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Abstract

We study properties of local additive estimation based on the smooth backfitting estimator

by Mammen, Linton and Nielsen (1999). The local additive estimator defined as a restricted

additive estimator and thus inherits locally properties of additive estimator. Our asymptotic

analysis shows that this provides a new class of nonparametric regression estimators for high

dimensional problem. Simulation studies are used to assess finite sample performance.

1 Local additive estimation

Let (X, Y ) be random variables of dimensions d and 1, respectively and let (Xi, Yi), i = 1, · · · , n, be

independent and identically distributed random variables from (X, Y ). Denote the design density

of X by f(x). We assume that X has compact support [−1, 1]d. The regression function r(x) =

E[Y |X = x] is assumed to be smooth. The additive model has the relation

r(x) = r0 + r1(x1) + · · ·+ rd(xd) . (1.1)

This is a global assumption on the shape of the regression function.

Given x, consider a w-neighborhood of x. If ||w|| is small enough, by Taylor theorem, we would

have

r(x) ≈ r0 + r1(x1) + · · ·+ rd(xd) .

Note that this is not an assumption on the model. The accuracy of the approximation clearly

depends on the w-neighborhood. We will call this approximate additive relation local additivity.
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The above argument naturally leads to an estimator that can be constructed from additive

estimator using data in the neighborhood of interest. For a given point x0, construct an additive

estimator using data in the w-neighborhood of x0. The new estimator is defined as the predictor of

the additive estimator at x = x0. This will be termed local additive estimator, denoted by r̂ladd(x0).

Let x0 be a fixed interior output point. For w = (w1, · · · , wd), we apply an additive estimator

r̂add using data in a w-neighborhood of x0. Our analysis is based on d–dimensional rectangular

region [x0 ± w] = {Xi,Xi ∈ [x0 − w,x0 + w]}. Properties of the local additive estimator can be

developed by rescaling the region [x0 ±w] to [−1, 1]d and then using results known for r̂add. The

SBE by Mammen et al. (1999) is known to be oracle optimal under general conditions and will be

used as basis for local additive estimator in this report.

Consider a vector of functions r(x) = (r0(x), · · · , rd(x)), where r0 is additive and rj depends

only on xj , j = 1, · · · , d. In view of the local linear estimation, the first function r0(x) is the intercept

and the others are slopes. The SBE is defined as the minimizer of∫
[−1,1]d

1
n

n∑
i=1

[
Yi − r0(x)−

d∑
j=1

rj(xj)
Xij − xj

hj

]2
Kh(Xi,x) dx ,

where Kh(Xi,x) is the kernel weight of the observation (Xi, Yi) for the output point x. Write r̂add

for the solution. Note that this is a global estimator, the additivity holding the whole support region.

The local additive estimator at x0, based on the SBE, is defined as a minimizer of the local norm

with respect to w ∈ Rd of∫ x0+w

x0−w

1
n

n∑
i=1

[
Yi − r0(x)−

d∑
j=1

rj(xj)
Xi,j − xj

hj

]2
K̃h(Xi,x) dx , (1.2)

where K̃ is a rescaled version of K, defined as K̃h(u,v) = Kh(u − v)/
∫ x0+w

x0−w
Kh(u − v) dv. The

solution to the minimization is denoted by r̂ladd. The local additive estimator at x0 is r̂ladd(x0).

Observe that the righthand side of (1.2) is equivalent to∫
[−1,1]d

1
ñ

ñ∑
i=1

[
Yi − r̃0(u)−

d∑
j=1

r̃j(uj)
Ui,j − uj

h̃j

]2
Kh̃(Ui,u) du ,

where Ui and r̃ are given in (2) and (4), and

Kh̃(u,v) =
Kh̃(u− v)∫

[−1,1]d
Kh̃(u− v) dv

.

Thus the local additive estimator at x0 is defined as r̂ladd(x0) = ̂̃radd(0).
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1.1 Preliminaries

Throughout the article, we will assume that

(A.1) The regression function r and the design density f are twice continuously differentiable.

(A.2) The kernel K is bounded, has compact support, is symmetric around 0 and is Lipschitz con-

tinuous.

(A.3) The density f of x is bounded away from zero and infinity on [−1, 1]d.

