~u!

� $ _ [vt ~u0H ! _ [vt
'~u0H !� [vt ~u0H ! ] [vt ~u0H !%0 [vt

2~u0H !%#

� �1

4
�S1 � S2 � S3 � S4 , say+

To handle S1 � S1~n,d!, use ~A+11! with s2 � cH
102st 0$ [vt ~u0H !%

102 � $vt~u0H !0
[vt~u0H !%

102 and s1 � cH
102st 0$ [vt ~u!%102 to get

6S16 � cH
102 �

t�1

n

$6$10 [vt ~u!%102 � $10 [vt ~u0H !%
102 6%st

� @$6cH
102st 0$ [vt ~u!%102 � 16 6et 0cH

102 6L~et 0cH
102!%� $6et 0cH

102 6 6Ĥ~et 0cH
102!6%

� $6et 0cH
102 6L~$et 0cH

102%$vt ~u0H !0 [vt ~u0H !%
102 !%#$6 _ [vt ~u! _ [vt'~u!0 [vt2~u!6%+
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Let ut � cH
102st 0$ [vt ~u0H !%

102 � $vt~u0H !0 [vt~u0H !%
102 and notice that

0 � ut
2 � 1 � $vt ~u0H !� [vt ~u0H !%0 [vt ~u0H !� CZ0 r

t (A.26)

and

0 � ut � 1 � ut
2 � 1 � $vt ~u0H !� [vt ~u0H !%0 [vt ~u0H !� CZ0 r

t+ (A.27)

Now using ~A+25!,

n�1 lim
dr0�

sup $d�1 6S16%

� Cn�1 �
t�1

n

@$6 _ [vt ~u0H !60$ [vt ~u0H !%%$st 0$ [vt ~u0H !%
102 %

� $$6cH
102st 0$ [vt ~u0H !%

102 � 16 6et 0cH
102 6L~et 0cH

102!%

� $6et 0cH
102 6 6Ĥ~et 0cH

102!6%

� $6et 0cH
102 6L~$et 0cH

102%$vt ~u0H !0 [vt ~u0H !%
102 !%%

� $6 _ [vt ~u0H ! _ [vt
'~u0H !0 [vt

2~u0H !6%#

� Cn�1 �
t�1

n

@$6 _ [vt ~u0H !60$ [vt ~u0H !%%ut

� $$6ut � 16 6et 0cH
102 6L~et 0cH

102!%

� $6et 0cH
102 6 6Ĥ~et 0cH

102!6%%� $6 _ [vt ~u0H ! _ [vt
'~u0H !0 [vt

2~u0H !6%#

� Cn�1 �
t�1

n

@$6 _ [vt ~u0H !60 [vt ~u0H !%ut

� $6et 0cH
102 6L~$et 0cH

102%ut !%$6 _ [vt ~u0H ! _ [vt
'~u0H !0 [vt

2~u0H !6%#

� S11 � S12 , say+

Consider S11 first+ As in ~A+22!,

6 _ [vt ~u0H !60 [vt ~u0H ! � $6 _vt ~u0H !60vt ~u0H !%� Cr t @Z1 � Z0 $6 _vt ~u0H !60vt ~u0H !%# ,

and in a similar fashion, one can get a bound on 6 _ [vt ~u0H ! _ [vt
'~u0H !0 [vt

2~u0H !6 in terms of
6 _vt ~u0H ! _vt

'~u0H !0vt
2~u0H !6 plus additional terms involving r t +

Next notice that

~C1r
t � C2 !~C3 r

t � C4 ! � ~C5 r
t � C6 !

for some large constants C5 and C6+ Hence using ~A+26! and ~A+27!, S11 can be bounded
by averages of the variables of the form
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~Z3 r
t � Z4 !$6 _vt ~u0H !60vt ~u0H !%$6 _vt ~u0H ! _vt

'~u0H !60vt
2~u0H !%

� @$6et 0cH
102 6L~et 0cH

102!%� $6et 0cH
102 6 6Ĥ~et 0cH

102!6%# ,

where Z3 and Z4 are finite a+s+, $6 _vt~u0H !60vt~u0H !% is independent of et for each t, and
the moments of 6et 0cH

102 6L~et 0cH
102!, $6et 0cH

102 6 6Ĥ~et 0cH
102!6% , and $6 _vt~u0H !0vt~u0H !6n%

exist+ Taking random variables Z3, Z4 outside the summation and then taking expecta-
tion of the average of stationary random variables, we notice that the expectation is
finite+ Hence S11 is finite a+s+

Next consider S12+ Using ~3+8! in the second inequality and ~A+27! in the third
inequality,

