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1. Introduction

Let G be a finite group and k be a field of characteristic p > 0. An endotrivial
kG-module is a finitely generated kG-module M whose k-endomorphism ring is
isomorphic to a trivial module in the stable module category. That is, M is an
endotrivial module provided Homk(M, M) ∼= k ⊕ P where P is a projective kG-
module. Now recall that as kG-modules, Homk(M, M) ∼= M∗ ⊗k M where M∗ =
Homk(M,k) is the k-dual of M . Hence, the functor “⊗k M” induces an equivalence
on the stable module category and the collection of all endotrivial modules makes up
a part of the Picard group of all stable equivalences of kG-modules. In particular,
equivalence classes of endotrivial modules modulo projective summands form a group
that is an essential part of the group of stable self-equivalences.

Endotrivial modules were first defined by Dade in [Da]. He demonstrated that for
p-groups, the endotrivial modules formed the building blocks of the endo-permutation
modules which he proved are the sources for the irreducible modules in finite p-
nilpotent groups. Later, Puig proved that in fact, the source of a simple module
of a finite p-solvable group is an endo-permutation module. Dade also showed that
if G is an abelian p-group, then any endotrivial kG-module is the direct sum of
a syzygy of the trivial module (Ωn(k) for some n, see Section 2 for a definition)
and a projective module. More recently, the first author and Thévenaz have given
complete classification of the endotrivial modules for p-groups. The group T (G) of
endotrivial modules is torsion-free except in the cases that the group G is cyclic,
quaternion or semi-dihedral [CaTh2]. The torsion-free rank of T (G) was determined
by Alperin [A]. The rank depends on the number of conjugacy classes of maximal
elementary abelian p-subgroups of p-rank 2. A complete set of generators for the
group of endotrivial modules was given in [CaTh3, Ca2].

The purpose of this paper is to determine the group of endotrivial modules in the
defining characteristic for all finite groups of Lie type, including those of twisted type.
It is well understood that if G is an arbitrary finite group and M is an endotrivial
kG-module, then both the Green correspondent and the source of M are endotrivial
modules. For this reason we first consider the endotrivial modules for a Sylow p-
subgroup U and its normalizer B, a Borel subgroup, of a given finite group G of Lie
type. For the unipotent and Borel subgroups we present a complete classification of
the endotrivial modules. For the finite groups G of Lie type, T (G) has rank one and
is generated by the class of Ω(k) except in cases where the Lie rank is small and the
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field of the group is close to the prime field. In these exceptional cases, we find the
rank of T (G). It would seem that finding a complete set of generators for the group
of endotrivial modules would require a more detailed knowledge of the cohomology
ring H∗(G, k) than is currently available.

We end this introduction with a specific guide to the results of the paper. The
definitions and preliminaries are in Section 2. In the process of classifying the
endotrivial modules for finite groups of Lie type, many of the results for p-groups are
extended to arbitrary finite groups. We first introduce the group T (G) of endotrivial
kG-modules and show that it is a finitely generated abelian group. Hence it is the
direct sum of its torsion subgroup TT (G) and a torsion-free subgroup TF (G) which
we identify with the image of the product of the restriction maps onto the groups of
endotrivial modules of elementary abelian p-subgroups of G of p-rank at least 2 (cf.
Theorems 2.2, 2.3). In Section 3, using methods as in [Ca2], we prove that Alperin’s
theorem on the rank of T (G) holds also for all finite groups, not just p-groups.
Starting in Section 4, we focus on the finite groups of Lie type. In Section 5, the
case where the Sylow p-subgroups are trivial intersection subgroups is considered.
The next two sections handle the larger groups, where it turns out that T (G) is
cyclic. The torsion subgroup of the group of endotrivial modules is handled in
Section 6, and the torsion-free rank of T (G) is dealt with in Section 7. In the last
section we look at the remaining cases, namely the three Chevalley groups of Lie
rank 2.

The following statements summarize the results of our investigations.

Theorem A:

(a) If G is not of type A1(p) (p > 2), 2A2(p), or 2B2(2
1
2 ), then the torsion

subgroup TT (U) of T (U) is trivial, by the classification of endotrival modules
over p-groups.

(b) The torsion subgroup TT (B) of T (B) is isomorphic to the direct sum of
TT (U) and the character group of the torus T ∼= B/U .

(c) If G is not of type A1(p) (p > 2), 2A2(p), or 2B2(2
1
2 ), then the torsion

subgroup TT (G) of T (G) is trivial.

The exceptional cases mentioned in Theorem A are examined in detail in Proposi-
tion 5.2. Part (b) of the theorem actually follows from general principles developed
in Corollary 2.7. The torsion-free group TF (G) is described as follows.

Theorem B: The ranks of TF (U), TF (B) and TF (G) are determined entirely
by the number of conjugacy classes of maximal elementary abelian p-subgroups of
p-rank 2 in the groups U, B and respectively G.

(a) If G has type A1(p) (p > 2), or 2B2(2
1
2 ), then TF (U), TF (B) and TF (G)

are all trivial.
(b) If G is one of the of the following, then the rank of TF (G) is explored in

detail in the designated statement:
(i) for type A2(p), cf. 8.1,
(ii) for type B2(p), cf. 8.2,
(iii) for type G2(p), cf. 8.4,
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(iv) for type 2A2(p), cf. 5.4,

(v) for type 2B2(2
a+ 1

2 ) (for a ≥ 1), cf. Theorem 5.5,

(vi) for type 2G2(3
a+ 1

2 ) (for a ≥ 0), cf. Theorem 5.6.
(c) In all the other cases, the ranks of TF (U), TF (B) and TF (G) are one.

(Theorem 7.5).
(d) A complete set of generators for TF (U) and TF (B) can be specified using

Theorem 3.4.

It is worth stating that in the process of proving part (b) of Theorem B we
enumerate the conjugacy classes of maximal elementary abelian p-subgroups of G.
These conjugacy classes are in one-to-one correspondence with the components of
the maximal ideal spectrum VG(k) of the cohomology ring H∗(G, k) (cf. Section 3).
Hence the results are of some interest, independent of the structure of endotrivial
modules.

2. Definitions and Preliminaries

Throughout the paper we assume that k is an algebraically closed field of char-
acteristic p > 0. The algebraic closure assumption is not really necessary, but it
makes the geometry easier and there is no loss in generality. For G a finite group,
we consider only finitely generated kG-modules. We begin with some general no-
tation. Let mod(kG) denote the category of finitely generated kG-modules, and
let stmod(kG) denote the stable module category. That is, the category where the
objects are finitely generated kG-modules. The set of morphisms between objects
M and N in the stable category is given as

HomkG(M, N) = HomkG(M, N)/PHomkG(M, N)

where PHomkG(M, N) is the set of all homomorphisms that factor through some
projective module.

Suppose that M is a kG-module. If ϕ : P → M is a projective cover of M then we
let Ω(M) denote the kernel of ϕ. Similarly, we let Ω−1(M) denote the cokernel of the
injection ϑ : M → Q where Q is the injective hull of M . Both of these operators can
be iterated so that for n > 1, Ωn(M) = Ω(Ωn−1(M)) and Ω−n(M) = Ω−1(Ω1−n(M)).
These modules are called the syzygies of M , and satisfy the following properties

Ωm(M)⊗ Ωn(N) ∼= Ωm+n(M ⊗N)⊕ (proj) and (Ωn(M))∗ ∼= Ω−n(M∗)

for all kG-modules M and N and all integers m and n. Here, “⊗” means tensor
over the base field k, and “( )∗” indicates the k-dual. Also “(proj)” denotes some
projective module. The first statement is a consequence of the fact that the tensor
product of any module with a projective module is a projective module.

Suppose that H is a subgroup of G. If M is a kG-module, then its restriction to a
kH-module is denoted ResG,H(M). Likewise, if N is a kH-module then the induced
module is IndG

H(N) ∼= kG⊗kH N . When there is no chance of confusion we denote
the restriction of M to H by the simple notation MH .

The definition of an endotrivial module is as follows.
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Definition 2.1. A kG-module M is endotrivial provided we have an isomorphism
of kG-modules Homk(M,M) ∼= k ⊕ (proj).

So M is an endotrivial module if its k-endomorphism ring is isomorphic to the
trivial module in stmod(kG). Recall that Homk(M,M) ∼= M∗ ⊗ M . Hence, we
have that if M is an endotrivial module then so are M∗ and Ωn(M) for all integers
n. In particular, any kG-module of dimension one and any Ωn(k) is an endotrivial
module.

