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Abstract

The Dade group D(P ) of a finite p-group P , formed by equivalence classes of endo-
permutation modules, is a finitely generated abelian group. Its torsion-free rank equals the
number of conjugacy classes of non-cyclic subgroups of P and it is conjectured that every non-
trivial element of its torsion subgroup Dt(P ) has order 2, (or also 4, in case p = 2). The group
Dt(P ) is closely related to the injectivity of the restriction map Res : T (P )→

∏
E T (E) where

E runs over elementary abelian subgroups of P and T (P ) denotes the group of equivalence
classes of endo-trivial modules, which is still unknown for (almost) extra-special groups (p
odd). As metacyclic p-groups have no (almost) extra-special section, we can verify the above
conjecture in this case. Finally, we compute the whole Dade group of a metacyclic p-group.

1 Introduction

In the p-modular representation theory of finite groups, the family of endo-permutation modules
seems to occupy a key position. These modules appear indeed as sources of simple modules for
p-solvable groups (cf. [Pu2]) and also in the local analysis of derived equivalences between blocks
(cf. [Ri]).

Let p be a prime, P a finite p-group and k a field of characteristic p (which we can suppose
to be algebraically closed). All the kP -modules we consider are finitely generated. Recall that an
endo-permutation kP -module M is a kP -module such that the P -algebra Endk M is a permutation
kP -module (i.e. there exists a P -invariant k-basis). If M is indecomposable, we say it has vertex P
if M is not projective relative to any proper subgroup of P . If M is an endo-permutation module
with at least one indecomposable summand M0 with vertex P , then this summand is unique, up to
isomorphism, and, following Dade, we call it the cap of M . This allows us to define an equivalence
relation on these modules:

M ∼ N ⇐⇒ M0
∼= N0.

∗This work is a part of a doctoral thesis in preparation at the University of Lausanne, under the supervision of
Prof. Jacques Thévenaz
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We write D(P ) for the set of equivalence classes of such kP -modules. It is an abelian group
for the composition given by [M ] + [N ] = [M ⊗ N ]. The unit element is the class of the trivial
kP -module k and the inverse of [M ] is −[M ] = [M∗], where M∗ = Homk(M,k) is the dual of M .

J. Alperin proved recently that, for any P -set X, the relative syzygy Ω1
X(k) of the trivial

module, that is the kernel of the linear map from kX to k which sends each x ∈ X to 1, is an
endo-permutation kP -module. Moreover, if X is a transitive P -set, then Ω1

X(k) is indecomposable
with vertex P (cf. [Al2]). To simplify the notations we write ΩX for the class of Ω1

X(k) in D(P ).
When dealing with endo-permutation modules, we can’t avoid the special family of endo-trivial

modules. Recall that these are precisely the kP -modules M such that Endk M ∼= k ⊕ L, for
a free kP -module L. They all have an indecomposable direct summand with vertex P and are
obviously endo-permutation modules. So we can consider the same relation as before and look at
the corresponding group T (P ), which turns out to be a subgroup of D(P ) (note that the classes
in T (P ) contain, in general, less elements than the corresponding ones in D(P )). The following
theorem is due to Dade. It classifies all endo-permutation modules (up to equivalence) in the
abelian case and shows that T (P ) is of relevant importance when studying D(P ).

Theorem 1.1 [Dade, [Da]] Let P be an abelian p-group.

1. T (P ) is generated by ΩP . Thus T (P ) is trivial, if |P | ≤ 2, cyclic of order 2, if P is cyclic of
order ≥ 3, and infinite cyclic otherwise.

2. D(P ) is isomorphic to the direct sum of the groups T (P/Q), where Q runs over the set of
subgroups of P .

More than 20 years after Dade’s result, the question concerning an arbitrary finite p-group P is
still open. Only partial results have been obtained in the general case. First, L. Puig proved that
D(P ) is always finitely generated (cf. [Pu1]). More recently, J. Alperin determined the torsion-free
rank of T (P ) (cf. [Al2]) and S. Bouc and J. Thévenaz calculated the torsion-free rank of D(P ) (cf.
[BoTh]). Following [CaTh], the problem of determining the torsion subgroup Dt(P ) comes down
to finding a detecting family F of groups for which the restriction map Res : T (P ) →

∏
E∈F T (E)

is injective. That would then allow us to recover all torsion elements of D(P ) through restriction-
deflation maps to all sections of P belonging to F (see Theorem 10.1 in [CaTh]). By now, for an
odd p, we have to take for F all elementary abelian groups of rank 1 or 2 and also all extraspecial
groups of exponent p. However, as it is hoped that we can take for F just the elementary abelian
groups of rank 1 or 2, we will discuss here the case of p-metacyclic groups for odd p, where no
extraspecial group of exponent p appears in the set of all sections of P . The final aim is to prove
the following result.

