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Abstract. We determine the maximal number of conjugacy classes of maximal elementary
abelian subgroups of rank 2 in a finite p-group G, for an odd prime p. Namely, it is p if G has
rank at least 3 and it is p + 1 if G has rank 2. More precisely, if G has rank 2, there are exactly
1, 2, p + 1, or possibly 3 classes for some 3-groups of maximal nilpotency class.

1. Introduction

The elementary abelian p-subgroups of a finite group are ubiquitous in the study of the p-local
structure of the entire group. They provide useful information on the modular representations of
the group and its cohomology ring. The main motivation of the author for this research is concerned
with the classification of endotrivial modules of a finite group over a field of characteristic p. The
analysis in [1, 9, 10] and [11], lead to the definition of the category E≥2(G) of elementary abelian
p-subgroups of a finite group G of rank at least 2. It turns out that the torsion-free rank of the
group of endotrivial modules for G equals the number nG of connected components of E≥2(G),
whence the interest to bound this number. Jon Alperin showed that nG is bounded and depends
on p. Note that if nG > 1, then G has a non abelian Sylow p-subgroup with a cyclic center and
some maximal elementary abelian p-subgroup of rank 2. Such p-groups have been thoroughly
studied by Blackburn ([5]) and in the works involving endo-permutation and endotrivial modules
([1, 6, 7, 9, 10, 11] and [18]).

The objective of this research is to compute an upper bound for nG in the case that G is a finite
p-group and that p is odd. Equivalently, this problem can be stated as determining the maximal
number of conjugacy classes of maximal elementary abelian subgroups of rank 2. This will be
explained in the next section, which also contains the proof of the main result:

Theorem 2.7. Let p be an odd prime and G a finite p-group. Then nG ≤ p + 1. In particular,
if G has rank 2, then there are at most p + 1 conjugacy classes of maximal elementary abelian
subgroups of rank 2, and if G has rank at least 3, then there are at most p conjugacy classes of
maximal elementary abelian subgroups of rank 2.

In fact, our conclusion is an easy corollary of Héthelyi’s work on soft subgroups ([14, 15]), which
builds up essentially from [5]. Let us also mention that Jon Carlson recently handled the case
for p = 2, and obtained that nG is at most 5 ([8]). He conjectured that, for p odd, nG ≤ p + 1,
which is hence true, as we show in Section 2. We end this note by explictly computing nG and the
conjugacy classes of the elementary abelian subgroups of rank 2 in the case that G has rank 2.
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2. Generalities: Results old and new

Throughout, p is an odd prime and G denotes a finite p-group. We write H ≤ G (resp. H < G)
if H is a subgroup of G (resp. proper subgroup). If g ∈ G, we set gH = gHg−1 and cg for the
conjugacy map of G; that is, cg(x) = gx = gxg−1, for all x ∈ G. For two groups H and K having
an isomorphic central subgroup Z, we write H ∗Z K for the central product over Z, or simply H ∗K
if there is no confusion. Finally, G′ is the derived subgroup of G, generated by all the commutators
[x, y] = x−1y−1xy, for all x, y ∈ G. We refer the reader to [16] for further details.

Definition 2.1. Let G be a finite p-group.
(1) An elementary abelian subgroup of G is an abelian subgroup E of G of exponent p.

If E has order pa, then E is a Fp-vector space of dimension a and we call a the rank of E. The
rank of G is the maximum of the ranks of all the elementary abelian subgroups of G.

(2) We set E≥2(G) for the category whose objects are the elementary abelian subgroups of G
of rank at least 2 and the morphisms are the compositions of conjugations and inclusions.

