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Abstract

When dealing with multiple curves as functional data, it is a common practice to ap-
ply functional PCA to summarise and characterise random variation in finite dimension.
Often functional data however exhibits additional time variability that distorts the as-
sumed common structure. This is recognized as the problem of curve registration. While
the registration step is routinely employed, this is considered as a preprocessing step
prior to any serious analysis. Consequently, the effect of alignment is mostly ignored in
subsequent analyses and is not well understood. We revisit the issue by particularly fo-
cusing on the effect of time variability on the FPCA and illustrate the phenomena from
a borrowed perturbation viewpoint. The analysis further suggests an iterative estimating
procedure to optimise FPCA.

Introduction

Repeated measurements in the form of curves are increasingly common in various
scientific applications including biomedicine and physical sciences (Ramsay and Silver-
man, 2002, 2005). Individual measurements are taken at consecutive time points (index
set) and repeatedly observed for different subjects. Usually the sample of curves is as-
sumed to have some homogeneous structure in the functional shape, while allowed for
individual variability. It is desirable that the additional variability is summarised with a
few components which are able to extract most variability and which are easy to interpret
(Park et al. 2007).

Functional PCA utilises the well-known Karhunen-Loève expansion to provide an
optimal representation of the function with a small number of common components. This
is based on the assumption that the underlying random function shares the common mean



and covariance function. To fix the idea, consider a stochastic process X ∈ L2(T ) with
compact support T = [0, T ], with the mean function µ(t) and the covariance function
γ(s, t) = Cov(X(s), X(t)). Assume that

∫
T E[X(t)2] < ∞. Let λ1 ≥ λ2 ≥ . . . be the

ordered eigenvalues of the covariance operator defined through γ with the corresponding
eigenfunctions φ1, φ2, . . .. We assume that

∑
k λk < ∞. Then

X(t) = µ(t) +
∑

k

ξkφk(t) , (1)

where E[ξ] = 0 and E[ξjξk] = λjI(j = k).
With a sample of curves available, these quantities are replaced by their estimates

and a finite number of components are usually considered sufficient to extract significant
observed variation. Theoretical properties of estimators are studied in Dauxois et al.
(1982), Rice and Silverman (1991), Kneip (1994) and Hall et al. (2006).

Often functional data exhibits additional time variability, which is mainly dealt with
in pre-processing step, by aligning curves to eliminate the time variability prior to any
serious analysis. This is known as registration problem and there are several methods de-
veloped. Basically when the functions exhibit identifiable features, curves can be aligned
to match those features, which is known as landmark registration (Gasser and Kneip,
1995). This works well as long as features are correctly identified. Several other methods
have been developed to automate the procedure when the features are less prominent.
An overview can be found in Ramsay and Silverman (2005).

Although the issue has been rightly acknowledged, because most analysis treats regis-
tration as a preprocessing step, its carry-on effects on later analysis was not well studied.
A recent work of Kneip and Ramsay (2007) address a similar problem and propose a new
procedure to combine registration to fit functional PCA models, extending the covex
averaging idea of registration (Liu and Müller, 2004).

Instead we focus on quantifying our misconduct. What happens then if registration
was not carried out or was made improperly ? The obvious problem arises when estima-
ting global mean structure. Generally, how does the time variability propagate through
to functional PCA analysis ? Some issues with interpretability in functioanl PCA may
also be attributed to the improper registration. We concentrate on relations of eigenva-
lues and eigenfunctions between unregistered and registered curves, in the sense that we
do not want our registrations step to be perfect but we would like to be able to correct
the residual difference from our imperfect analysis later.

Assume that the observed variable is X̃(t) = X(η(t)) for a monotone transformation
η(t) with E[η(t)] = t for t ∈ T . Suppose that we proceed to functional PCA without
correcting η at the earlier stage to obtain λ̃ and φ̃. How much do we lose by ignoring η ?

We may start with the representation in (1) as

X̃(t) = µ(η(t)) +
∑

k

ξkφk(η(t)) .

Now E[X̃(t)] = µ(η(t)) but note that the series is not any longer orthonormal decompo-
sition. Write γ̃(s, t) = Cov(X̃(s), X̃(t)). Then

γ̃(s, t) = γ(s, t) + γ̃(s, t)− γ(s, t) .



With some Taylor appromixation argument, it may be shown that γ̃(s, t) − γ(s, t) =
εv(s, t) for some ε and v, then, under some regularity conditions and for small ε, we
would have

λ̃k = λk + ε < φk, V φ > +O(ε2) ,

φ̃k ∝ φ + ε
∑
l 6=k

< φk, V φl >

λk − λl
+ O(ε2) ,

where V denotes the corresponding operator for v. A similar derivation is made in Hall et
al. (2006) to quantify sampling variability. We extend the idea to include time variability.
Our interest is to recover λ and φ from λ̃ and φ̃ using a sample of curves and a registration.
Our estimators will be obtained from the estimators of unregistered curves with some
correction made based on a registration. The precision of registration will be reflected
on that of V and thus the correction terms in general. Based on these relations some
properties of estimators will be studied and illustrated.
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