(A.4) For some θ > 5/2, E[|Y |θ] < ∞.

(A.5) h̃j → 0 such that ñh̃d
j/ ln ñ →∞ as ñ →∞.

The special case of uniform design will be separately dealt with later in this section. Denote the

number of observations Xi in [x0 ±w] by ñ with

E[ñ] = n

∫
[x0±w]

f(x) dx = nf(x0)(2w)d + O(nwd+3) = O(nwd) .

Suppose that all wj ’s are of same order. For simplicity of notation let wj = w. Let w → 0 and

hj/w → 0. Let

U =
X− x0

w
(1.3)

be the rescaled random variable on [−1, 1]d with density

f̃(u) = f(x0 + wu)/
∫

[−1,1]d
f(x0 + wu) du

=
f(x0 + wu)

2df(x0)
+ O(w2) . (1.4)

The true regression function is substituted with

r̃(u) = r(x0 + wu) . (1.5)

In particular, r(x0) = r̃(0). The transformed bandwidth becomes

h̃j = hj/w . (1.6)

Then it can be shown using (1.8) below that the normal equations for the local additive estimator

may be written as

S̃addr̃add = Paddr̃L ,
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where appropriate transformations S̃add and r̃L and Padd are given in Section 1.2. For completeness

the derivation of the normal equation for the SBE is also reviewed there. Convergence of the operator

S̃add is studied in Section 1.3.

Denote 1st and 2nd partial derivatives of r by r′j(x), r′′j,k(x) and the d×d matrix of 2nd derivatives

by r′′. r̂ll(x0) and the local additive estimator by r̂ladd(x0). We write E, B, V, MSE and MISE for

the conditional expectation, bias, variance, mean squared error and integrated mean squared error,

respectively. Define a matrix norm || · || for a symmetric matrix A = {aij} as ||A|| = maxi,j |aij | and

write || · ||2 for the usual L2 norm.

1.2 Normal equations for the SBE

Following Mammen et al. (1999), we begin with derivation of the normal equation of SBE on which

our analysis is based, with additional notations and definitions.

Consider a Hilbert space (F , ||·||∗) such that the local linear estimator corresponds to a projection

of the response Y to some subspace Ffull ⊂ F . The SBE is interpreted as a projection of Y to a

subspace Fadd ⊂ Ffull of additive functions. Formal definitions are given as follows.

Define the vector space of n(d + 1) functions

F =
{
r = (ri,j , i = 1, · · · , n; j = 0, · · · , d)

∣∣ri,j : [−1, 1]d → R
}

and define a subspace Ffull that restricts ri,j to r0,j as

Ffull =
{
r = (r0, · · · , rd)

∣∣rj : [−1, 1]d → R, j = 0, · · · , d
}

.

The observations Yi, i = 1, · · · , n lie in F , coded by rY . Define ri,j
Y (x) = Yi if j = 0, and 0 otherwise.

rY is an equivalent representation of Y in F . The semi-norm || · ||∗ on F is given by

||r||2∗ =
∫

1
n

n∑
i=1

[
ri,0(x) +

d∑
j=1

ri,j(x)
Xi,j − xj

hj

]2
Kh(Xi,x) dx ,

The local linear estimator r̂ll is defined as

r̂ll = argminr∈Ffull
||rY − r||2∗ .

Now consider a subspace of additive functions Fadd:

Fadd =
{
r ∈ Ffull

∣∣r0(x) is additive and rj(x) depends only on xj , j = 1, · · · , d
}

.
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The additive estimator r̂add is defined as

r̂add = argminr∈Fadd
||rY − r||2∗ .

The projection argument, originally introduced in Mammen et al. (2001), clarified oracle optimality

of the estimator. Practical aspects of implementation were explored in Nielsen and Sperlich (2005),

who introduced the term smooth backfitting estimator.

Let us introduce more notation. Define the L2-norm on F by

||r||22 =
1
n

n∑
i=1

d∑
j=0

∫ [
ri,j(x)

]2
dx .

Denote by Padd the || · ||2-orthogonal projection from Ffull into Fadd. Define the symmetric, con-

tinuous operator S∗ : Ffull → Ffull by
r0(x)

...

rd(x)

→


S0,0(x) · · · S0,d(x)

...
...