By the Krull-Schmidt Theorem it can be seen that any endotrivial module is
the direct sum of an indecomposable endotrivial module and a projective module.
Thus, we may define an equivalence relation on endotrivial modules, by saying that
two endotrivial modules M, N ∈ mod(kG) are equivalent if and only if M and N
are isomorphic in stmod(kG). Let T (G) denote the set of equivalence classes of
endotrivial kG-modules, and write [M ] for the element in T (G) that is the class of
an endotrivial module M . Hence, if M and N are endotrivial, then [M ] = [N ] if
and only if there exist projective kG-modules P and Q such that M ⊕ P ∼= N ⊕Q.
This is equivalent to the statement that M∗ ⊗ N ∼= k ⊕ (proj). Furthermore, the
tensor product induces an abelian group structure on T (G):

[M ] + [N ] = [M ⊗N ].

Some results of this section, such as the finite generation of T (G), have been
known for many years and, likely, by several people (cf. [Be1, p. 132]).

The term “endotrivial” was coined by Dade [Da], though he originally meant it
only to apply to modules over p-groups. The classification of endotrivial modules
over p-groups can be expressed roughly as follows [Da, A, CaTh2, CaTh3].

Theorem 2.2. Suppose that G is a p-group.

(a) The group T (G) is finitely generated and hence

T (G) = TT (G)⊕ TF (G)

where TT (G) is the torsion subgroup and TF (G) is a torsion-free subgroup.
(b) If G is abelian then T (G) is cyclic and is generated by the class [Ω(k)].
(c) TT (G) = {0} except in the cases that G is cyclic of order at least 3, quater-

nion or semi-dihedral. In all cases TT (G) is a finite abelian 2-group.
(d) Let n be the number of conjugacy classes of maximal elementary abelian

subgroups of p-rank 2 in G. Then, the rank of the group TF (G) is

Rank(TF (G)) =





n if the p-rank of G is 2
n + 1 if the p-rank of G is at least 3

0 otherwise.

If G is cyclic, then T (G) is cyclic of order 1 or 2. For G quaternion, T (G) ∼=
Z/4Z ⊕ Z/2Z while if G is semi-dihedral, TT (G) ∼= Z/2Z (cf. [CaTh1]). A set of
generators for a torsion-free subgroup of T (G) of maximal rank was constructed by
Alperin in [A] using relative syzygies corresponding to noncentral subgroups that
are contained in maximal elementary abelian p-subgroup of p-rank 2. In [CaTh3] it
was first shown that these elements generate all of TF (G) and not just a subgroup
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of finite index. For the purposes of this paper, it is much more convenient to use the
construction of the generators in [Ca2]. That is, the homological methods seem to
be more easily generalized to non-p-groups. A thorough discussion of the generators
of TF (G) is in the next section.

Some of the following results will be more relevant to us later, for the classification
in the case of the finite groups of Lie type. Note that the next proposition does not
assume that G is a p-group.

Proposition 2.3. Let G be any finite group.

(a) Suppose that E and F are elementary abelian p-subgroups of G such that
both E and F have p-rank at least three. Let M be an endotrivial kG-module
and suppose that there exist integers a and b such that

ResG,E(M) ∼= Ωa(kE)⊕ (proj) and ResG,F (M) ∼= Ωb(kF )⊕ (proj) .

Then a = b (cf. [A, Thm. 4]).
(b) A kG-module is endotrivial if and only if its restriction to every elementary

abelian p-subgroup is endotrivial (cf. [CaTh1]).
(c) Let E denote the set of all elementary abelian p-subgroups of G that have

p-rank at least 2. Then the product of the restriction maps∏
E∈E

ResG,E : T (G) →
∏
E∈E

T (E)

has the properties that its kernel is the torsion subgroup TT (G) while its
image is isomorphic to TF (G).

Proof. The proofs of the first two statements follow from the given references. Only
the third statement needs some explanation. We should first note that part (c) is
true if G is a p-group by the classification. In particular, the image of the map∏

E∈E ResG,E is a torsion-free group. So suppose that M is an indecomposable
endotrivial module such that [M ] is in the kernel of the product of the restriction
maps. Let P be a Sylow p-subgroup of G. Then MP

∼= L ⊕ (proj) where L is
an indecomposable endotrivial kP -module. Moreover M is a direct summand of
IndG

P (L). The result is proved by noting that up to isomorphism, there are only
finitely many indecomposable endotrivial kP -modules like L, whose restrictions to
every elementary abelian subgroup of p-rank at least 2 are trivial. In addition, the
induced module IndG

P (L), has only a finite number of direct summands. So the
kernel of the product of the restrictions is a finite group. ¤
Remark 2.4. In what follows we often identify TF (G) with its image under the
product of the restriction maps as in statement (c) of the previous proposition. We
see in the next section that the image can be made more specific by choosing a
minimal collection of elementary abelian p-subgroups such that the restrictions to
those subgroups detect TF (G).

Corollary 2.5. The group T (G) is finitely generated.

Proof. By Proposition 2.3 the torsion-free subgroup TF (G) of T (G) is isomorphic
to the image of the restriction maps to the elementary abelian p-subgroups of G of
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p-rank at least 2. There is only a finite number of such maps, and hence TF (G) is
finitely generated. A proof that TT (G) is finite is part of the proof of part (c) of
the proposition. ¤

The reader should keep in mind that the restriction to any subgroup of an en-
dotrivial module is an endotrivial module. Hence the restriction map induces a
homomorphism on groups of endotrivial modules. Moreover, if E is an elementary
abelian p-group then any endotrivial kE-module has the form Ωa(k) ⊕ (proj) for
some integer a.

In this paper we concentrate on the study of endotrivial modules over finite groups
that are not p-groups. For this we need the following.

Proposition 2.6. Let P be a Sylow p-subgroup of G, and let H = NG(P ), the
normalizer of P in G. Then we have the following.

(a) The restriction map ResG,H : T (G) → T (H) is injective.
(b) If M is an endotrivial kG-module, then M is a direct summand of IndG

P (N)
for some endotrivial kP -module N .

(c) Suppose that M is a kG-module whose restriction to P is an endotrivial
module. Then M is an endotrivial module.

(d) In the case that G = H (i.e. that P is normal in G), an indecomposable
kG-module M is endotrivial if and only if its restriction to P is an indecom-
posable endotrivial module.

Proof. For part (a), we observe that if M is an endotrivial module, then MH
∼= N⊕Q

where N is the Green correspondent of M . Also, the dimension of M is relatively
prime to p, since p does not divide the dimension of M∗ ⊗ M . So M and hence
N have vertex P . Since MH is an endotrivial module, Q is a projective module.
However, because N is the Green correspondent, it is uniquely defined by M . So
the restriction map is injective.

Part (b) is an application of the theory of vertices and sources. In particular, M
is a direct summand of IndG

P (MP ). Since MP is endotrivial, we are done.
For statement (c), let U denote the kernel of the trace map Homk(M, M) → k.

Then we have an exact sequence

0 → U → Homk(M, M) → k → 0.

We know that MP is an endotrivial module. Hence, on restriction to P , the sequence
splits and UP is a projective module (actually, the sequence splits only because the
dimension of M is relatively prime to p). This implies that U is a projective module,
and Homk(M, M) ∼= k ⊕ U . So M is endotrivial.

(d) Let M be an indecomposable endotrivial kG-module. Suppose that MP
∼=

N1 ⊕ N2 ⊕ · · · ⊕ Nt where each Ni is indecomposable, and N1 is a source for M .
Then M is a direct summand of the induced module IndG

P (N1). On the other hand,
because P is normal in G, the restriction of IndG

P (N1) to P is direct sum of G-
conjugates of N1. That is, every Ni must be a G-conjugate of N1. Now MP is a
sum of an indecomposable endotrivial module and a projective. The only way that
this can happen is if MP is indecomposable. This proves one half of part (d). The
converse follows from statement (c). ¤
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Corollary 2.7. Suppose that the Sylow p-subgroup P of G is normal in G and that
G/P is abelian. If P is not cyclic, quaternion or semi-dihedral, then TT (G) is
isomorphic to the character group of G/P .

Proof. If M is an endotrivial kG-module such that [M ] is in TT (G), then MP is
isomorphic to k ⊕ (proj), by Theorem 2.2(c). However, this means that [M ] = [N ]
for N some indecomposable summand of IndG

P (k). Because G/P is abelian, IndG
P (k)

is a direct sum of all of the irreducible kG modules, which have dimension one.
Therefore, N affords a one-dimensional character of G. ¤

We end this section with a characterization of T (G) in a special case.

Proposition 2.8. Suppose that the Sylow p-subgroup P of G is a trivial intersection
subgroup. Then the restriction map induces an isomorphism T (G) ∼= T (NG(P )).

Proof. Set H = NG(P ). Recall that P is a trivial intersection subgroup of G means
that if x ∈ G and x /∈ H then P ∩ xPx−1 = {1}. Suppose that N is an endotrivial
kH-module. Then the Mackey formula implies that

ResG,H IndG
H(N) ∼=

⊕
HxH

IndH
H∩xHx−1 ResH,H∩xHx−1(x⊗N) ∼= N ⊕ (proj),

where the sum is over a set of representatives of the H-H double cosets in G. The
point is that if x /∈ H, then H ∩ xHx−1 is a p′-subgroup and any module induced
from such a subgroup is projective. It follows that IndG

H(N) is an endotrivial module.
On the other hand, suppose that M is an indecomposable endotrivial kG-module.