6S12 6 � ~Z5 r
t � Z6 !$6 _vt ~u0H !60vt ~u0H !%$6 _vt ~u0H ! _vt

'~u0H !60vt
2~u0H !%

� @$6et 0cH
102 6$6L~$et 0cH

102%~1 � ~ut � 1!!!� L~et 0cH
102!6%%

� 6et 0cH
102 6L~et 0cH

102!#

� ~Z5 r
t � Z6 !$6 _vt ~u0H !60vt ~u0H !%$6 _vt ~u0H ! _vt

'~u0H !60vt
2~u0H !%

� @6et 0cH
102 6L*~et 0cH

102!@ut � 1#� 6et 0cH
102 6L~et 0cH

102!#

� ~Z5 r
t � Z6 !$6 _vt ~u0H !60vt ~u0H !%$6 _vt ~u0H ! _vt

'~u0H !60vt
2~u0H !%

� @6et 0cH
102 6L*~et 0cH

102!r t Z0 � 6et 0cH
102 6L~et 0cH

102!# +

Hence S12 is finite a+s+ A similar trick can be used to verify ~A+15! for S3+ To verify
~A+15! for S2 we can get a d-factor by applying the mean value theorem entrywise on
the difference of matrices

$$ _ [vt ~u! _ [vt'~u!0 [vt2~u!%� $ _ [vt ~u0H ! _ [vt
'~u0H !0 [vt

2~u0H !%%

and then using triangulation, inequalities of the form ~A+10!, and expectation on the
average of stationary terms+ The same trick can be applied on S4+

Therefore, by Theorem KN~i!, Zun is consistent for u0H +
Now, using the independence of vt~u0H ! and et and ~3+1!, it is easy to see that M̂n~u0H !

of ~A+21! is a sum of the vectors of the martingale difference arrays+ Hence using the
martingale central limit theorem ~see, e+g+, Hall and Heyde, 1980!, ~A+17! is satisfied+
To get W of ~A+17!, note that

~16n!�1 �
t�1

n

$ _vt ~u0H ! _vt
'~u0H !0vt

2~u0H !%$1 � H~et 0cH
102!%2 r DbG, a+s+, (A.28)

where Db � Var $H~e0cH
102!%016+ Hence W :� WM � DbG+ Because Db0~ Ia!2 � s2~H !, we

get from ~A+23!, ~A+28!, and ~A+18!,

n102~ Zun � u0H !r N @0,s 2~H !G�1 # +

Hence ~3+9! is proved+ �
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Proof of Proposition 3.1. The proof for the consistency of Zs2~H ! to s2~H ! follows
by showing that the individual estimators converge+ To illustrate, we only show that

~10n!�
t�1

n

$H~Xt 0 [vt
102~ Zun !!%

2 � E $H~e0cH
102!%2 � op~1!+ (A.29)

For details on the proof involving other terms, see Ndebu ~2006!+ By the ergodic theo-
rem, ~A+29! follows by showing that

~10n!�
t�1

n

6$H~Xt 0 [vt
102~ Zun !!%

2 � $H~et 0cH
102!%2 6 � op~1!+ (A.30)

Using 6a2 � b2 6 � 6a � b 6$6a � b 6� 26b 6% , the left-hand side of ~A+30! is bounded by

~10n!�
t�1

n

6H$~et 0cH
102!st %� H~et 0cH

102!6

� @6H$~et 0cH
102!st %� H~et 0cH

102!6� 26H~et 0cH
102!6# ,

where Xt 0 [vt
102~ Zun ! � ~et 0cH

102!st and st � vt
102~u0H !0 [vt

102~ Zun !+ Using the mean value
theorem and ~A+4! on the first term and ~A+6! on the second term in the expression that
follows,

6st
2 � 16 � $6vt ~u0H !� vt ~ Zun !6� 6vt ~ Zun !� [vt ~ Zun !6%0 [vt ~ Zun !

� C 6 Zun � u0H 6�C � �
j�1

`

r jXt�j
2 � � r t Z0 +

Hence from ~3+3!, the left-hand side of ~A+30! is bounded by terms involving summa-
tions of the form ~10n!�t�1

n L~et 0cH
102!r t , 6 Zun � u0H 6~10n!�t�1

n L~et 0cH
102!�j�1

` r tXt�j
2 ,

and so on+ Terms involving ~10n!�t�1
n L~et 0cH

102!r t � op~1! using ~A+1! as in the proof
of n�1 �t�1

n T2 t ~u! � op~1!+ Terms involving ~10n!�t�1
n L~et 0cH

102!�j�1
` r tXt�j

2 have
bounded expectation using ~3+10! and ~3+11! and the independence between et and
Xt�j

2 ; hence ~A+30! follows+
To prove the consistency of ZG to G, write ZG � G as

n�1 �
t�1

n

@$ _ [vt ~ Zun ! _ [vt
'~ Zun !0 [vt

2~ Zun !%� $ _ [vt ~u0H ! _ [vt
'~u0H !0 [vt

2~u0H !%#

� n�1 �
t�1

n

@$ _ [vt ~u0H ! _ [vt
'~u0H !0 [vt

2~u0H !%� $ _vt ~u0H ! _vt
'~u0H !0vt

2~u0H !%#� op~1!+

The first term is op~1! as in the verification of ~A+15!, and the second term is op~1! as in
the verification of ~A+13!+ For details, see Ndebu ~2006!+ Hence the proof of the propo-
sition is complete+ �
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