Sd,0(x) · · · Sd,d(x)




r0(x)
...

rd(x)

 ,

where

S0,0(x) =
1
n

n∑
i=1

Kh(Xi,x) ,

S0,j(x) = Sj,0(x) =
1
n

n∑
i=1

Kh(Xi,x)
Xi,j − xj

hj
,

Sj,k(x) =
1
n

n∑
i=1

Kh(Xi,x)
Xi,j − xj

hj

Xi,k − xk

hk
.

By construction it holds that ||r||2∗ =< r,S∗r >2. The normal equations for the local linear

estimator, r̂ll, are given by

S∗r̂ll = rL , (1.7)

where

r0
L(x) =

1
n

n∑
i=1

Kh(Xi,x)Yi ,

rj
L(x) =

1
n

n∑
i=1

Kh(Xi,x)
Xi,j − xj

hj
Yi , j = 1, · · · , d .

The normal equations for the additive estimator, r̂add, may be written as

PaddS∗Paddr̂add = PaddS∗rll .
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Define Sadd = PaddS∗Padd. Combined with (1.7), the normal equations are reduced to

Saddr̂add = PaddrL . (1.8)

1.3 Convergence of the operator S̃add

Note that S̃add is a function of output point x0 as well as n. We first state a lemma for the projection

operator Padd below.

Lemma 1. For r ∈ Ffull, let radd = Paddr. Then

r0
add(x) =

d∑
j=1

1
2d−1

∫
r0(x) dx−j −

(d− 1)
2d

∫
r0(x) dx

rj
add(x) =

1
2d−1

∫
rj(x) dx−j ,

where j = 1, · · · , d.

The definition of the projection leads to the above formulas easily and we omit the derivation.

Remark: We haven’t imposed any identifiability condition for individual terms. If desired, r0
add(x)

can be decomposed into

r0
add(x) = r0 +

d∑
j=1

rj(xj) ,

∫
rj(xj)fj(xj) dxj = 0 ,

where

r0 =
1

2d−1

d∑
j=1

∫
r0(x)fj(xj) dx− d− 1

2d

∫
r0(x) dx ,

rj(xj) =
1

2d−1

(∫
r0(x) dx−j −

∫
r0(x)fj(xj) dx

)
.

Lemma 2. Assume that w → 0. Then S̃add converges, with probability tending to one, as n →∞,

to the limiting operator S̃add,∞ defined by

(S̃add,∞r)0(u) =
1
2d

r0
add(u) ,

(S̃add,∞r)j(u) =
1
2d

µ2(K)rj
add(uj) ,

where radd = Paddr. Moreover, the limiting operator S̃add,∞ has a continuous inverse.
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1.4 Properties of the local additive estimator

We study properties of the estimator in terms of bias and variance.

Lemma 3. Variance of the local additive estimator is given as

V [r̂ladd(x)] = 2µ0(K2)σ2
d∑

j=1

1
nwd−1hj

(
1 + o(1)

)
.

For the bias, we separate cases (1) when r is additive and (2) when it is general.

Lemma 4. Suppose that the regression function is additive. Then bias of local additive estimator is

the same as that of additive estimator.

B[r̂ladd(x)] =
µ2(K)

2

d∑
j=1

h2
jr
′′
j (xj) + o(h2) .

Now consider general regression function. Decompose Bladd(x) as

Bladd(x0) = B
(1)
ladd(x0) + B

(2)
ladd(x0) ,

where B
(1)
ladd(x0) is associated with additive part of r and B

(2)
ladd is associated with non–additive part

of r. Lemma 4 may be applied to obtain the additive bias B
(1)
ladd(x0). Consider the non–additive

part r̃(2)(u) of r̃(u). The bias of non–additive part depends crucially on the assumptions made on

the regression function as well as the design density. Using Taylor approximation to 2.3, it is enough

to focus on b(u) = ujuk only.

Lemma 5. Suppose that

b(u) = ujuk

and let b̂add,w(u) be the additive estimator based on the design density f̃(u) given in (3).

b̂add,w(u) =
w

3fj,k(x0)

(
uj

∂

∂uk
fj,k(x0) + uk

∂

∂uj
fj,k(x0)

)
+ O(w2) + O((nwd−1h)−1/2) .