Then its Green correspondent N is an endotrivial kH-module and M is a direct
summand of IndG

H(N). Consequently, restriction and induction induce inverse ho-
momorphisms between T (G) and T (H). ¤
Remark 2.9. Proposition 2.8 holds in a more general case. Indeed, the claim still
holds when the normalizer of the Sylow p-subgroup is a strongly p-embedded sub-
group. However, we emphasize the statement of the result for a trivial intersection
Sylow p-subgroup, since we need it thereafter.

Remark 2.10. Note that in general, the Green correspondent M of an endotrivial
kH-module N is not an endotrivial kG-module. However, its restriction MP to P
is an endo-permutation module that belongs to the class of an endotrivial module
(namely NP ).

The methods of the proof actually show that the stable categories stmod(kG)
and stmod(kH) are equivalent and the equivalence is induced by the restriction
and induction maps. Of course, the equivalence induces an isomorphism of groups
of endotrivial modules.

3. The torsion-free rank of T (G)

Alperin [A] determined the rank of TF (G) in the case that G is a finite p-group.
Our purpose here is to show, using homological methods, that the same theorem
holds for any finite group.
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Note that Proposition 2.3 proves that if the p-rank of G is one, then TF (G) = {0}.
So, in this section, we will assume that the p-rank of G is at least 2. The methods
that we employ follow those in [Ca2]. We record the details here for the sake of
completeness. In the case that the Sylow p-subgroup of G is normal, we can also
specify the generators of TF (G), by a result of [Ca2].

For notation, let C be the collection of all maximal elementary abelian p-subgroups
of G. Then we write

C = C1 ∪ C2 ∪ · · · ∪ Cn

where we have one of the following

(i) If the p-rank of G is two, then C1, . . . , Cn are the conjugacy classes of maximal
elementary abelian p-subgroups of G, all of which are of order p2.

(ii) If the p-rank of G is greater than two, then the sets C1, . . . , Cn−1 are the
conjugacy classes of maximal elementary abelian p-subgroups of p-rank two,
and Cn is the collection of all maximal elementary abelian p-subgroup of
p-rank larger than two.

Note that if there are no maximal elementary abelian p-subgroups of p-rank two
in G, then n = 1 and C = C1. For each i, choose a maximal elementary abelian
p-subgroup Ei ∈ Ci.

Theorem 3.1. Assume that the p-rank of G is at least 2. Then the torsion-free
rank of the group T (G) is the number n.

Proof. Recall that if E is an elementary abelian p-subgroup of order pe for e > 1 then
T (E) ∼= Z, where the class of an endotrivial module M corresponds to the number
aE(M) = a such that ME

∼= Ωa(k)⊕ (proj). We know that if aE(M) = 0 for all E,
then the class of M is a torsion element in T (G). Moreover, if E and F both have
p-rank at least three, then aE(M) = aF (M) (cf. Proposition 2.3). Consequently,
a torsion-free subgroup of T (G) of maximal rank is isomorphic to the image of the
map

Ψ =
n∏

i=1

ResG,Ei
: T (G) →

n∏
i=1

T (Ei) ,

where for each i, we choose Ei ∈ Ci as above. In particular, the torsion-free rank
of T (G) is at most n. If n = 1, then there is nothing more to prove. So for the
remainder of the proof assume that n > 1.

By Quillen’s Dimension Theorem (cf. [Be2, Thm. 5.1.1]), we know that

VG(k) =
⋃
E∈C

Res∗G,E(VE(k)),

where Res∗G,E : VE(k) −→ VG(k) is the restriction map induced on the varieties by
the inclusion of E in G. If E and F are conjugate then Res∗G,E(VE(k)) is the same as
Res∗G,F (VF (k)). If E ∈ C has p-rank two, then VE(k) is a plane, and the intersection
of Res∗G,E(VE(k)) with Res∗G,F (VF (k)), for F not conjugate to E, is a subvariety W of
dimension one. In fact, the intersection W is precisely the subvariety Res∗G,Z(VZ(k))
where Z is a subgroup of order p in the center of some Sylow p-subgroup of G. It
follows that for some m > 0 there exists an element ζ ∈ Hm(G, k) with the property
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that VG(ζ), the set of all maximal ideals containing ζ, intersects W transversely.
It is sufficient here to choose the element ζ so that ResG,Z(ζ) is not nilpotent, or
equivalently, so that ResG,Z(ζ) 6= 0 and that m is even if p > 2. Assume that such
an element has been chosen.

Let ζ ′ : Ωm(k) → k be a cocycle that represents ζ. The kernel of ζ ′, Lζ , is a
module having support variety VG(Lζ) = VG(ζ) (cf. [Be2, Prop. 5.9.1]). Then, the
support variety is disconnected. That is, we have that

VG(Lζ) = V1 ∪ V2 ∪ · · · ∪ Vn

where

Vi =
⋃

E∈Ci

Res∗G,E(VE(Lζ)).

Notice here that when i < n and in any case that Ci is the conjugacy class of a single
maximal elementary abelian group of rank 2, we have that Vi = Res∗G,Ei

(VEi
(Lζ)) =

Res∗G,Ei
(VEi

(ResG,Ei
(ζ))) for some element Ei in Ci. Moreover, because VG(Lζ) is

transverse to W , it is necessary that Vi ∩ Vj = {0}, for i 6= j. Consequently, Lζ

decomposes as

Lζ = L1 ⊕ L2 ⊕ · · · ⊕ Ln

where VG(Li) = Vi (cf. [Be2, Thm. 5.12.1]).
For any i < n, let V ′

i = ∪j 6=iVj and let L′i = ⊕j 6=iLj. Then we have a diagram

0

²²

0

²²
L′i

²²

L′i

²²
0 // Lζ

//

²²

Ωm(k)
ζ′ //

²²

k // 0

0 // Li
//

²²

Ni
//

²²

k // 0

0 0

where Ni is the pushout.
We claim that Ni is an endotrivial module. To prove the claim it is only necessary

to show that the restriction of Ni to any maximal elementary abelian p-subgroup
E of G is an endotrivial module. Suppose that E is in Ci. Then because V ′

i , which
is the support variety of L′i, intersects Res∗G,E(VE(k)) in the set {0} we conclude
that ResG,E(L′i) is a projective kE-module. Hence on restriction to the subgroup E,
the middle column splits, and ResG,E Ni

∼= Ωm(k)⊕ (proj). Thus, ResG,E(Ni) is an
endotrivial module. On the other hand, suppose that E ∈ Cj for j 6= i. Then by a
similar argument, Li is projective on restriction to E. So this time the bottom row
in the diagram splits on restriction to E, and we have that ResG,E Ni

∼= k ⊕ (proj).
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Hence, we have constructed a collection N1, . . . , Nn−1 of endotrivial modules.
Moreover, we know the restriction of any Ni to any maximal elementary abelian
p-subgroup of G. Therefore, considering the map Ψ defined at the beginning of
the proof, we have that the classes of the modules Ω(k), N1, . . . , Nn−1 generate a
torsion-free subgroup of T (G) that has rank n. This proves the theorem. ¤

Theorem 3.1 leads us directly to the following observations.

Corollary 3.2. Let P be a Sylow p-subgroup of a finite group G and let H = NG(P ).

(a) If P is a dihedral group of order 8, the torsion-free ranks of T (G) and T (H)
equal 2.

(b) If H controls the p-fusion in G, then the image of the restriction map ResG,H

is a subgroup of TF (H) of finite index.

Proof. (a) In this case, P has 2 maximal elementary abelian p-subgroups of p-rank 2,
and they are never conjugate inside any finite group having P as a Sylow 2-subgroup.

(b) If H controls the p-fusion, then the H- and G-conjugacy classes of subgroups
of P are the same, and so T (G) and T (H) have the same torsion-free rank. Thus,
the assertion follows, since the restriction map ResG,H is an injective group homo-
morphism. ¤

We end this section with some notes on the generators of TF (G). If the group G
is a p-group, then there is a well defined formula for the generators [Ca2, CaTh3].
The generators can be constructed by carving up the syzygies of the trivial module
or by taking relative syzygies as in [A]. Furthermore, the methods of [Ca2] can be
extended to the case that G is a finite group that has a normal Sylow p-subgroup.

To state the theorem we need some additional notation. Assume that G has a
normal Sylow p-subgroup P . We assume also that the rank of TF (G) is at least two,
because otherwise, we know that TF (G) is generated by Ω(k). This means that the
number n of conjugacy classes of maximal elementary abelian p-subgroups of G is
at least 2. It follows also from the last assumption that P has a cyclic center and a
unique central subgroup Z = 〈z〉 of order p. Note that Z is also normal in G. Let
P = P/Z and G = G/Z. For any kG-module M let M = M/M0 where

M0 = {m ∈ M | (z − 1)p−1m = 0}.
Notice that M is a kG-module.

