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Abstract

The use of auxiliary functions in nonparametric inference for the M/G/∞ queueing-
ing model is considered. Estimation of the service time distribution G is challenging
when only limited information about the busy/idle cycle is available. It is shown,
using diagnostic plots of estimators, that a standard auxiliary function aimed at pro-
viding numerical stability fails in that regard but that a reliable auxiliary function
can be constructed. The improvement made by the alternative auxiliary function is
demonstrated.
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1 INTRODUCTION

Interest in internet traffic modeling led to the development of several proba-
bility models. Among those, Kulkarni et al. (2001) proposed a product mod-
eling approach to study connection flows. Related to that product modeling
framework, the M/G/∞ queueinging model appeared as a limiting process in
Resnick and Samorodnitsky (2001). The M/G/∞ model has also been used
to model aggregated traffic [Guerin et al.(2003)]. See Chapter 7 of Kulka-
rni (1995) for an introduction to queueinging theory and this model.

We consider the nonparametric estimation of the service time distribution G,
with limited information, in an M/G/∞ queueinging model, where the arrival
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process is Poisson with intensity λ. For the discrete-time M/G/∞ queueing
model, see Pickands and Stine (1997). Bingham and Pitts (1999) developed
nonparametric methods for the M/G/∞ queueing model based on the Laplace
transform and gave an analytic representation in terms of infinite series of
convolutions.

The auxiliary function used in Bingham and Pitts (1997) is a simple and nat-
ural choice, which forms the basis of our first approach in Section 2. Often the
idea of converting a Laplace inversion formulation to that of Fourier inversion
simplifies the problem and works equally well. See Dubner and Abate (1968)
and Abate et al. (1999). But it turns out that caution is required to prevent
numerical problems for certain cases. Particular numerical instability issues
encountered by the auxiliary function are investigated in detail in Section 3.
In Section 4, we propose a new auxiliary function, which solves the instability
problem. The modified auxiliary function provides a basis for the estimators
developed by Hall and Park (2004).

2 FORMULATION OF THE PROBLEM

Let Y have the distribution of the busy period in theM/G/∞ queueing model,
whose distribution function is denoted by B. The Laplace transform of B is
given by

∞∫
0

e−st dB(t) = 1 + s/λ−
(
λ

∞∫
0

e−sta0(t) dt
)−1

< (s) > 0 , (1)

where

a0(t) = exp
[
− λ

t∫
0

{1−G(x)} dx
]
. (2)

This fundamental result is due to Shanbhag (1966) and Hall (1988), and is
named the Shanbhag-Hall theorem. Note that a0 leads directly to both the
service time distribution G and its density g. In particular, solving (2) for G
and differentiating gives

G =
a′0
λ a0

+ 1 , g =
1

λ

{
a′′0
a0

− (a′0)
2

a2
0

}
. (3)

The key to construction of an estimator of G for this situation is to find
reliable estimators of a0, a

′
0 and a′′0. Define the characteristic function of the
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busy period distribution, B, to be ψ(s) = E(eisY ) for real s and denote

α(s) = λ−1 {1− ψ(s)− isλ−1}−1 . (4)

From (1), it follows that

α(s) =

∞∫
0

a0(t) e
ist dt . (5)

Thus, the auxiliary function a0 may be represented using the Fourier inversion
formula as

a0(t) =
2

π

∞∫
0

{<α(s)} cos(st) ds , (6)

which allows simple estimation by replacing α in (4) by its empirical counter-
part.

3 NUMERICAL PERFORMANCE

This section provides a numerical example that shows instability of the use of
the auxiliary function a0. Consider an exponential assumption on G with rate
parameter, µ, as a special case of an M/G/∞ queueing model. We focus on
three cases: (λ = 1, µ = 1), (λ = 2, µ = .5) and (λ = .5, µ = 2), to study the
effect of longer or shorter busy periods.

Figure 1(a) shows the estimates of λ a0(·) along with the true value for the
three different cases. They were computed based on a sample size of 1000. The
top and bottom cases in the left shows very poor estimation, while the second
appears better.

To examine the possibility of too small a sample size, the estimators were
calculated for much larger sample sizes. Figure 2 shows a zoomed in view
for λ = 2, µ = .5 (the best case shown in Figure 1(a)), which suggests rapid
convergence to a curve different from the true curve.

A Q-Q diagnostic plot can be used to explore the cause of this poor estimation.
We examined the tail behavior of the samples of the busy period distribution
with the relatively longer (λ = 2, µ = .5) and shorter (λ = .5, µ = 2) ones. The
tail index was estimated by distribution matching at two quantiles (.95, .995),
assuming both Pareto-like tails and Weibull-like tails, which are presented in
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Fig. 1. Estimates λ a0(t) from simulated data for different rate parameter. While
plots in the left ((a) original) suggest large estimation error for µ ≥ λ, plots in the
right ((b) modified) show serious improvements.