From (2.4), combined with Lemma 5, the following Corollary is easily derived.

Corollary 1. Bias of local additive estimator is given as

B[r̂ladd(x0)] =
µ2(K)

2

d∑
j=1

h2
jr
′′
j,j(x0) + B

(2)
ladd(x0) ,

where

B
(2)
ladd(x0) = O(w4) + O((nwd−5h)−1/2) .
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1.5 Uniform design with very smooth regression function

It turns out that the existence of second derivatives is not sufficient to derive explicit coefficients for

leading terms. Here we deal with the special case of a uniform design with higher order smoothness

assumption made.

(A.1′) The regression function r is four times continuously differentiable and f is uniform.

Proposition 1. Suppose that (A.1′) holds. Bias of the local additive estimator r̂ladd based on the

smooth backfitting estimator is given by

B[r̂ladd(x0)] =
(µ2(K)

2

d∑
j=1

h2
jr
′′
j,j(x0)−

w4

4! · 9
∑
j 6=k

r′′′′j,j,k,k(x0)
)

+ o
(
h2 + w4

)
.

Lemma 6. Assume that nhd−1w → 0 and (A.1′) holds. Then, the non–additive bias can be expressed

as

B
(2)
ladd(x0) = − w4

4! · 9
∑
j 6=k

r′′′′j,j,k,k(x0) + o(w4) .

Proposition 1 shows why higher order smoothness assumption would not help reduce bias further.

Moreover, it can be deduced from the proof that the existence of r′′ is not sufficient to derive leading

terms.

The optimal smoothing parameters are determined in the following. Define

a =
µ2(K)

2

∑
j

r′′j,j(x0) , b =
1

4! · 9
∑
j 6=k

r′′′′j,j,k,k(x0) , c = 2dµ0(K2)σ2 .

Proposition 2. Suppose that (A.1′) holds. Assume that hj = h and let h = Chw2. The smoothing

parameter w that minimizes asymptotic MSE is given by

w =
(

c(d + 1)
8Ch(aC2

h − b)2

)1/(9+d)

n−1/(9+d) .

Proposition 3. Under the same assumptions as in Proposition 2, the optimal choice of Ch is given

by

Ch =

√
2

d− 1

(
− b

a

)
.

provided that ab < 0.
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2 Simulation studies

In order to assess the performance of the estimator in finite sample, we conducted some simula-

tion studies. We are interested in investigating how the smoothing parameters are related to the

performance of the estimators in terms of conditional MISE.

We focus on comparison to local linear and additive estimators as a benchmark on either extremes.

Local linear estimator is optimal for general regression function estimation so the comparison to it

allows us to assess the behaviour for non-additive regression function estimation. Likewise additive

estimator is used to study the behaviour for additive regression function estimation. The main

factor of consideration in our simulation studies is the regression function, ranging from additive to

non-additive functions. Estimators are evaluated at an equidistant output grid of 21 × 21 points.

Results are based on Monte-Carlo approximation of MISE.

2.1 Regression functions

The following functions are used for d = 2.

• Additive peaks (r1):

r(x) =
1
2

2∑
k=1

(
0.3 exp(−2(xk + 0.5)2) + 0.7 exp(−4(xk − 0.5)2) + 0.5 exp(−x2

k

2
)
)

• Approximately additive peaks (r2): r(x) = r2

( x1 + x2

−x1 + x2

)
• Superposed peaks(r3): r(x) = 0.3 exp(−2‖x+0.5‖2)+0.7 exp(−4‖x− 0.5‖2)+0.5 exp(−‖x‖2

2 )

• Mixture of additive and non-additive polynomial (r4): r(x) =
∑d

i=1 x2
i + 0.5x1

∑2
j=2 xj

• Mixture of additive and periodic non-additive (r5): r(x) = cos(π||x||) +
∑2

i=1 sin(πxi)

• Periodic non-additive (r6): r(x) = cos(π||x||)

2.2 Design

Figure 1 about here.

A random uniform design on [−1, 1]2 was assumed with sample sizes 200, 400, and 1600. In addition,

fixed uniform, fixed uniform jittered and linearly skewed fixed and jittered designs were considered,

as shown in Figure 1.
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2.3 MISE calculation

We briefly explain how to approximate MISE on output grids.