The following is a rephrasing of [Ca2, Thm. 4.2, Cor. 4.3] in the special case that
M ∼= Ωm(k). The proof of the theorem is even more technical than its statement. It
ultimately relies on a theorem of the first author and Benson on the partial inflations
of cohomology of the quotient group G onto the pages of the Lyndon-Hochschild-
Serre spectral sequence of the group extension. Cf. [Ca2] for details.

Theorem 3.3. Suppose that for some m, VG(Ωm(k)) = V1∪V2, where V1∩V2 = {0}.
Assume further that for any elementary abelian p-subgroup E of G, we have that
Res∗

G,E
(VE(k)) ⊆ Vi for either i = 1 or for i = 2. Then there exists an endotrivial

kG-module U with the property that one of the following happens.

(i) If Res∗
G,E

(VE(k)) ⊆ V1, then UE
∼= Ωm(kE)⊕ (proj).
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(ii) If Res∗
G,E

(VE(k)) ⊆ V2, then UE
∼= k ⊕ (proj).

To state the theorem on generators we first introduce the following notation. For
i = 1, . . . , n− 1, let ai be defined by the following rule.

(a) If p > 2, then let ai = 2p.
(b) If p = 2, then let ai = |F |/2 where F is an elementary abelian p-subgroup

of P which has maximal order subject to the condition that Ei ⊆ F .

Theorem 3.4. Suppose that G has a normal Sylow p-subgroup. For any i =
1, . . . n− 1 there is an endotrivial module Ni such that

(Ni)Ei
= Ωai(k)⊕ (proj) and (Ni)Ej

∼= k ⊕ (proj) for j 6= i.

The classes [Ω(k)] and [Ni] for i = 1, . . . , n−1 are a free set of generators for TF (G).
In particular, the restriction map induces an isomorphism TF (G) ∼= TF (P )G/P ,
where TF (P )G/P denotes the G/P -fixed points of TF (P ), for the action of G/P
induced by the conjugacy on the subgroups of P .

Proof. We know that the theorem is true in the case that G = P by [Ca2, Thm.
7.2]. We fix i such that 1 ≤ i < n and let a = ai. Recall that Ci is the G-conjugacy
class of Ei. We write Ci = U1 ∪ · · · ∪ Ur where each Uj is a P -conjugacy class of
maximal elementary abelian subgroups of p-rank 2. The argument in the proof of
[Ca2, Thm. 7.2] shows that for each j, VP (Ωa(k)) = Wj ∪W ′

j where Wj ∩W ′
j = {0},

and also for any elementary abelian p-subgroup E of P , Res∗
P ,E

(VE(k)) ⊆ Wj if and

only if E ∈ Uj.

The implication is that VG(Ωa(k)) = Res∗
G,P

(VP (Ωa(k))) = Vi ∪ V ′
i where Vi =

∪j Res∗
G,P

(Wj). That is, we have that

VP (Ωa(k)) = (W1 ∪ · · · ∪Wr) ∪ Ŵ

where Ŵ = ∩jW
′
j . The group G/P acts on the variety VP (Ωa(k)) by permuting

the components W1, . . . , Wr since they correspond to conjugate subgroups. The
subvariety Ŵ is fixed (setwise) by the action of G/P . The variety VG(Ωa(k)) is the
orbit space of this action. Now Theorem 3.3 guarantees that there is a module Ni,
which satisfies

(Ni)Ei
= Ωai(k)⊕ (proj) and (Ni)Ej

∼= k ⊕ (proj) for j 6= i.

Let T be the subgroup of TF (G) generated by the classes [Ω(k)] and [N1], . . . , [Nn−1].
By [Ca2, Thm. 7.2], the restriction map ResG,P takes T surjectively onto TF (P )G/P .
That is, the generators for TF (P )G/P are the orbit sums of the action of G/P on
TF (P ). On the other hand, the restriction from TF (G) to TF (P ) is injective, by
Proposition 2.3(c). It follows that the restriction map is an isomorphism on the
torsion-free subgroups and that T ∼= TF (G) as asserted. ¤

4. Finite groups of Lie type. Generalities

For the remainder of the paper, we will consider the following setting. Let Ĝ be a
connected semisimple algebraic group (of adjoint type), defined over an algebraically

closed field k of characteristic p > 0. Fix a maximal torus T̂ and let Φ be the root



12 JON F. CARLSON, NADIA MAZZA, AND DANIEL K. NAKANO

system associated to (Ĝ, T̂ ). The positive (resp. negative) roots are Φ+ (resp. Φ−),
and ∆ is a base consisting of simple roots. Let h denote the Coxeter number of

the root system Φ. Let B̂ be a Borel subgroup containing T̂ corresponding to the

positive roots, and let Û be the unipotent radical of B̂. Note that B̂ = T̂ n Û and

B̂ = N bG(Û) = N bG(B̂). For a given root system Φ of Lie rank n, the simple roots will
be denoted by α1, α2, . . . , αn. We will adhere to the ordering of the simple roots as

given in [BMP] (following Dynkin). For each root α ∈ Φ+ write Ûα = 〈xα(t) | t ∈ k〉
for the corresponding root subgroup. Then Û =

∏
α∈Φ+ Ûα. Any root β ∈ Φ+ can

be uniquely written as a linear combination
∑

α∈∆ nαα, for non-negative integers
nα. Define the height h(β) of β to be the positive integer

∑
α∈∆ nα.

Consider a Steinberg endomorphism σ : Ĝ −→ Ĝ. That is, σ is an endomorphism

of algebraic groups whose subgroup of fixed points Ĝσ is finite. The finite groups

Ĝσ are the finite groups of Lie type, and they are defined over a finite field of
characteristic p. They have been classified as follows (cf. [GLS, 2.2.3]). Namely, we
distinguish three kinds of finite groups, according to the type of σ:

(i) If σ is induced by the Frobenius map on Fq, for a positive power q = pa of
p, then σ(xα(t)) = xα(tq), ∀ α ∈ Φ+. The resulting finite groups are the
Chevalley groups, or untwisted groups, usually denoted by the corresponding
root system: An(q), n ≥ 1, Bn(q), Cn(q), n ≥ 2 and Dn(q), n ≥ 4 are called
classical, and E6(q), E7(q), E8(q), F4(q) and G2(q) are called exceptional.

(ii) If all the roots have the same length and if σ involves a non trivial isometry
τ of order d of the underlying Dynkin diagram, as well as the Frobenius
map on Fqd , then we get the twisted groups of Lie type (or Steinberg groups).
They are usually denoted by 2An(q), 2Dn(q), 3D4(q) and 2E6(q), where the
superscript indicates the order d of τ . They are defined over the field Fqd .

(iii) Suppose that Φ is of type B2 (resp. F4, G2) with p = 2 (resp. 2, 3), and
that σ involves the Frobenius map on Fq2 and a non trivial permutation of
the roots. These groups are defined over a finite field Fq, where q is an odd

power of p. Hence, the resulting groups are the Suzuki groups 2B2(2
a+ 1

2 ),

and the Ree groups 2F4(2
a+ 1

2 ) and 2G2(3
a+ 1

2 ), defined respectively on the
fields F22a+1 , F22a+1 and F32a+1 , for a non negative integer a.

For our purposes, the reference material and the notation concerning these groups
can be found in [GLS].

Let us denote by G = Ĝσ one of these finite groups and the subgroups obtained

from B̂, T̂ and Û , by B, T and U respectively. Write also X(T ) for the character
group of T .

The isometry τ induces a map from Φ to the twisted root system Φ̃ of G, defined as

follows. Let V be the Euclidian space spanned by Φ and let Ṽ = {v ∈ V | τ(v) = v}
be the set of fixed points. Then, Φ̃ consists of the projections of the roots of Φ onto

Ṽ , and the map induced by τ sends a root α on its projection α̃ in Ṽ .
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Furthermore, we can define an equivalence relation on Φ̃ by identifying positive

colinear roots. Let Φ̂ = {α̂ | α̃ ∈ Φ̃} be the set of equivalence classes, where

α̂ = {β ∈ Φ | ∃ c > 0 : α̃ = cβ̃} .

So we have mappings Φ → Φ̃ → Φ̂. Let ∆̂ be the image of ∆ under this composition

of maps and ∆̃ be the image of ∆ under Φ → Φ̃. The root subgroups of G are

indexed by the elements of Φ̂. In particular, if G is untwisted then Φ = Φ̃ = Φ̂. In

case G is a Steinberg but not 2A2m(q) we have Φ̃ = Φ̂. We refer the reader to [GLS,
§2.3] for more details.