For short, we write E ∈ E≥2(G) if E is an object of E≥2(G). The definition says that for
E,F ∈ E≥2(G), then HomG(E,F ) = {cg | g ∈ G : gE ≤ F}. In particular, HomG(E,F ) is
not empty if and only if E is conjugate to a subgroup of F . We define a connected component
of E≥2(G) as follows: E,F ∈ E≥2(G) are connected if there are subgroups E0, . . . , En ∈ E≥2(G)
with the properties that E0 = E, En = F and, for each 0 ≤ i < n, one of HomG(Ei, Ei+1) or
HomG(Ei+1, Ei) is not empty. We call E ∈ E≥2(G) maximal if the condition HomG(E,F ) 6= ∅
implies E =G F ; that is, E is not properly contained in an elementary abelian subgroup of G. We
let nG be the number of connected components of E≥2(G). Recall that we want to find an upper
bound for nG. Since nG ≤ 1 whenever G is abelian or has a non cyclic center, let us exclude these
cases from now on. Hence, we set Z for the unique central subgroup of G of order p and E0 for a
normal elementary abelian subgroup of G of rank 2, which exists by [16, Hilfsatz III 7.5]. Define
G0 = CG(E0). Note that G0 is a maximal subgroup of G.

If G has rank 2, then a component of E≥2(G) is a G-conjugacy class of elementary abelian
subgroups of rank 2. By [1, § 5], if G has rank 3 or more, then all the objects of E≥2(G) of rank at
least 3 are connected and lie in the big component, denoted B. Moreover, E0 ∈ B. The remaining
components of E≥2(G) are conjugacy classes of maximal elementary abelian subgroups of rank 2,
that we call isolated. Hence, E ∈ E≥2(G) is isolated if E is a maximal elementary abelian subgroup
of G that does not lie in B. In particular, Z < E and E has rank 2. Note that nG > 1 if and only
if G has an isolated subgroup.

Lemma 2.2. Let E ∈ E≥2(G) be isolated and set L = CG0(E).
(1) L is cyclic and E ∩G0 = Z.
(2) NG(E) = L ∗EE0, with L = Z(NG(E)) and EE0 extraspecial of order p3 and exponent p.

Proof. Since E is isolated, the intersection L = G0 ∩ CG(E) is necessarily cyclic. It follows that
CG(E) = L∗E is metacyclic abelian. Moreover, E0/G implies that Z < E0, whence E∩E0 = Z and
EE0 is non abelian of order p3 and exponent p, since E normalises E0. Thus, EE0 is extraspecial of
order p3 and exponent p. In particular, E is normal in L∗EE0, which shows that NG(E) = L∗EE0.
Clearly, L = Z(NG(E)). �

Lemma 2.2 has the following immediate consequence.
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Corollary 2.3. Let E ∈ E≥2(G) be isolated and assume that E is normal in G. Then G is a
central product X ∗Z Z(G), with X extraspecial of order p3 and exponent p, and where Z(G) is
cyclic. In particular, G has rank 2 and nG = p + 1.

Hence, from now on, we may assume that if E ∈ E≥2(G) is isolated, then NG(E) < G, and thus
CG(E) has index at least p2 in G. Indeed, by Lemma 2.2, either all isolated subgroups are normal,
or none is normal. Then, we appeal to Héthelyi’s work on soft subgroups ([14, 15]), since so are
the centralisers of the isolated subgroups.

Definition 2.4. A subgroup A of G is soft if A = CG(A) and |NG(A) : CG(A)| = p.

Let us collect some useful facts on soft subgroups.

Theorem 2.5. [15, § 1, 2 and 3] Let G be a finite p-group, and let A be a soft subgroup of G.
(1) The subgroups containing A form a chain A = N0, N1, . . . , Nk = M , where Ni = NG(Ni−1),

for 1 ≤ i ≤ r, and |G : M | = p.
(2) M is the unique maximal subgroup of G containing A, and M has nilpotency class k + 1.
(3) Any two soft subgroups of G contained in M are G-conjugate.
(4) M has exactly p maximal subgroups containing a soft subgroup of G.
(5) If |G : A| ≥ p2, then H = G′Z(NG(A)) is independent of A and the factor group G/H is

elementary abelian of order p2. Moreover, for x ∈ H, then the subgroup CG(x) of G is not
soft, or |G : CG(x)| < p2. The conjugates of A are the subgroups CG(s), for s ∈ M −H.

As an easy corollary of Theorem 2.5, we get the following.

Proposition 2.6. Assume that G has some isolated subgroup which is not normal in G. Then,
2 ≤ nG ≤ p + 1 and G has at most p maximal elementary abelian subgroups of rank 2.