For a fixed point x on the grid, write r̂(x) =
∑

i Wi(x)Yi for a linear estimator. The variance

can be approximated by Monte-Carlo simulation as follows.

V = V [r̂(x)] = E
[∑

i

Wi(x)εi

]2 ≈ σ2

nsim

nsim∑
k=1

(r̂(k)(x))2 ,

where r̂(k) is an estimator for r(·) ≡ 0 and σ2 = 1. This formulation is useful to apply to all possible

σ and regression functions r without additional computational cost. Results are based on 100 runs

of simulation. For the bias, observe that

B = B[r̂(x)] = E
[∑

i

Wi(x)Yi

]
− r(x) =

∑
i

Wi(x)r(Xi)− r(x) .

Using σ = 0, this can be calculated by one run of simulation and we obtain the MSE = V + B2

for all values of σ. MISE(r̂) =
∫

V [r̂(x)] + B2[r̂(x)] dx is then approximated by the mean over the

output grid.

2.4 MISE performance

We illustrate with a sample of 400 observations from random uniform design on [−1, 1]2, correspond-

ing to R400 in Figure 1. We first consider a regression function

r(x) = x2
1 + x2

2 +
α

1− α
x1x2 , (2.1)

where α controls the amount of non–additive structure in the function.

Figure 2 about here.

Figure 2 shows the performance of MISE when α = 0.4 for various σs. In each panel, y-axis represents

21 bandwidths h ranging from 0.05 to 1 with an exponential increment. The first column is MISE

for local linear estimator and the last column is MISE for additive estimator. The local additive

estimator lies in between with different ratios of two smoothing parameters w/h ranging from 1

to 10 on a log scale. That is, for each h, local additive estimators were calculated with increasing

w values until it covers the whole region and thus the upper triangular part was not calculated.

The white left lower triangle corresponds to parameters where the estimator does not exist for all

output grid points. The optimal choice for each estimator is marked by a circle. As σ increases,
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optimal bandwidths become larger. Note that the optimal bandwidth for local additive estimator

is in general smaller than that of local linear estimator and that the dark area around the optimal

choice can be considered competitive. MISE ratios are given in the bottom, demonstrating a gain

in MISE for the local additive estimator of more than one third compared to the local linear one

and more than 85% compared to the additive estimator.

Tables 1-6 summarize MISE performance for regression functions r1 − r6 for increasing sample

size. Numbers are multiplied by 1000. At each sample size, results are given at 3 different stan-

dard deviations. Tables are approximately ordered to follow trend from additive to non-additive

structure. Thus, local linear estimator would be favorable for regression functions with strong

non-additive structure while additive estimator would be favorable for regression functions close to

additive structure. Results from local linear and additive estimators are in accordance with our

expectation. Local additive estimator shows robust performance, adapting to the structure of re-

gression function whenever possible. At each regression function, improvements with respect to

increasing sample size are illustrated by reduction of MISE. Within each sample size, the amount of

deterioration with increasing standard deviations is also illustrated with increasing MISE.

Tables 1-6- about here.

Tables 7-8 present results for additional designs shown in the bottom of Figure 1 for approxi-

mately additive (r2) and non-additive (r3) regression functions. We see that these are comparable

to those from random uniform design.

Tables 7-8- about here.

d=3: We considered the regression function

r(x) = cos(π||x||2) . (2.2)

with sample sizes n = 441, 625, 1089. To maximize the utility of sample at each direction, we

employed latin square designs of 3 × 7 (n = 441), 5 × 5 (n = 625) and 3 × 11 (n = 1089). We

considered fixed designs and jittered versions, where a random error was added to each fixed point.

Figure 3 about here.