5. The case |∆̂| = 1

The finite groups of Lie type for which |∆̂| = 1 are A1(q),
2A2(q),

2B2(2
a+ 1

2 ),

and 2G2(3
a+ 1

2 ), according to the notation introduced above. Let us first point out
a general fact concerning these groups.

Lemma 5.1. Let G be such that |∆̂| = 1. Then the Sylow p-subgroups of G are TI
subgroups.

Proof. By [GLS, Thm. 2.3.5], the Bruhat Decomposition holds in G. That is, for
any w ∈ N/T and for any g ∈ G, there exist unique u ∈ U, n ∈ N and v ∈ U ∩Uw0w

such that g = unv, and the canonical projection N −→ N/T maps n onto w. Here,
N = NG(T ), and w0 ∈ N/T is the unique element of N/T satisfying U ∩Uw0 = {1}.

Now, if G is such that |∆̂| = 1, then N/T = 〈w0〉 ∼= Z/2Z. Hence, if g ∈ G, and
g = unv is its Bruhat Decomposition, then we have

gU ∩ U = u( wU ∩ U) =

{ {1} if w = w0 ⇐⇒ n 6∈ B
U if w = 1 ⇐⇒ n ∈ B

That is U is a TI subgroup of G. ¤
Proposition 5.2. Suppose that G is isomorphic to one of A1(q),

2A2(q),
2B2(2

a+ 1
2 ),

or 2G2(3
a+ 1

2 ).

(a) If G ∼= A1(2), then TT (U) = T (U) = {0}
(b) If G ∼= A1(p), and p > 2, or if G ∼= 2B2(2

1
2 ), then TT (U) = T (U) ∼= Z/2Z.

(c) If G ∼= 2A2(2), then TT (U) = T (U) ∼= Z/2Z⊕ Z/4Z.
(d) In the other cases, we have TT (U) = {0}.

Moreover, for each group, the restriction map induces an isomorphism of T (G)
to T (B).

Proof. (a), (b) If G ∼= A1(p), then U is cyclic of order p and Ω2(k) ∼= k, whereas

Ω1(k) is trivial if and only if p = 2 (cf. [Da]). If G ∼= 2B2(2
1
2 ), then we used a

computer calculation to check that the Sylow 2-subgroup is cyclic of order 4.
(c) If G ∼= 2A2(2) then U is a quaternion group of order 8, and so we conclude

(cf. [CaTh1, Thm. 6.3]) that TT (U) = T (U) ∼= Z/2Z⊕ Z/4Z (since F4 has a cubic
root of unity).

(d) In all the other cases, U is neither cyclic, nor quaternion, and so TT (U) = {0},
by the classification of endotrivial modules for finite p-groups.
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The final statement is a consequence of Proposition 2.8 and Lemma 5.1, since in

all the cases we consider, we have |∆̂| = 1. ¤

In particular, if G ∼= A1(q), then U is abelian and so T (U) is cyclic, generated by
the class of Ω(k), and B controls the p-fusion in G.

Corollary 5.3. Let G ∼= A1(q).

(a) If q = 2, then U = B, and T (U), T (B), and T (G) are all trivial.
(b) If q = p > 2, then T (G) ∼= T (B) ∼= Z/(p − 1)Z is generated by the class of

the syzygy Ω(k).
(c) In all the other cases, T (G) ∼= T (B) ∼= T (U)⊕X(T ), and T (U) ∼= Z.

Proof. Write ΩH(k) for the syzygy of the trivial kH-module for a finite group H, and
[ΩH(k)] for its class in T (H). Consider the restriction maps ResG,U : T (G) → T (U)
and ResB,U : T (B) → T (U). Since U is a Sylow p-subgroup of G and B, we have
ResG,U([ΩG(k)]) = [ΩU(k)], and ResB,U([ΩB(k)]) = [ΩU(k)]. This implies that if
T (U) = 〈[ΩU(k)]〉 then both restriction maps are surjective, and so statements (a)
and (c) follow from Corollary 3.2 and Proposition 5.2. In the case (b), the group G
is PSL(2, p), and the Borel group B consists of cosets modulo the center of upper
triangular matrices of determinant one (elements of SL(2, p)). The group X(T ) has
order (p− 1)/2. The group B is generated by two elements x and y of order p and
(p−1)/2. Here x is represented in SL(2, p) by a nonidentity upper triangular matrix
with ones on the diagonal and y is represented by a diagonal matrix with entries
a and a−1 where a is a generator for the multiplicative group of nonzero elements
in the prime field Fp. Thus we have the relation that yxy−1 = xa2

It can be easily
seen that the projective cover P of the trivial kB-module is uniserial with successive
radical quotients Radi P/(Radi+1 P ) = Mi, such that Mi has dimension one and y
acts on Mi by multiplication by a2i. Then a straightforward computation of the
projective resolution of k shows that Ω2(k) ∼= M1 is a generator for X(T ). ¤

Let us now consider the other groups for which |∆̂| = 1. In these cases, Propo-
sition 5.2 answers the question regarding T (U) and the torsion subgroups of the
groups of endotrivial modules for B and G.

We handle now these groups case by case and we determine the torsion-free ranks
of T (G), T (B) and T (U). As mentioned previously, whenever TF (G) is not cyclic,
then our results allow us only to recover the torsion-free rank of T (G), but we do
not get a set of generators, except in the case where G has type 2A2(2), since the
group is 2-nilpotent. For T (B) and T (U), a minimal set of generators for TF (B)
and TF (U) can be computed using Theorem 3.4.

For brevity, for the remainder of the paper, we will write G = dXn(q) instead of
“a finite group G of Lie type dXn(q)”, where X ∈ {A, B, C, D, E, F, G} and
d = 1, 2, or 3.

G = 2A2(q) : In this case, according to [GLS, Table 2.4, p.46], the group G
is defined over Fp2 and a Sylow p-subgroup of 2A2(p) is an extraspecial p-group.
Namely, it is a quaternion group of order 8, if p = 2, and it is an extraspecial p-group
of order p3 and exponent p otherwise.



ENDOTRIVIAL MODULES FOR FINITE GROUPS OF LIE TYPE 15

Let us consider first the case p > 2. We present the structure of U and its
normalizer B in some detail, as they are found in [C1, §13.7] (cf. pages 239-243).
We may assume that the center of U is generated by

z =




1 0 0
0 1 0
u 0 1


 where u ∈ Fp2 satisfies u + up = 0.

Then z has order p.
Let t be a generator of F∗p2 . Then, the set {ti | 1 ≤ i ≤ p + 1} is a set of

cosets representatives for F∗p in F∗p2 . Moreover, there are p + 1 elementary abelian

p-subgroups of p-rank 2 given by Ei = 〈xi , z〉, where

xi =




1 0 0
ti 1 0
bi tip 1


 with bi + bp

i = ti(p+1) .

Also, the group T ∼= B/U is generated by

τ =




t−p 0 0
0 tp−1 0
0 0 t


 ∈ T,

A straightforward computation gives us

τxi =




1 0 0
ti+2p−1 1 0
t(p+1)bi tip+2−p 1


 ∈ Ei+2p−1 ,

where the index i + 2p− 1 is taken modulo p + 1. Therefore,

{ τ j

E1 | 0 ≤ j ≤ p− 1} = {Ei | i = 1, . . . p− 1} ⇐⇒ 2p− 1 6≡ 0 mod (p + 1) .

That is, all the Ei’s are conjugate in B if and only if 3 does not divide p + 1. If this
is the case, then we have a unique conjugacy class of maximal elementary abelian p-
subgroups of p-rank 2. Otherwise, we have 3 classes of such subgroups (cf. also [Hu,
Satz II.10.12]). Consequently, we have the following.

Theorem 5.4. Suppose that G = 2A2(p) for p ≥ 3. The torsion-free ranks of
T (U), T (B) and T (G) are given in the table

T (U) T (B) T (G)

p + 1 ≡ 0 mod 3 p + 1 3 3
p + 1 6≡ 0 mod 3 p + 1 1 1

Consider now the case p = 2. Then, G = 2A2(2) is defined over F4 and it is a
2-nilpotent group of order 72 (cf. [GLS, Thm. 2.2.7], or also [Hu, Satz II.10.14]).
Hence T (G) and T (B) are isomorphic, since their module categories mod(kG) and
mod(kB) are equivalent. We conclude then that the restriction maps induce iso-
morphisms between T (G) and T (B) and both are isomorphic to T (U) ⊕ X(T ),
where T (U) = TT (U) ∼= Z/2Z⊕ Z/4Z, since F4 contains a cubed root of unity (cf.
Proposition 5.2).
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G = 2B2(2
a+1

2 ) : (Suzuki groups). These groups are very specific and a computer
calculation has been used to check that there are no maximal elementary abelian
p-subgroups of p-rank 2. In case a = 0, as mentioned previously, the Sylow 2-
subgroup is cyclic of order 4. For larger values of a the maximal elementary abelian
2-subgroups all have 2-rank at least 3. Thus we draw the following conclusion.