Theorem 1.2 Let p be an odd prime and P be a metacyclic p-group. Then we have an isomor-
phism of abelian groups:

αP : D(P ) −→
∏

H∈[X/P ]

T (H/Φ(H)) ∼= Zr × (Z/2Z)s,

where Φ(H) is the Frattini subgroup of H, for all subgroup H of P , and where [X/P ] = [S/P ]∪[C/P ]
is a set of representatives of conjugacy classes of non trivial subgroups of P , divided into S/P ,
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the set of conjugacy classes of non-cyclic subgroups of P , of cardinality r, and C/P , the set of
conjugacy classes of non-trivial cyclic subgroups of P , of cardinality s.

Moreover, the set {ΩP/Φ(H), H ∈ [S/P ]} form a basis of the torsion-free part and the set
{TeninfP

H/Φ(H) ΩH/Φ(H), H ∈ [C/P ]} a basis (over Z/2Z) of the torsion subgroup Dt(P ) of D(P ).

Note that it will also prove that the injection of Theorem 4.1 of [BoTh] is, in fact, a bijection.
Let us finally recall some of the notions we are going to use. A group is called metacyclic if it

is an extension of a cyclic group by a cyclic group. Let P be a finite p-group. We write Q ≤ P , if
Q is a subgroup of P , and we write Q ≤P R, if Q and R are subgroups of P such that Q ≤ gR, for
a g ∈ P , and where gR = gRg−1. If Q ≤ P , we have an obvious restriction map ResP

Q, from D(P )
to D(Q), and we can also consider the tensor induction TenP

Q from D(Q) to D(P ). If, moreover,
Q is normal in P , we have an inflation map InfP

P/Q from D(P/Q) to D(P ) and a deflation map
DefP

P/Q from D(P ) to D(P/Q). This map is obtained as follows. If M is an endo-permutation
kP -module, then we consider the Brauer construction A[Q] = AQ/(

∑
R<Q AQ

R) of the P -algebra
A = Endk M , where AQ = EndkQ M is the set of fixed points of A under the action of Q, and
∀R < Q, AQ

R denotes the image of the relative trace from AR to AQ. As P is a p-group, we
know that A[Q] ∼= Endk N for a unique (up to isomorphism) endo-permutation k[P/Q]-module
N . So we define DefP

P/Q([M ]) = [N ] ∈ D(P/Q). If R / Q < P , we write DefresP
Q/R instead of

DefQ
Q/R ◦ResP

Q, and TeninfP
Q/R instead of TenP

Q ◦ InfQ
Q/R. We assume the reader to be familiar with

all the properties of these notions and with basic results of representation theory of finite groups.

2 Structure of metacyclic p-groups

Let P be a metacyclic p-group (p odd) such that the sequence 1 → Cpn → P → Cpm → 1 is exact.
So we can choose u, v ∈ P such that upn

= 1, vpm ∈ <u> (including m = 0, in case P is cyclic)
and vu = upl+1, for an integer l such that 0 < l ≤ n (we have l = n if P is abelian) and where
vu = vuv−1. So |P | = pm+n, <u> / P and any element of P can be expressed as uavb, with
0 ≤ a < pn and 0 ≤ b < pm. It is easy to verify that <upn−1

> ≤ Z(P ). Indeed, this is the only
subgroup of <u> of order p. Moreover, since <u> / P , one has that <u> ∩ Z(P ) 6= {1}. If P is
not cyclic, we have the following result.

Lemma 2.1 Let P be a non-cyclic metacyclic p-group for an odd prime p. Then P has a unique
elementary abelian subgroup of rank 2.

Proof . Let E be an elementary abelian subgroup of P of rank 2. Then E ∩<u> 6= {1}, because
E/E ∩<u> is cyclic (it is isomorphic to the subgroup E<u>/<u> of the cyclic group P/<u>).
Thus, E contains upn−1

. The image of E in P/<u> is non-trivial, thus E contains an element of
the form uavpm−1

, and in fact E = <upn−1
, uavpm−1

> (since <upn−1
> < <upn−1

, uavpm−1
> ≤ E).