Figure 3 presents results for jittered design with n = 1089. The differences in performance from

fixed designs are not dramatic but jittered designs produce slightly more stable estimators. Because
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of dimensionality, the candidate regions of smoothing parameters are narrower but the behavior of

the estimators is similar and thus the same conclusions apply.
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Figure 1: Simulation designs. Top row shows random uniform designs with increasing sample

size. Bottom row shows additional fixed uniform, fixed uniform jittered and linearly skewed designs

(slope=0.3) with sample size 400.
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Figure 2: Comparison of MISE performance of estimators for 2–dimensional regression function (2.1)

for different values of σ with 400 observations from random uniform design. Each panel contains

local linear estimator at the first and additive estimator at the last column. Local additive estimator

with increasing ratio of w/h lies in between. y-axis represents bandwidths h and circle is drawn

at optimal choice for each estimator. Optimal parameters for local additive estimator moves to

south east from optimal h for local linear, by reducing h (lower) and increasing w (right). Contour

line indicates wide range of comparable selection. Gains and losses of local additive estimator in

comparison to local linear and additive estimator were quantified as MISE ratios.
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Figure 3: Comparison of MISE performance for 3–dimensional regression function (2.2). Latin

square (3,11) jittered design was used to generate 1089 observations. Same explanation as Figure 2

applies except that the first panel is 2-dim projection view of latin square design.
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R200

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 6.2=558% (h=0.350) 1.1=100% (h=0.123, w=0.976) 1.6=145% (h=0.166)

0.5 20.7=180% (h=1.000) 11.5=100% (h=0.350, w=0.988) 14.7=128% (h=0.407)

1.0 26.1=105% (h=1.000) 24.9=100% (h=1.000, w=1.000) 21.3=85% (h=1.000)

R400

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 3.9=315% (h=0.260) 1.2=100% (h=0.123, w=0.870) 1.3=107% (h=0.143)

0.5 22.1=136% (h=0.473) 16.2=100% (h=0.350, w=0.988) 15.4=95% (h=0.350)

1.0 39.6=111% (h=1.000) 35.6=100% (h=0.741, w=0.933) 32.5=91% (h=0.861)

R1600

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 0.9=362% (h=0.143) 0.2=100% (h=0.091, w=0.723) 0.2=67% (h=0.091)

0.5 7.3=287% (h=0.302) 2.6=100% (h=0.166, w=0.932) 2.8=108% (h=0.106)

1.0 14.8=189% (h=0.407) 7.8=100% (h=0.166, w=0.932) 9.9=126% (h=0.224)

Table 1: Comparison of MISE performance for additive regression function (r1) for increasing sample

size. At each sample size, results are given at 3 different standard devivations. Local additive

estimator tries to mimic optimal additive estimator. Occasional outperformance by local additive

estimator is due to slightly different approximation scheme at different output points.
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R200

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 2.9=94% (h=0.350) 3.1=100% (h=0.260, w=0.327) 3.9=126% (h=0.302)

0.5 10.5=135% (h=0.741) 7.8=100% (h=0.549, w=0.977) 8.6=111% (h=0.549)

1.0 19.0=121% (h=0.861) 15.7=100% (h=0.861, w=0.966) 15.0=95% (h=0.861)

R400

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 2.6=108% (h=0.260) 2.4=100% (h=0.193, w=0.242) 3.9=160% (h=0.224)

0.5 13.4=124% (h=0.741) 10.8=100% (h=0.638, w=0.901) 10.7=99% (h=0.638)

1.0 33.0=137% (h=1.000) 24.1=100% (h=0.741, w=0.741) 22.7=94% (h=0.741)

R1600

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 0.7=97% (h=0.166) 0.8=100% (h=0.143, w=0.160) 3.1=412% (h=0.143)

0.5 4.8=103% (h=0.407) 4.7=100% (h=0.350, w=0.441) 5.2=112% (h=0.224)

1.0 8.8=103% (h=0.638) 8.5=100% (h=0.473, w=0.668) 10.4=122% (h=0.473)

Table 2: Comparison of MISE performance for approximately additive regression function (r2) for

increasing sample size. At each sample size, results are given at 3 different standard deviations.
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R200

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 3.2=100% (h=0.350) 3.2=100% (h=0.260, w=0.518) 7.3=228% (h=0.350)

0.5 11.6=103% (h=0.861) 11.3=100% (h=0.549, w=0.977) 11.8=104% (h=0.741)

1.0 17.5=102% (h=1.000) 17.2=100% (h=0.861, w=0.966) 14.3=83% (h=1.000)

R400

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 2.6=117% (h=0.260) 2.2=100% (h=0.193, w=0.242) 7.0=311% (h=0.350)