Theorem 5.5. Suppose that G = 2B2(2
a+ 1

2 ).

(a) If a = 0, then T (U) ∼= Z/2Z.
(b) If a ≥ 1, then T (U) ∼= Z.
(c) Finally, T (G) ∼= T (B) ∼= T (U) ⊕ X(T ) and T (U) is generated by the class

of Ω(k).

G = 2G2(3
a+1

2 ) : (Ree groups). As with the Suzuki groups, the Ree groups are
very specific, and so a computer calculation was used to determine whether there
are maximal elementary abelian 3-subgroups of order 9 in G.

If a = 0, then a Sylow 3-subgroup has order 27 and is extraspecial with exponent 9.
It has a unique elementary abelian 3-subgroup of order 9 which is normal. For
a > 0, there are no maximal elementary abelian 3-subgroups of order less than 27.
Consequently we have the following theorem.

Theorem 5.6. Suppose that G = 2G2(3
a+ 1

2 ). Then T (G) ∼= T (B) ∼= T (U)⊕X(T )
and T (U) ∼= Z is generated by the class of Ω(k).

6. The case |∆̂| ≥ 2 : Torsion subgroups

In this section we consider the torsion groups TT (G), TT (B), and TT (U) for

G = Ĝ(q), q = pa when |∆̂| ≥ 2. First we should recall that because U is a p-group
we know TT (U) from Theorem 2.2. In particular, TT (U) = {0} except in the case
that U is cyclic, quaternion or semi-dihedral. This only happens when G is A1(p)

or 2A2(2) (both cases having |∆̂| = 1). Hence we have the following.

Proposition 6.1. Suppose that |∆̂| ≥ 2. Then TT (U) = {0} and TT (B) is iso-
morphic to the character group X(T ) of the torus T .

The isomorphism is a consequence of Corollary 2.7. By Proposition 2.6, the
restriction map from TT (G) to TT (B) is injective. Consequently, to determine
TT (G) we need only decide which kB-modules of dimension one can have a Green
correspondent which is endotrivial.

Theorem 6.2. Suppose that |∆̂| ≥ 2. Then TT (G) = {0}. In particular, the Green
correspondent of a kB-module λ of dimension one, is an endotrivial module if and
only if λ ∼= k.

Proof. Let M be the Green correspondent of λ. It follows that M is the unique inde-
composable summand of IndG

B λ which has vertex U , and we can write ResG,B(M) =
λ⊕ L, for some kB-module L.
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Let n = |∆̂| and choose α̂i ∈ ∆̂ with corresponding parabolic subgroup Pi. By
transitivity of the restriction map, the following diagram commutes

T (G)
ResG,B //

ResG,Pi ##HH
HH

HH
HH

H
T (B)

T (Pi)

ResPi,B

;;vvvvvvvvv

Let N be an indecomposable direct summand of ResG,Pi
M with vertex U . Then N

is the kPi-module which is the Green correspondent of λ. Hence, N is isomorphic
to direct summand of MPi

, and N is also isomorphic to a direct summand of the
induced module IndPi

B λ.
The Mackey formula gives us an isomorphism of kB-modules

ResPi,B IndPi
B λ ∼=

⊕
BwB

(
IndB

Bw∩B λw
)

= λ⊕ IndB
Bw∩B λw ,

where the sum is over the B-B-double cosets in Pi. The last equality follows because
there are only two such double cosets.

Note that w 6= w0 since Pi is a proper parabolic subgroup of G. This forces T to
be a proper subgroup of Bw ∩B (containing T and the unipotent radical of Pi) and
so we get an inequality

Dim(IndB
Bw∩B λw) = |B : (Bw ∩B)| < |U |

Hence, the module ResB,U IndB
Bw∩B λw has no projective summands. It follows that

if M is an endotrivial module, then N also and this forces ResPi,B N ∼= λ. But the
necessary and sufficient condition for

λ = (λ1, λ2, . . . , λn) ∈ X(T )

to be liftable to Pi is that λi = 0 (i.e. λ when restricted to the derived subgroup of
the Levi subgroup corresponding to Pi yields the trivial module).

It follows that if the Green correspondent M of λ is endotrivial then λi = 0, for
all 1 ≤ i ≤ n, which is equivalent to saying that λ = k and hence M = k. ¤

7. The case |∆̂| ≥ 2 : Torsion-free ranks

The goal of this subsection is to show that, most of the time, the group of en-
dotrivial modules T (G) is cyclic, generated by the class of Ω(k). This will reduce
the problem of determining T (G) for group of Lie type to a few special cases which
are treated in the next section.

Assume throughout the section that G = Ĝ(q) for q = pa defined over Fqd , where

d is the order of the Steinberg automorphism acting on Ĝ . Assume also that for

G we have |∆̂| ≥ 2.

Theorem 7.1. Suppose that |∆̂| ≥ 2 and q = pa where a ≥ 2. Then

(a) T (U) = TF (U) = 〈[Ω(k)]〉 ∼= Z,
(b) T (B) ∼= TF (B)⊕X(T ), where TF (B) = 〈[Ω(k)]〉 ∼= Z.
(c) T (G) = TF (G) = 〈[Ω(k)]〉 ∼= Z.
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Proof. The center of U has p-rank at least a. Hence if a ≥ 2 then U can not have
a maximal elementary abelian subgroup of p-rank 2. Consequently T (U) ∼= Z by
Theorem 2.2. The remainder follows from Corollary 2.7 and Theorem 6.2. ¤

We now consider the case when q = p (i.e. a = 1) with |∆̂| ≥ 2. Our analysis
of this case starts by investigating the elementary abelian subgroups in the Sylow
p-subgroups of the untwisted groups and the Steinberg groups which are not iso-

morphic to 2A2m(p). That is, we consider all the situations when Φ̃ = Φ̂. Then, we
can prove the following.

Lemma 7.2. Suppose that |∆̃| ≥ 3. Then there exist roots β1, . . . , βs ∈ Φ̃+, for
some integer s ≥ 3, that satisfy the following properties:

(a) There exists an integer t with 1 < t < s and β1, . . . , βt have the same height
h(βi) = d > 1, for every 1 ≤ i ≤ t.

(b) If β ∈ Φ̃ and h(β) > d, then β = βj for some t + 1 ≤ j ≤ s.

(c) βi + βj 6∈ Φ̃, for every 1 ≤ i, j ≤ s.

Proof. The proof is by a case by case analysis using the tables of positive roots
in [BMP]. We let the set of simple roots ∆ = {α1, . . . , αn} is ordered according
the Dynkin ordering (as in [BMP]). In the list below we display the first t roots in
the list β1, . . . , βs. The displayed roots all have height d. The remainder of the list
consists of the roots of height greater than d.

(i) Let Φ̃ = An, n ≥ 3. Then s = 3, t = 2 and d = n− 1 with

β1 =
n∑

i=2

αi and β2 =
n−1∑
i=1

αi .

(ii) Let Φ̃ = Bn, n ≥ 3. Then s = 4, t = 2 and d = 2n− 3 with

β1 = α2 + 2
n∑

i=3

αi and β2 =
3∑

i=1

αi + 2
n∑

i=4

αi .

(iii) Let Φ̃ = Cn, n ≥ 3. Then s = 4, t = 2 and d = 2n− 3 with

β1 = 2
n−1∑
i=2

αi + αn and β2 = α1 + α2 + 2
n−1∑
i=3

αi + αn .

(iv) Let Φ̃ = D4. Then s = 5, t = 3 and d = 3 with

β1 =
4∑

i=2

αi , β2 = α1 + α2 + α4 and β3 =
3∑

i=1

αi .

(v) Let Φ̃ = Dn, n ≥ 5. Then s = 4, t = 2 and d = 2n− 5 with

β1 = α2 + 2
n−3∑
i=3

αi + αn−1 + αn and β2 =
3∑

i=1

αi + 2
n−3∑
i=4

αi + αn−1 + αn .
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(vi) Let Φ̃ = E6. Then s = 5, t = 2 and d = 8 with

β1 = α1 + α2 + 2α3 + 2α4 + α5 + α6 and β2 = α1 + 2α2 + 2α3 + α4 + α5 + α6 .

(vii) Let Φ̃ = E7. Then s = 6, t = 2 and d = 13 with

β1 = α1+2α2+3α3+3α4+2α5+α6+α7 and β2 = α1+2α2+3α3+2α4+2α5+α6+2α7 .

(viii) Let Φ̃ = E8. Then s = 8, t = 2 and d = 23 with

β1 = α1 + 2α2 + 3α3 + 4α4 + 5α5 + 4α6 + 2α7 + 2α8 and

β2 = α1 + 2α2 + 3α3 + 4α4 + 5α5 + 3α6 + 2α7 + 3α8 .

(ix) Let Φ̃ = F4. Then s = 6, t = 2 and d = 7 with

β1 = α1 + 2α2 + 2α3 + 2α4 and β2 = α1 + 2α2 + 3α3 + α4 .