Set w = vpm−1
. The action of w on <u> is given by wu = ur, where r = spn−1 + 1, for some

integer s > 0 : if w and u commute, take s = p. This will be the case in particular if n = 1, since
this implies that P is abelian.
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Moreover, there is an integer d such that wp = ud, and d is a multiple of p if P is non-cyclic
(otherwise d is prime to p and there exists an integer e, prime to p, such that de ≡ 1 (mod pn), but
then u = ude = wpe ∈ <v>). Then

(uaw)p = ua( wu)a( w2
u)a · · · ( wp−1

u)awp = ua(r+r2+···+rp−1)+d = ua rp−1
r−1 +d.

Finally,

rp − 1
r − 1

= (spn−1)p−1 +
(

p
1

)
(spn−1)p−2 + · · ·+

(
p

p− 2

)
spn−1 +

(
p

p− 1

)
.

Since (spn−1)p−1 ≡ 0 (mod pn) (even if n = 1, with the above convention on s), and since, for
p odd, the binomial coefficients are all multiple of p, it follows that rp−1

r−1 ≡ p (mod pn). Hence,
(uaw)p = uap+d and this is equal to 1 if and only if ap + d is a multiple of pn. Equivalently, a is
congruent to −d

p modulo pn−1, and E = <upn−1
, u−

d
p vpm−1

>. Conversely, the previous argument
shows that the group E defined by this formula is elementary abelian of rank 2. Hence P has an
elementary abelian subgroup of rank 2, and it is unique.

�

We can deduce immediately from Lemma 2.1 the following consequence, which is fundamental
for the motivation of this paper.

Corollary 2.2 Let P and p be as in the previous lemma. Then P has no extraspecial section of
exponent p.

Proof . Any non-trivial extraspecial p-group of exponent p has many elementary abelian subgroups
of rank 2. As any subgroup and any quotient of a metacyclic group is still metacyclic, it follows
that any section of P is a metacyclic group and thus it cannot be an extraspecial group of exponent
p.

�

Remark 2.3 Note that this lemma doesn’t apply to metacyclic 2-groups, as, for instance, the
dihedral group of order 8 is metacyclic but has 2 elementary abelian subgroups of rank 2.

Here is another property of non-cyclic metacyclic p-groups which will be of relevant importance
for the proof of Theorem 1.2.

Lemma 2.4 Assume P to be non-cyclic and let H be a non-cyclic subgroup of P . Then H is
uniquely determined by Φ(H). In other words, if H and K are two non-cyclic subgroups of P , with
Φ(K) = Φ(H), then K = H.

Proof . Consider N = NP (Φ(H)). The quotient group N/Φ(H) is also metacyclic and so has
a unique elementary abelian subgroup of rank 2, by the previous lemma and the fact that it is
non-cyclic (since it contains H/Φ(H) ∼= Cp × Cp because H is metacyclic, hence generated by
two elements, and non-cyclic). So N has a unique subgroup containing Φ(H) and such that the
quotient is elementary abelian of rank 2. Thus H is unique.
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�

We conclude this section with an immediate consequence of this lemma.

Corollary 2.5 Under the same hypothesis of Lemma 2.4, we have NP (H) = NP (Φ(H)).

Proof . Φ(H) is a characteristic subgroup of NP (H). Thus we have NP (H) ≤ NP (Φ(H)).
Conversely, if u ∈ NP (Φ(H)), then Φ( uH) = u(Φ(H)) = Φ(H) implies H = uH by Lemma 2.4.

�

3 The Dade group of a metacyclic p-group

Let P be a metacyclic p-group (p odd) and consider the homomorphism of abelian groups

ΨP =
∏

Q∈[X/P ]

DefresP
Q/Φ(Q) : D(P ) −→

∏
Q∈[X/P ]

D(Q/Φ(Q)),

where [X/P ] is a set of representatives of the conjugacy classes of the non-trivial subgroups of
P . We can write X/P as the disjoint union of S/P and C/P , where S/P is the set of conjugacy
classes of non-cyclic subgroups of P , and C/P is the set of conjugacy classes of non-trivial cyclic
subgroups of P .

Proposition 3.1 The map ΨP is injective.