Figure 3. The Q-Q plot shows how closely the data correspond to the assumed
distribution. They are closer to the true distribution when the curve is closer
to the 45 degree line. To account for sampling variability, 100 samples from
the true distribution, also of the same size of 10000, are overlayed to give
an envelope indicating the natural sampling variation. The thick curve is the
actual data Q-Q plot and α is an estimate of the respective shape parameter.
Although possibly longer, the tail index is far from that of heavy tails, which
rules out heaviness of the tails as a cause of the problem.

Another potential cause of the instability seen in Figure 1(a) is the Fourier
inversion of a0. Consider s = −iy (y 6= 0). Then we have

∞∫
0

eiyta0(t) dt = λ−1{1− iyλ−1 − φ(y)}−1 .

Observe that the right hand side is well defined so that the left hand side
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Fig. 2. Estimating a0(t) with increasing sample size: zoomed in (i.e. t ∈ (0, .1)) view
for the second case (λ = 2, µ = .5) shown in Figure 1(a).

converges for y 6= 0. But it does not converge absolutely because

∞∫
0

|eista0(t)| dt =

∞∫
0

a0(t) ≥
∞∫
0

e−λτ = ∞ ,

where τ is the mean of the service time distribution satisfying τ =
∫∞
0 {1 −

G(x)} dx. Similarly, it can be shown that a0 is not square integrable. In either
case, Fourier inversion formula cannot be verified. While such integrability
conditions often seem like a technicality, this turns out to be critical. Alter-
natively we may consider <α(s) for real s > 0. Write φ1(s) = <φ(s) and
φ2(s) = =φ(s). Then, we have

λ<α(s) =
1− φ(s)

{φ1(s)− 1}2 + {φ2(s) + (s/λ)}2
.

As s→ 0, it can be shown that

lim
s→0

λ<α(s) =
EY 2

2(EY + λ−1)2
,

while it is not defined at s = 0. Again, one would need to consider modifi-
cations in the transform as in Beylkin (1995) to deal with such cases. Some
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Fig. 3. Q-Q plots for testing Weibull-like tail and Pareto-like tail for the busy period
distribution. Top plots are for Weibull-like tail and bottom ones are for Pareto-like
tail. Left plots assume (λ = 2, µ = .5) and right ones assume (λ = .5, µ = 2). The
estimates suggest to exclude the possibility of heaviness of tails.

other numerical stability issues related to Fourier analysis can be found e.g.
in Deraedt (1996) and Korn (2005). In the next section, we propose a simple
solution by reformulating the problem.

4 MODIFIED AUXILIARY FUNCTION

A means of overcoming this integrability problem is to consider complex values
of s in (1). In particular, define an analytic characteristic function ψ(s) =
E(eisY ) for a complex value s = u + iv, where u and v are real numbers.
Equivalently, we have

∞∫
0

eist a0(t) dt=

∞∫
0

eiut{e−vta0(t)} dt
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=λ−1
{
1 + (v − iu)λ−1 −

∞∫
0

eiute−vt dB(t)
}−1

.

We shall always take v > 0. Observe that

∞∫
0

e−vta0(t) dt ≤
∞∫
0

e−vt dt <∞ .

So, a more tractable auxiliary function is a(t) = e−vta0(t). The Fourier trans-
forms in the complex plane has been introduced and developed in Paley and
Wiener (1934). For the transform of a function vanishing exponentially, the
complex Fourier transform is well defined and converges absolutely and uni-
formly. Here we have only borrowed the complex formulation to obtain an
exponential decaying function and the modified problem allows us to apply
the ordinary real Fourier transform. Therefore, we may still be able to express
the service time distribution function G and its density g in terms of a and
its derivatives as

G =
a′

λ a
+
v

λ
+ 1 , g =

1

λ

{
a′′

a
− (a′)2

a2

}
.

Thus, an estimator of G and its density g may be constructed based on esti-
mators of a, a′ and a′′. Figure 1(b) in the right shows serious improvement of
the estimation using the same setup in the left. Now the large gaps between
the estimated and the true curves have all disappeared, although there is some
numerical instability towards the right end.

The choice of v is related to finite approximation error. Some simulation stud-
ies in Hall and Park (2004) suggest robustness of the choice of v in the per-
formance of the estimator on a reasonable range of values. However numerical
error analysis is beyond our scope and for further details we refer the reader
to Dubner and Abate (1968).
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