¤
The root subgroups Ubβ, β̂ ∈ Φ̂ in the untwisted groups and the Steinberg groups

G(q) which are not 2A2m(q) are isomorphic to either Fq or Fq2 (cf, [GLS, Table
2.4]). In either case the root subgroups are elementary abelian p-groups. Let mβ be
the p-rank of Ubβ. Assume that we have the same hypothesis and notation as in the
above proposition. Then we can prove the following.

Proposition 7.3. Let G be an untwisted group or a Steinberg group which is not
2A2m(q). Let H be the subgroup of U generated by the subgroups U bβi

for 1 ≤ i ≤ s

and let u ∈ U . Set m(j) =
∑j

i=1 mβi
for j = s, t. Then

(a) H is an elementary abelian p-subgroup of order pm(s) and H is normal in U ,
(b) |CH(u)| ≥ pm(t), and
(c) CU(u) has an elementary abelian p-subgroup of p-rank at least m(t) + 1.

Proof. Let us recall that our assumption on G implies that Φ̃ = Φ̂, and so Φ̂ is also
a root system.

For (a), let xi ∈ U bβi
for 1 ≤ i ≤ s. Then, for any 1 ≤ i, j ≤ s we have that xp

i = 1

and [xi, xj] = 1, since there are no roots in Φ̂ of the form aβ̂i + bβ̂j for any integers
a, b ≥ 1. So H is elementary abelian of order pm(s).

Suppose that γ̂ ∈ Φ̂ is any positive root and consider the commutator of the
elements x bβi

(c) ∈ U bβi
and xbγ(d) ∈ Ubγ, for constants c and d in the appropriate field.

The Chevalley Commutator Formula [GLS, Thm. 2.4.5] gives us

[x bβi
(c), xbγ(d)] =

∏

a,b>0

xa bβi+bbγ(cab) ,

where the product is over all positive a and b such that aβ̂i + bγ̂ ∈ Φ̂, and where

the coefficients cab depend on a, b, c, β̂i and γ̂. But then, aβ̂i + bγ̂ = β̂j for some

1 ≤ j ≤ s because the height of aβ̂i + bγ̂ is greater than d. So [x bβi
(c), xbγ(d)] ∈ H,

Hence, H is normal in U .
For (b), let J be the subgroup generated by all the subgroups U bβi

, with t+1 ≤ i ≤
s. Then J has order pm(s)−m(t). From the proof of (b), we deduce that [x bβi

(c), u] ∈ J
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for any x bβi
(c) ∈ H, and for any u ∈ U . Thus for any xi ∈ H, xiux−1

i = uw, for some

w ∈ J . So the H-conjugacy class H · u contains at most |J | = pm(s)−m(t) elements.
Hence, the Class Equation gives

|CH(u)| = |H|
|H · u| ≥

pm(s)

pm(s)−m(t)
= pm(t) .

If u ∈ H then H ⊆ CU(u), since H is elementary abelian. Now, |H| = pm(s) ≥
pm(t)+1, and so the part (c) holds in this case. On the other hand, suppose that
u 6∈ H. Then

CH(u) × 〈u〉 ≤ CU(u) and |CH(u) × 〈u〉| = |CH(u)| · |〈u〉| ≥ pm(t)+1

by part (b). ¤

Consider now the case G = 2A2m(p) where m ≥ 2. If m = 1 then |∆̂| = 1. The
next result proves that when m ≥ 2 the conclusion of previous proposition applies.

Proposition 7.4. Let G = 2A2m(p) where m ≥ 2. Then for any u ∈ U of order
p, its centralizer CU(u) in U contains an elementary abelian subgroup of p-rank at
least 3.

Proof. By the results in [GLS, §2.4], we know that Φ̂ is the union of root systems
Φbα of type A1 × A1 or A2. More precisely, we have

Φbα =

{ { α , τ(α) } if α + τ(α) 6∈ Φ
{ α , τ(α) , α + τ(α) } if α + τ(α) ∈ Φ

In the first case, Φbα is of type A1 × A1 and in the second case, Φbα is of type A2 .
Set βi,j =

∑i+j−1
l=i αl , 1 ≤ j ≤ 2m + 1− i, for 1 ≤ i ≤ 2m . Hence,

Φ+ = { βi,j | 1 ≤ j ≤ 2m + 1− i , 1 ≤ i ≤ 2m },
and also h(βi,j) = j , for all i, j . Let τ denote the symmetry (of order 2) acting on
the Dynkin Diagram. Since τ(βi,j) = β2m+2−i−j,j, exactly one of i or 2m + 2− i− j
is less than m for any given i. Thus, we may take

Φ̂+ = {Φdβi,j
| 1 ≤ j ≤ 2m + 1− i , 1 ≤ i ≤ m} ,

Notice that Φdβi,j
has type A2 if and only if βi,j + τ(βi,j) ∈ Φ, that is, if and only if

βi,j + β2m+2−i−j,j =

i+j−1∑

l=i

αl +
2m+1−i∑

l=2m+2−i−j

αl ∈ Φ .

But this is a root precisely when i+ j = 2m+2− i− j , by the structure of roots in
An. By the definition of the βi,j’s, this corresponds to the case when the last index
of the αl’s appearing in the decomposition of βi,j is equal to m.

Keeping this in mind, let us now consider the following elements of U :

xj(t) = xβ1,j
(t)xβ2m+1−j,j

(tp)

for t ∈ Fp2 , m + 1 ≤ j ≤ 2m− 1 and

x2m(t) = xβ1,2m(t) ,
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for t ∈ Fp . Let H be the subgroup of U generated by all these elements xj(t), and
let J be the subgroup of H generated by all the xj(t) with j ≥ m + 2. Then, by
the Chevalley Commutator Formula, and [GLS, Thm. 2.4.5], the groups H and J
are elementary abelian, of order p · (p2)m−1 and p · (p2)m−2, respectively. Moreover,
by the Chevalley Commutator Formula we deduce as in the proof of Proposition 7.3
that H is a normal subgroup of U , and that the H-conjugacy class of any element
of order p of U lies in J . Hence the conclusion of Proposition 7.3 still holds for
G = 2A2m(p) , m ≥ 2, since for m ≥ 2 the index |H : J | is at least p2. ¤

The above propositions lead directly to the following theorem.

Theorem 7.5. Let G = Ĝ(pa) be a finite group of Lie type, (as introduced at the

beginning of Section 4) with |∆̂| ≥ 2. Assume that G is not one of the following
groups

(i) A2(p),
(ii) B2(p),
(iii) G2(p).

Then any maximal elementary abelian p-subgroup of U has p-rank at least 3. More-
over, we have

(a) T (U) ∼= Z.
(b) T (B) ∼= Z⊕X(T ).
(c) T (G) ∼= Z.

In each statement, the class of Ω(k) generates a torsion-free subgroup of the group
of endotrivial modules.

Proof. By Theorem 7.1, we need only consider the case when q = p. So, let us
consider G = G(p). First, suppose that G is an untwisted group or a Steinberg
group which is not 2A2m(p). Let E be an elementary abelian p-subgroup of U of
order p2 and consider its intersection with the unique cyclic subgroup Z of order
p in the center of U . Then E ∩ Z has order 1 or p. In the first case, then EZ is
elementary abelian of p-rank 3 and contains (strictly) E. In the second case, let u be
a non central element of E, and consider its centralizer CU(u). By Proposition 7.3,
CU(u) contains an elementary abelian p-subgroup H of order at least pm(t)+1. Now,
since H and E = 〈u〉 × Z are subgroups of CU(u), and Z is central, we have that
EH is elementary abelian of p-rank at least m(t)+1 and it contains E. In the case
of the untwisted groups when q = p, we have m(t) + 1 ≥ 3 as long as |∆| ≥ 3, by
Lemma 7.2. Hence there are no maximal elementary abelian p-subgroups of p-rank
2 in U , and the result follows in the untwisted case.

Next assume that G is a Steinberg group which is not 2A2m(p). Since Φ̃ = Φ̂,
we can use the same reasoning as above with the root systems given in [GLS, Prop.
2.3.2] to deduce that all maximal elementary subgroups of U have p-rank at least 3

in all cases except possibly 2A3(p) (Φ̂ has type C2) and 3D4(p) (Φ̂ = G2). In the
case when G = 2A3(p) consider the roots β1 = α1 + α2 and β2 = 2α1 + α2. These
roots satisfy the properties of Lemma 7.2 for t = 1 and s = 2. One can now apply
Proposition 7.3 with H generated by Uβ1 and Uβ2 to conclude that u is contained in
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an elementary abelian p-subgroup of p-rank at least m(t)+1 = mβ1 +1 = 2+1 = 3.
A similar argument holds for G = 3D4(p). Now assume that G is 2A2m(p). For
m > 1, the results follows by Proposition 7.4.