0.5 14.9=124% (h=0.741) 12.0=100% (h=0.638, w=0.716) 13.3=110% (h=0.638)

1.0 30.9=123% (h=1.000) 25.1=100% (h=0.741, w=0.741) 24.4=97% (h=0.861)

R1600

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 0.7=101% (h=0.166) 0.7=100% (h=0.143, w=0.180) 6.3=897% (h=0.166)

0.5 5.1=109% (h=0.407) 4.6=100% (h=0.260, w=0.581) 8.4=181% (h=0.224)

1.0 10.0=109% (h=0.549) 9.1=100% (h=0.407, w=0.575) 13.8=150% (h=0.638)

Table 3: Comparison of MISE performance for non-additive regression function with superposed

peaks (r3) for increasing sample size. At each sample size, results are given at 3 different standard

deviations.
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R200

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 3.2=150% (h=0.350) 2.1=100% (h=0.260, w=0.367) 33.2=1547% (h=0.302)

0.5 21.9=147% (h=0.549) 14.9=100% (h=0.350, w=0.555) 41.9=281% (h=0.407)

1.0 44.3=111% (h=0.638) 40.0=100% (h=0.549, w=0.549) 56.8=142% (h=0.549)

R400

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 1.8=112% (h=0.260) 1.6=100% (h=0.224, w=0.354) 30.4=1887% (h=0.193)

0.5 18.8=105% (h=0.473) 18.0=100% (h=0.407, w=0.512) 41.3=229% (h=0.407)

1.0 51.2=122% (h=0.549) 41.9=100% (h=0.549, w=0.616) 62.6=150% (h=0.549)

R1600

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 0.5=131% (h=0.193) 0.4=100% (h=0.166, w=0.371) 28.3=7051% (h=0.193)

0.5 4.9=144% (h=0.350) 3.4=100% (h=0.224, w=0.562) 30.4=892% (h=0.224)

1.0 11.7=130% (h=0.473) 9.0=100% (h=0.302, w=0.602) 36.7=406% (h=0.224)

Table 4: Comparison of MISE performance for mixture of additive and non-additive polynomial

regression function (r4) for increasing sample size. At each sample size, results are given at 3

different standard deviations.

19



R200

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 30.7=141% (h=0.350) 21.7=100% (h=0.260, w=0.327) 98.8=455% (h=0.193)

0.5 55.7=105% (h=0.350) 53.3=100% (h=0.260, w=0.367) 115.8=217% (h=0.260)

1.0 131.1=105% (h=0.407) 124.4=100% (h=0.350, w=0.350) 150.4=121% (h=0.350)

R400

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 9.6=199% (h=0.260) 4.8=100% (h=0.166, w=0.263) 96.7=1997% (h=0.166)

0.5 38.3=100% (h=0.260) 38.4=100% (h=0.224, w=0.251) 113.9=296% (h=0.224)

1.0 113.4=98% (h=0.350) 116.2=100% (h=0.350, w=0.350) 155.4=134% (h=0.302)

R1600

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 1.2=124% (h=0.123) 1.0=100% (h=0.106, w=0.188) 88.8=9094% (h=0.166)

0.5 10.8=114% (h=0.193) 9.5=100% (h=0.193, w=0.272) 91.2=958% (h=0.166)

1.0 28.4=112% (h=0.260) 25.3=100% (h=0.224, w=0.354) 98.3=389% (h=0.193)

Table 5: Comparison of MISE performance for mixture of additive and non-additive periodic regres-

sion function (r5) for increasing sample size. At each sample size, results are given at 3 different

standard deviations.
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R200

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 14.1=87% (h=0.350) 16.2=100% (h=0.260, w=0.327) 98.9=610% (h=0.224)

0.5 39.2=85% (h=0.350) 46.1=100% (h=0.350, w=0.350) 110.6=240% (h=0.350)

1.0 99.7=91% (h=0.473) 109.3=100% (h=0.350, w=0.350) 129.3=118% (h=0.473)

R400

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 4.8=130% (h=0.260) 3.7=100% (h=0.193, w=0.242) 96.8=2611% (h=0.166)

0.5 32.7=97% (h=0.350) 33.6=100% (h=0.260, w=0.260) 111.7=333% (h=0.302)