Proof . For all Q ∈ [X/P ], the quotient Q/Φ(Q) is cyclic of order p, if Q is cyclic, and elementary
abelian of rank 2 otherwise. So we have respectively D(Q/Φ(Q)) = T (Q/Φ(Q)) ∼= Z/2Z or
D(Q/Φ(Q)) ∼=

⊕
R<Q T (Q/R) ∼= Z ⊕ (Z/2Z)p+1. As P doesn’t have any extraspecial section of

exponent p (cf. Lemma 2.2), Theorem 10.1 of [CaTh] implies that the map∏
H/K∈[Y/P ]

DefresP
H/K : D(P ) −→

∏
H/K∈[Y/P ]

D(H/K) is injective,

where Y denotes the set of all elementary abelian sections of P of rank 1 or 2. Let us prove the
result by induction on |P |. If |P | = p, then S = ∅, C = {P} and so ΨP = IdD(P ) is injective.
Assume |P | > p and let a ∈ Ker(ΨP ). We must prove that DefresP

H/K(a) = 0, ∀H/K ∈ Y.
Let H < P . Then it is clear that ResP

H(a) ∈ Ker(ΨH). Thus, by induction hypothesis, we have
ResP

H(a) = 0 and so DefresP
H/K(a) = 0. If H = P and K/P is such that P/K is elementary abelian

of rank 1 or 2, then we must show that DefP
P/K(a) = 0. If P/K is elementary abelian of rank 2,

then K = Φ(P ), and DefP
P/K(a) = 0 by assumption. Suppose |P : K| = p. Then Φ(P ) < K < P

and we have DefP
P/K(a) = DefP/Φ(P )

P/K

(
DefP

P/Φ(P )(a)
)

= DefP/Φ(P )
P/K (0) = 0, by hypothesis on a.

�

In order to prove the injectivity of the map given in Theorem 1.2, we first need two more
lemmas.
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Lemma 3.2 Let P be a non-cyclic metacyclic p-group (p odd). Then, the map∏
1<Q<P

ResP
Q : Dt(P ) −→

∏
1<Q<P

Dt(Q) is injective.

Proof . Proposition 3.1 implies that
∏

1<Q≤P DefresP
Q/Φ(Q) : Dt(P ) −→

∏
1<Q≤P Dt(Q/Φ(Q))

is injective. Moreover,
∏

Φ(Q)<R<Q ResQ/Φ(Q)
R/Φ(Q) : Dt(Q/Φ(Q)) −→

∏
Φ(Q)<R<Q Dt(R/Φ(Q)) is

injective for any non-cyclic subgroup Q of P , by Lemma 6.1 of [BoTh]. So, there is a commutative
square

Dt(P ) −→
∏

1<S<P Dt(S)
↓ ↓∏

1<Q≤P Dt(Q/Φ(Q)) −→
∏

Φ(Q)<R<Q Dt(R/Φ(Q)),

where the upper horizontal map is
∏

1<S<P ResP
S , the bottom map is

∏
Φ(Q)<R<Q ResQ/Φ(Q)

R/Φ(Q), which

is injective by Lemma 6.1 of [BoTh], and the left vertical map is
∏

1<Q≤P DefresP
Q/Φ(Q), which is

injective by the previous proposition. Hence the top map is injective.

�

Lemma 3.3 Let P be a metacyclic p-group (p odd) and C the set of all non-trivial cyclic subgroups
of P . Then, the map

∏
[C∈C/P ] DefresP

C/Φ(C) : Dt(P ) −→
∏

C∈[C/P ] T (C/Φ(C)) is injective.

Proof . Note that this map is well defined, as C/Φ(C) is cyclic of order p and so D(C/Φ(C)) =
T (C/Φ(C)) is cyclic of order 2, for all C ∈ C. Let us proceed by induction on |P | and start with
|P | = p. Then C = {P} and the above map is the identity map. Assume now |P | > p. If P is
cyclic, then, the lemma coincides with Proposition 3.1, and so there is nothing to prove. If P is not
cyclic, then, by induction and the above lemma, it follows that

∏
C∈C DefresP

C/Φ(C) maps Dt(P )
into

∏
C∈C T (C/Φ(C)). As Ker

(
DefresP

Q/Φ(Q)

)
= Ker

(
DefresP

gQ/Φ( gQ)

)
, ∀Q ≤ P , we can restrict

this map to the conjugacy classes of non-trivial cyclic subgroups without loosing the injectivity
and so the lemma is proved.