Finally consider the Ree group 2F4(2
1
2 ). A computer run using MAGMA (cf. [BoCan])

checks that a Sylow 2-subgroup has order 212 = 4096 and it has two maximal ele-
mentary abelian 2-subgroups both having order 25 = 32.

The second part of the theorem is a direct consequence Proposition 6.1, and
Theorem 6.2. ¤

8. Torsion-free ranks for untwisted groups

At this point we are left with computing the groups of endotrivial modules for

the finite groups G = Ĝ(q) of Lie type that are excluded from Theorem 7.5. That
is when G is one of A2(q), B2(q), or G2(q). Notice also that Proposition 6.1
and Theorem 6.2 handle the torsion subgroups of the groups of endotrivial mod-
ules TT (U), TT (B), and TT (G). Hence, now, we are only concerned with the
torsion-free groups TF (G), TF (B), and TF (U). Moreover, Theorem 7.1 reduces
the question to the case q = p.

Recall that the generators of TF (U) and TF (B) can be computed from Theorem
3.4. Our investigations enable us to exhibit only the torsion-free rank of TF (G).

As before, for elements in the finite groups G we follow the notation of [GLS]
(which is the same as in [St]). For brevity, we write xα = xα(1).

G = A2(p): In this case, G is isomorphic to the group PSL(3, p) (cf. [GLS, §2.7]).
The Sylow p-subgroup U of G is an extraspecial p-group of order p3 and exponent
p, if p > 2, and U is a dihedral group of order 8, in case that p = 2.

If p = 2, then U has two maximal elementary abelian 2-subgroups which are not
conjugate in U or in G. Consequently, the groups TF (U), TF (B) and TF (G) have
2-rank 2 (cf. Corollary 3.2).

If p > 2, then all the elements of U have order p and there are p + 1 maximal
elementary abelian p-subgroups which are normal in U . Suppose that α and β are
simple roots so that U is generated by xα, and xβ. Then the elementary abelian
p-subgroups in U consist of the subgroups E0 = 〈xα, xα+β〉 and Ep = 〈xβ, xα+β〉,
and the subgroups Ei = 〈xαxi

β, xα+β〉 for i = 1, . . . , p−1. It is easy to check that the
subgroups E0, Ep, and E1 are in distinct G-conjugacy classes. On the other hand,
the set {Ei | i = 1, . . . , p− 1} is a single B-conjugacy class. Consequently, we have
the following.

Theorem 8.1. Suppose that G = A2(p). The torsion-free ranks of T (U), T (B) and
T (G) are given in the table.

T (U) T (B) T (G)

p = 2 2 2 2
p ≥ 3 p + 1 3 3
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G = B2(p): Let α and β denote the roots with α a short root. The cases in which
p = 2 or p = 3 can be handled by computer calculations. The computer algebra
system MAGMA (cf. [BoCan]) was used to check our answers.

In case p = 2, we know by [Hu, Hauptsatz II.9.22] that G ∼= Σ6, the symmetric
group on 6 letters. The Sylow 2-subgroup U has order 16 and its center is elementary
abelian of order 4. It can be checked directly from the standard relations (cf. [St],
page 30) that both xα and xα+β are in the center. Hence, there are no maximal
elementary abelian 2-subgroups of 2-rank 2.

If p = 3, then U has exponent 9, since any regular element (i.e. any element of
the form xa

αxb
βxc

α+βxd
2α+β with a and b both not multiples of 3) has order 9. This is

a consequence of the calculation of the unipotent variety in [CLNP]. Consequently,
every element of order 3 is contained in one of the subgroups

U1 = 〈xα, xα+β, x2α+β〉 or U2 = 〈xβ, xα+β, x2α+β〉.

Note that U1 is elementary abelian of order 27. The subgroup U2 is an extraspecial
group or order 27 and exponent 3. It has elementary abelian subgroups

Ei = 〈xαxi
α+β, x2α+β〉

for i = 0, 1, 2 and E3 = 〈xα+β, x2α+β〉. The groups E0, E1, E2 are maximal ele-
mentary abelian 3-subgroups of U , and they are conjugate in U by the powers of
the element xβ. Also, E3 is not maximal since it is contained in U1. Consequently,
we have one conjugacy class of maximal elementary abelian 3-subgroup of 3-rank 2
represented by the subgroup E0. Notice that, the group U has 3-rank 3. Finally, we
should note that E0 is not a maximal elementary abelian subgroup in G, since it is
contained in the elementary abelian 3-subgroup 〈x2α+β, xα, x−β〉 of G.

When p > 3, every element of U has order p. Consider the groups

E0 and Fr = 〈xαxr
β, x2α+β〉 , for 1 ≤ r ≤ p− 1.

A direct computation shows that the Fr’s are self centralizing in U and hence are
maximal elementary abelian p-subgroups of p-rank 2. If y is an element of U that is
not in U1 or U2, then some power of y has the form yt = xαxr

βw for some w ∈ U1∩U2

and some r. But then yt is U -conjugate to xαxr
β. It follows that there are p conjugacy

classes of maximal elementary abelian p-subgroups of p-rank 2 of U , represented by
the groups F1, . . . , Fp−1 and by E0.

Next we observe that all of the Fr’s are conjugate in B, and thus also in G.
Finally, the subgroup E0 is not a maximal elementary abelian p-subgroup in G,
whereas the Fr’s remain maximal elementary abelian p-subgroups in G. Indeed,
these are precisely the centralizers of the unique G-conjugacy class of the regular
elements (all conjugate to xαxβ), and thus their centralizers are abelian p-groups of
p-rank equal to the Lie rank of G, since G is simple (cf. [Se]).

We summarize our results in the following theorem.
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Theorem 8.2. Let G = B2(p). The torsion-free ranks of T (U), T (B) and T (G) are
given in the table.

T (U) T (B) T (G)

p = 2 1 1 1
p = 3 2 2 1
p ≥ 5 p + 1 3 2.

G = G2(p): For this group, we adopt the notation in [St], and we use the relations
for the generators of the unipotent subgroup U as written out completely on [St, p.
151]. Let α and β be the simple roots with α a short root. Set

U1 = 〈xα, xα+β, x2α+β, x3α+β, x3α+2β〉 and U2 = 〈xβ, xα+β, x2α+β, x3α+β, x3α+2β〉.
As in the B2-case, we must handle the low primes 2, 3 and 5 separately from the
larger ones. Let W = U1 ∩ U2. We have the following.

Lemma 8.3. If p = 2, 3 or 5, then the unipotent group U has no maximal elementary
abelian p-subgroups of p-rank smaller than 3.

Proof. First notice that if p = 3, then x2α+β and x3α+2β are in the center of U .
Hence maximal elementary abelian 3-subgroups have 3-rank at least 3.

For p = 2 and p = 5, we notice that every element of order p in U is either in U1

or in U2. This follows from the computation of the restricted unipotent variety in
[CLNP]. The center of U1 is generated by the elements x3α+β and x3α+2β. Therefore,
U1 has no maximal elementary abelian p-subgroup of p-rank 2. The group U2 is a
central product

U2 = 〈xβ, x3α+β〉 ∗ 〈xα+β, x2α+β〉
where the factors are dihedral groups when p = 2 and are extraspecial 5-groups of
order 125 and exponent 5 when p = 5. Consequently, U2 is an extraspecial group of
order p5, and thus it has no maximal elementary abelian p-subgroup of p-rank 2.

The lemma now follows from the fact that a maximal elementary abelian p-
subgroup of p-rank 2 in U would have to be contained in either U1 or in U2. ¤

Assume now that p ≥ 7. Then, all the nontrivial elements in U have order p.
As in the previous argument, we have that U1 and U2 have no maximal elementary
abelian p-subgroup of p-rank less than 3. So any elementary abelian p-subgroup of
p-rank 2 must be contained in the centralizer of an element of order p that is not in
either U1 or U2. Hence any maximal elementary abelian p-subgroup of p-rank 2 must
be in the centralizer of an element of the form xαxr

βw for w ∈ W and 1 ≤ r ≤ p− 1.
Notice that conjugating by an appropriate element of U we can assume that w = 1.
In addition, we know that xαxr

β is a regular element and so, by the same argument
as in the B2-case (cf. [Se]), we have that

Er = 〈xαxr
β, x3α+2β〉

is a maximal elementary abelian p-subgroup of p-rank 2 in both U and in G. It is
easy to see that for all 1 ≤ i, j ≤ p − 1, Ei is conjugate to Ej in B but not in U .
Therefore, we have proved the following.



ENDOTRIVIAL MODULES FOR FINITE GROUPS OF LIE TYPE 25

Theorem 8.4. Suppose that G = G2(p). Then the torsion-free ranks of T (U), T (B)
and T (G) are given in the table.

T (U) T (B) T (G)

p = 2, 3, 5 1 1 1
p ≥ 7 p 2 2
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