Proof. Clearly, nG > 1. Let E ∈ E≥2(G) be isolated. Set A = CG(E) and H = G′Z(NG(A)).
Then, A satisfies the hypothesis of Theorem 2.5. Thus, H is a normal subgroup of G, independent
of the choice of E, and G/H is elementary abelian of rank 2. In particular, G has p + 1 maximal
subgroups that contain H and hence might contain some isolated subgroup of G. Now, H < G0,
since Z(NG(A)) centralizes E0 and since G′ is contained in any maximal subgroup of G. Since G0

does not contain any isolated subgroup of G, there are at most p maximal subgroups containing
an isolated subgroup, whence the claim by Theorem 2.5 (3). �

Observe that Theorem 2.5 provides more information on the structure of G than the fact de-
ducted in Proposition 2.6. In particular, under the same assumptions, the nilpotency class of G is
n− r and that of H is n− r− 1, where r is defined by |Z(NG(E))| = pr. However, for the purpose
of this research, let us focus on the consequences of Corollary 2.2 and Proposition 2.6.

Theorem 2.7. Let p be an odd prime and G a finite p-group. Then nG ≤ p + 1. In particular,
if G has rank 2, then there are at most p + 1 conjugacy classes of maximal elementary abelian
subgroups of rank 2, and if G has rank at least 3, then there are at most p conjugacy classes of
maximal elementary abelian subgroups of rank 2.

Corollary 2.8. The torsion-free rank of the group of endotrivial modules of a finite p-group, for
an odd prime p, is at most p + 1.

We refer the reader to [8, 9] for further details on Corollary 2.8. We end this section with a
criteria stating when nG = 1.
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Proposition 2.9. Let G be a finite p-group, p odd, and let V be a normal elementary abelian
subgroup of rank r, with r > p. Then nG = 1.

Proof. We need to show that any E ∈ E≥2(G) is contained in an elementary abelian subgroup F
of rank at least 3. Let E ∈ E≥2(G) have rank 2. If E does not contain a central subgroup Z of
order p, then we set F = EZ. Otherwise, consider V as Fp-vector space. The conjugation action
of G induces a map E → AutV . Via the choice of a basis for V , we have that AutV ∼= SLr(p) and
any x ∈ E identifies with a matrix mx in SLr(p) with order 1 or p. If mx = 1, for all x ∈ E, then
E ≤ CG(V ), whence E < V E = F , which is elementary abelian of rank at least 3. Otherwise,
there is x ∈ E with x 6∈ V , and E = Z × 〈x〉, with Z = V ∩ E. Then, mx has two non collinear
eigenvectors v, w ∈ V , since mx is an element of SLr(p) with order p. That is, x ∈ CG(〈v, w〉), and
hence F = E〈v, w〉 ∈ E≥2(G) has rank three (note that Z < 〈v, w〉). �

Let us point out that Proposition 2.9 is in fact a trivial consequence of a more general result of
Y. Berkovich ([3, Proposition 20]). This discussion naively leads us to the question: “Let G be a
p-group of rank at least p + 1, for an odd prime p. Is nG = 1?”

The answer is not yet known to the author, except in case p = 3.

Proposition 2.10. If p = 3 and G is a 3-group of rank at least 4, then nG = 1.

Proof. By [17, Theorem], if G contains an elementary abelian subgroup of rank 4, then G contains
a normal elementary abelian subgroup of the same rank. The result follows by Proposition 2.9. �

If p ≥ 5, then a p-group of rank r > p does not contain any normal elementary abelian subgroup
of rank r in general, as shown by Professor Glauberman ([13]). Note that the same conclusion is
suggested by [2, Theorem A]. However, in the examples considered, it is always true that if G has
rank at least p + 1, then nG = 1.

3. p-groups of rank 2

Throughout this section, we let G be a finite p-group of rank 2, for an odd prime p. We compute
nG and describe the conjugacy classes of elementary abelian subgroups of G of rank 2, that is, the
connected components of E≥2(G). Let us recall the classification of the p-groups established by
Blackburn ([4]). For convenience, we use the notation of [12].

There are four types of p-groups of rank 2 ([12, Theorem A.1]):
• The non-cyclic metacyclic groups M(p, r), of order pr, r ≥ 2.
• The groups C(p, r), of order pr, r ≥ 3, defined by

C(p, r) = 〈a, b, c | ap = bp = cpr−2
= [a, c] = [b, c] = 1, [a, b] = cpr−3

〉 .

