Chetwynd, Amanda G. and Rhodes, Susan J. (1997) *Avoiding partial Latin squares and intricacy.* Discrete Mathematics, 177 (1-3). pp. 17-32. ISSN 0012-365X

Official URL: http://dx.doi.org/10.1016/S0012-365X(96)00354-8

## Abstract

In this paper we consider the following problem: Given a partial n × n latin square P on symbols 1, 2,…, n, is it possible to find an n × n latin square L on the same symbols which differs from P in every cell? In other words, is P avoidable? We show that all 2k × 2k partial latin squares for k 2 are avoidable and give some results on odd partial latin squares. We also use these results to show that the intricacy of avoiding partial latin squares is two and of avoiding more general arrays is at most three.

Item Type: | Article |
---|---|

Journal or Publication Title: | Discrete Mathematics |

Subjects: | Q Science > QA Mathematics |

Departments: | Faculty of Science and Technology > Mathematics and Statistics VC's Office |

ID Code: | 20951 |

Deposited By: | Prof Amanda Chetwynd |

Deposited On: | 05 Dec 2008 08:53 |

Refereed?: | No |

Published?: | Published |

Last Modified: | 17 Dec 2017 02:49 |

Identification Number: | |

URI: | http://eprints.lancs.ac.uk/id/eprint/20951 |

### Actions (login required)

View Item |