�

Notice that this lemma gives us an upper bound for the rank of the torsion subgroup of D(P ).
We will show later that this rank is, in fact, equal to this upper bound. Let us turn back now to
the injectivity question. The result of Proposition 3.1 can be improved in the following sense. If
P is an abelian group, we can consider the “projection” ρP : D(P )�T (P ), defined thanks to the
isomorphism given in Theorem 1.1, where the reverse isomorphism is equal to⊕

Q<P

InfP
P/Q :

⊕
Q<P

T (P/Q) −→ D(P ).

Let P be a metacyclic p-group (p odd) and let αP be the homomorphism of abelian groups defined
as the composition

( ∏
Q∈[X/P ] ρQ/Φ(Q)

)
◦ΨP .

Theorem 3.4 The map αP : D(P ) −→
∏

Q∈[X/P ] T (Q/Φ(Q)) is injective.
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Proof . ΨP composed with the isomorphism in Theorem 1.1 gives an injective map

Ψ′
P : D(P ) −→

∏
Q∈[S/P ]

(
⊕Φ(Q)≤R<QT (R/Φ(Q))

)
×

∏
C∈[C/P ]

T
(
C/Φ(C)

)
.

Let x ∈ Ker(αP ). Then we have Ψ′
P (x) = (xQ)Q∈[X/P ], with xQ = 0, if Q is cyclic, or xQ ∈

⊕Φ(Q)<R<QT (R/Φ(Q)), otherwise. Thus we have 2x ∈ Ker(Ψ′
P ) = Ker(ΨP ) and so x ∈ Dt(P ),

since ΨP is injective.
The previous Lemma implies that the product of deflation-restriction maps from Dt(P ) to∏

C∈[C/P ] T
(
C/Φ(C)

)
is injective. But this map coincide with the restriction of αP to Dt(P ), and,

by hypothesis, x ∈ Ker(αP ). Hence, x = 0. Thus, the map αP is injective.

�

To prove the surjectivity of αP , we are going to choose a subset of D(P ) which is mapped onto
a set of generators of the target. In order to do this, we must first define an order on the set [X/P ]
of representatives of the conjugacy classes of the non-trivial subgroups of P . Consider separately
the representatives [C/P ] of the conjugacy classes of non-trivial cyclic subgroups and [S/P ] of the
non-cyclic subgroups. Note that S = ∅ iff P is cyclic, and C 6= ∅, ∀P 6= {1}. On both sets, there is
a “natural” order �, induced by the inclusion (that is H � K, if H ≤P K, and H and K are both
in C, or both in S) and we can extend them to total orders, still denoted by �, on [C/P ] and on
[S/P ]. Let now H and K be in [X/P ] and write H � K if exactly one of the following condition
is satisfied:

1. H ∈ [C/P ] and K ∈ [S/P ].

2. H,K ∈ [C/P ] and H � K.

3. H,K ∈ [S/P ] and H � K.

Consider the following set of elements of D(P ) and order it according to the increasing order of
the subgroups which appear in the subscripts.

B =
{

TeninfP
C/Φ(C) ΩC/Φ(C), C ∈ [C/P ]

} ⋃ {
ΩP/Φ(Q), Q ∈ [S/P ]

}
.

Let us prove that B form a basis of the abelian group D(P ), viewed as the direct sum of a
free Z-module of rank |[S/P ]| and a F2-vector space of dimension |[C/P ]|. Let C ∈ [C/P ] and
consider TeninfP

C/Φ(C) ΩC/Φ(C). It is a torsion element so the component of its image by αP in
any T (Q/Φ(Q)) for Q ∈ [S/P ] must be zero as T (Q/Φ(Q)) ∼= Z. Moreover, in Theorem 6.2 of
[BoTh], it is proved that DefresP

C′/Φ(C′)(TeninfP
C/Φ(C) ΩC/Φ(C)) = δC,C′ΩC/Φ(C), ∀C,C ′ ∈ [C/P ].

Let H ∈ [S/P ] (and hence assume that P is not cyclic, i.e. S is not empty) and prove that for
all K ∈ [X/P ] such that H � K we have DefresP

K/Φ(K) ΩP/Φ(H) = δH,KΩH/Φ(H). By definition
of the order, the condition H � K implies K ∈ [S/P ]. We have DefresP

K/Φ(K)

(
ΩP/Φ(H)

)
=

DefK
K/Φ(K)

(
ResP

K

(
ΩP/Φ(H)

))
. Let us recall some useful results of [Bo]: if X is a finite P -set, K

and N two subgroups of P with N / P , then DefP
P/N ΩX = ΩXN , where XN denotes the set of
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fixed point of X under the action of N . We also have ResP
K ΩX = ΩResP