• The groups G(p, r, ε), with ε = 1 or ε is not congruent to a square modulo p, of order
pr, r ≥ 4, defined by

G(p, r, ε) = 〈a, b, c | ap = bp = cpr−2
= [b, c] = 1, [a, b−1] = cεpr−3

, [a, c] = b 〉 .

• If p = 3, the following 3-groups of maximal nilpotency class of the form B(3, r;β, γ, δ), of
order 3r, r ≥ 4. Fix a set {s, s1, . . . , sr−1} of generators of G, subject to the relations:
(1) si = [si−1, s], 2 ≤ i ≤ r − 1 ;
(2) [s1, s2] = sβ

r−1 ;
(3) [s1, si] = 1, 3 ≤ i ≤ r − 1 ;
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(4) s3 = sδ
r−1 ;

(5) s3
1s

3
2s3 = sγ

r−1

(6) s3
i s

3
i+1si+2 = 1, 2 ≤ i ≤ r − 1 and with sr = sr+1 = 1 .

Hence, the groups of maximal nilpotency class are given by the sets of parameters (β, γ, δ)
taking the values:

– For r ≥ 5, (β, γ, δ) = (1, 0, δ) and δ ∈ {0, 1, 2} ;
– For even r ≥ 4, (β, γ, δ) ∈ {(0, 1, 0), (0, 2, 0), (0, 0, 0), (0, 0, 1)} , except B(3, 4; 0, 1, 0);
– For odd r ≥ 5, (β, γ, δ) ∈ {(0, 1, 0), (0, 0, 0), (0, 0, 1)} .

In particular, we have isomorphisms G(3, 4, 1) ∼= B(3, 4; 0, 0, 0) and G(3, 4,−1) ∼= B(3, 4; 0, 2, 0).
The group B(3, 4; 0, 1, 0) is the wreath product C3 o C3, which has rank 3.

3.1. The non-cyclic metacyclic groups M(p, r), r ≥ 3.
If G = M(p, r), then G has a unique elementary abelian subgroup of rank 2, by [19, Lemma 2.1].

Proposition 3.1. If G = C(p, r), then nG = 1 and E≥2(G) = B = {E0}.
3.2. The groups C(p, r), r ≥ 3.

By [12, Lemma A.5], C(p, r) is a non-split central extension

1 // Z(C(p, r)) // C(p, r) // C(p, 3) // 1 ,

where Z(C(p, r)) = 〈c〉 is cyclic of order pr−2. In addition, C(p, 3) is an extraspecial group of
order p3 and exponent p and contains all the elements of order p of C(p, r). Thus, we fall into the
situation of Corollary 2.3, and so any E ∈ E≥2(C(p, r)) is normal in C(p, r).

Proposition 3.2. If G = C(p, r), then nG = p + 1, and each component of E≥2(G) is a single
subgroup.

3.3. The groups G(p, r, ε), r ≥ 4 and ε = 1 or ε is not congruent to a square modulo p.

Write G = G(p, r, ε) = 〈a, b, c | ap = bp = cpr−2
= [b, c] = 1, [a, b−1] = cεpr−3

, [a, c] = b 〉 .

We have
1 // 〈b, c〉 // G // 〈a〉 // 1 ,

and z = cpr−3
generates the unique central subgroup of order p. Hence, we can choose E0 = 〈b, z〉,

and the other objects of E≥2(G) are Ei = 〈abi, z〉 , 1 ≤ i ≤ p. Indeed, it follows from [12, Lemma
A.6], or from a routine computation, that the elements of order p of G−E0 are of the form aibjzk,
with 0 ≤ i, j, k ≤ p − 1. Moreover, cEi = Ei−1, where the index is taken modulo p, in the range
1, . . . , p. Thus {Ei | 1 ≤ i ≤ p} is a single conjugacy class, i.e. a component of E≥2(G).

Proposition 3.3. If G = G(p, r, ε), then nG = 2, with components B = {E0} and {Ei | 1 ≤ i ≤ p}.
3.4. The 3-groups of maximal nilpotency class B(3, r;β, γ, δ), r ≥ 4.

In addition to the above notation, let us set Gi = 〈si, . . . , sr−1〉, for all 1 ≤ i ≤ r − 1.
Then, G . G2 . G3 . · · · . Gr−1 is the lower central series of G and Gr−1 = Z(G) has order p.
Moreover, G1 = 〈s1 , s2〉 is metacyclic non cyclic, of index p in G, and G1 is abelian if and only
if β = 0. In this case, if r = 2k, then G1 = 〈s1〉 × 〈s2〉 ∼= Ck × Ck−1 and if r = 2k + 1, then
G1 = 〈s1〉 × 〈s2〉 ∼= Ck × Ck. Also, if 〈s̄〉 = G/G1

∼= C3, then the extension

1 // G1
// G // 〈s̄〉 // 1
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splits if and only if δ = 0.
In any case, G1 has a unique elementary abelian subgroup of rank 2, which is hence characteristic

in G. Clearly, this subgroup is Gr−2 = Ω1(G1), and we have CG(Gr−2) = G1.
Now, we want to determine the conjugacy classes of the elements E ∈ E≥2(G), with E 6= Gr−2.

Therefore, we first find the elements of order 3. Observe that any element x ∈ G can be uniquely
written as x = sζsζ1

1 · · · sζr−1
r−1 , for integers ζ, ζi ∈ {−1, 0, 1}, for all 1 ≤ i ≤ r − 1. From [12,

Proposition A.9], we obtain that the elements of order 3 in G are either in Gr−2 or belong to a
coset of G/G2 satisfying ζ(δ + βζ2

1 ) + γζ1 ≡ 0 mod 3 , with ζ = ±1 . The solutions for ζ1 are:

r (β, γ, δ) ζ1

r ≥ 4 (0, 1, 0) 0
r ≥ 4 (0, 0, 0) −1, 0, 1
r ≥ 4 (0, 0, 1) no solution
r even (0, 2, 0) 0
r ≥ 5 (1, 0, 0) 0
r ≥ 5 (1, 0, 1) no solution
r ≥ 5 (1, 0, 2) −1, 1

From this table, we immediately deduce the following.

Proposition 3.4. If δ = 1, then nG = 1 and E≥2(G) = B = {Gr−2} .

Assume now that δ = 0, and that G 6∼= B(3, 4; 0, 1, 0). Then, the extension

1 // G1
// G // 〈s̄〉 // 1

splits, and we have that Ω1(G) = Gr−2 o 〈s〉 is extraspecial of order 27 and exponent 3. Thus,
except Gr−2, the group G has 3 elementary abelian subgroups Ei of rank 2, generated by a central
element z of order 3 and xi = ssi

r−2, for i ∈ {1, 2, 3}. Moreover, E1, E2 and E3 are conjugate.

Proposition 3.5. If δ = 0 and G 6∼= B(3, 4; 0, 1, 0), then nG = 2, with components B = {Gr−2}
and {E1, E2, E3}.

Proposition 3.3 handles the cases B(3, 4; 0, 0, 0) ∼= G(3, 4, 1) and B(3, 4; 0, 2, 0) ∼= G(3, 4,−1),
whereas B(3, 4; 0, 1, 0) has rank 3. Hence, we are left with the case that r ≥ 5 and (β, γ, δ) =
(1, 0, 2). By the above discussion, the elements of order 3 that do not belong to G1 are all the
elements of the cosets of G/G2 of the form s±1s±1

1 G2. Set x = ss1, z = sr−1 and let E = 〈x, z〉 =

{1, x = ss1 , x2 = s2s2
1s2z

−1 , z , xz = ss1z , x2z = s2s2
1s2 , z2 , xz2 = ss1z

2 , x2z2 = s2s2
1s2z} .

Since x 6∈ G1, [16, Hilfsatz III.14.3] shows that E = CG(E), and so, the conjugacy class of x is the
coset xG2 ⊂ G/G2. Notice also that NG(E) = EGr−2 is extraspecial of order 27 and exponent 3.
It follows that there are exactly two conjugacy classes of elementary abelian subgroups that are
not normal in G.

Proposition 3.6. If δ = 2, then nG = 3, with components B = {Gr−2} and the conjugacy classes
of 〈ss1, sr−1〉 and of 〈ss−1

1 , sr−1〉.
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