K X . Then, using Mackey’s
formula and the isomorphism of P -sets IndP

K{∗} ∼= P/K, it follows that

ResP
K(P/Φ(H)) =

( ∐
g∈[K\P/Φ(H)], g∈N

K/(K ∩ Φ(H))︸ ︷︷ ︸
(I)

) ∐( ∐
g∈[K\P/Φ(H)], g 6∈N

K/(K ∩ gΦ(H))︸ ︷︷ ︸
(II)

)
,

where N = NP (Φ(H)) = NP (H). If H = K, then all the elements of (I) are fixed by Φ(H). But
there is no fixed point in (II). Indeed, if

x(H ∩ gΦ(H)) ∈
(
H/H ∩ gΦ(H)

)Φ(H) = {x(H ∩ gΦ(H)) | yx ∈ H ∩ gΦ(H), ∀ y ∈ Φ(H)},

then Φ(H) = Φ(H)x ≤ H ∩ gΦ(H) ≤ gΦ(H). Thus Φ(H) = gΦ(H), i.e. g ∈ N . It follows that
DefresP

H/Φ(H) ΩP/Φ(H) = ΩH/Φ(H) ∈ D(H/Φ(H)), as Ω1
H/Φ(H)(k) is a direct summand of the kernel

of the map
(⊕

g∈[N/H] k[H/Φ(H)] → k
)

(and so is “the” cap of this kernel). If |H| < |K|, then

there is no fixed point at all and so DefresP
K/Φ(K) ΩP/Φ(K) = 0. If |H| = |K|, then H and K

are two non conjugate non-cyclic subgroups of P having the same order. That implies Φ(H) and
Φ(K) have same order, but are not conjugate, by Lemma 2.4. It follows that XΦ(K) = ∅ and so
DefresP

K/Φ(K) ΩP/Φ(H) = 0. Let us sum up all these calculations: we proved that αP maps B onto a
set of generators of the target group and in terms of matrix, taking the set {ΩH/Φ(H), H ∈ [X/P ]}
as basis for the target and B for the source, we get an upper triangular matrix with ones on the
diagonal. So we have proved the following result.

Theorem 3.5 Let P be a metacyclic p-group (p odd). Then,

αP =
∏

H∈[X/P ]

(
ρH/Φ(H) ◦DefresP

H/Φ(H)

)
: D(P ) −→

∏
H∈[X/P ]

T (H/Φ(H))

is an isomorphism of abelian groups.
Moreover, the set {ΩP/Φ(H), H ∈ [S/P ]} forms a basis of the torsion-free part and the set

{TeninfP
H/Φ(H) ΩH/Φ(H), H ∈ [C/P ]} a basis (over Z/2Z) of Dt(P ).

Remark 3.6 Finally some remarks on endo-permutation modules.

1. If P is a metacyclic p-group (p odd), it is immediate, from Lemma 2.1, that T (P ) = <ΩP >
and so it is cyclic of order 2, if P is cyclic, and infinite cyclic, otherwise.

2. Take the same notations as in Theorem 3.5. The matrix of the map αP , in the given ordered
basis, is upper triangular with 1 on the diagonal. But, in general, it is not the identity
matrix. Indeed, consider for instance a non-cyclic metacyclic p-group P of order ≥ p3 and
E < P the unique elementary abelian subgroup of P . Then Φ(E) = {1} and we have
αP (ΩP/Φ(E)) = ΩE +

∑
C∈[C/P ](ΩC).

3. Let us finish with a remark about splendid equivalences between blocks. Recall that a kP -
module M has an endo-split permutation resolution XM if there exists a bounded complex
XM of permutation kP -modules and an isomorphism M ∼= H0(XM ), such that Hn(XM ) =
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0, ∀n 6= 0 and the complex Endk(XM ) is split. It follows from Theorem 3.5, using Lemma
2.3.7 of [Bo] and Lemma 7.3 of [Ri], that if P is a metacyclic p-group (p odd), then every
endo-permutation kP -module M with a direct summand of vertex P has an endo-split permu-
tation resolution XM . Thus, Theorem 7.8 of [Ri] can be applied to p-nilpotent groups G with
a metacyclic p-Sylow subgroup P . In other words (assume k to be a splitting field for G), if
kB is the principal block of kG, M an endo-permutation module belonging to kB and XM

an endo-split permutation resolution of M , then XM is a splendid tilting complex inducing
a splendid derived equivalence between the derived categories Db(kP ) and Db(kB).
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