1.0 85.7=91% (h=0.473) 93.9=100% (h=0.407, w=0.407) 139.2=148% (h=0.473)

R1600

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 0.9=108% (h=0.143) 0.8=100% (h=0.123, w=0.195) 87.5=10688% (h=0.224)

0.5 8.2=104% (h=0.260) 7.9=100% (h=0.224, w=0.282) 89.5=1129% (h=0.224)

1.0 21.4=101% (h=0.302) 21.3=100% (h=0.260, w=0.327) 95.9=451% (h=0.224)

Table 6: Comparison of MISE performance for non-additive periodic regression function (r6) for

increasing sample size. At each sample size, results are given at 3 different standard deviations.
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F400

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 1.9=96% (h=0.224) 2.0=100% (h=0.224, w=0.251) 3.6=183% (h=0.224)

0.5 9.6=113% (h=0.638) 8.5=100% (h=0.473, w=0.668) 10.8=127% (h=0.473)

1.0 21.2=115% (h=0.741) 18.5=100% (h=0.638, w=0.716) 30.3=164% (h=0.549)

F400j

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 1.6=106% (h=0.193) 1.5=100% (h=0.166, w=0.234) 3.6=233% (h=0.193)

0.5 6.8=109% (h=0.473) 6.2=100% (h=0.549, w=0.871) 8.5=138% (h=0.473)

1.0 13.6=128% (h=0.861) 10.6=100% (h=0.549, w=0.871) 18.9=178% (h=0.861)

LS400

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 2.2=83% (h=0.260) 2.6=100% (h=0.302, w=0.339) 3.6=136% (h=0.224)

0.5 10.2=123% (h=0.638) 8.3=100% (h=0.549, w=0.692) 10.8=130% (h=0.473)

1.0 23.0=132% (h=0.741) 17.5=100% (h=0.638, w=0.716) 29.4=168% (h=0.638)

LS400j

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 1.6=117% (h=0.260) 1.4=100% (h=0.193, w=0.272) 3.4=240% (h=0.193)

0.5 6.8=115% (h=0.473) 5.9=100% (h=0.473, w=0.944) 7.3=124% (h=0.407)

1.0 13.5=127% (h=0.861) 10.7=100% (h=0.549, w=0.871) 17.2=162% (h=0.473)

Table 7: Comparison of MISE performance for approximately additive regression function (r2) with

different designs. At each sample size, results are given at 3 different standard deviations.
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F400

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 1.7=92% (h=0.224) 1.8=100% (h=0.224, w=0.251) 6.7=365% (h=0.224)

0.5 10.9=116% (h=0.549) 9.5=100% (h=0.473, w=0.595) 14.3=151% (h=0.350)

1.0 22.7=112% (h=0.861) 20.3=100% (h=0.638, w=0.638) 33.6=165% (h=0.638)

F400j

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 1.4=103% (h=0.193) 1.4=100% (h=0.193, w=0.242) 6.7=482% (h=0.193)

0.5 7.4=94% (h=0.407) 7.8=100% (h=0.407, w=0.575) 12.0=153% (h=0.473)

1.0 14.2=103% (h=1.000) 13.8=100% (h=0.861, w=0.861) 18.7=136% (h=1.000)

LS400

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 2.0=72% (h=0.260) 2.8=100% (h=0.302, w=0.339) 7.0=247% (h=0.224)

0.5 11.9=125% (h=0.638) 9.5=100% (h=0.407, w=0.724) 14.5=153% (h=0.473)

1.0 24.3=125% (h=0.861) 19.4=100% (h=0.638, w=0.638) 32.7=169% (h=0.638)

LS400j

σ local linear (hopt) local additive (hopt, wopt) additive (hopt)

0.1 1.6=114% (h=0.260) 1.4=100% (h=0.193, w=0.242) 6.7=494% (h=0.193)

0.5 7.4=105% (h=0.407) 7.0=100% (h=0.407, w=0.457) 10.8=154% (h=0.407)

1.0 14.3=105% (h=0.861) 13.7=100% (h=0.861, w=0.861) 20.7=152% (h=1.000)

Table 8: Comparison of MISE performance for non-additive regression function with superposed

peaks (r3) with different designs. At each sample size, results are given at 3 different standard

deviations.
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Appendix

Proof of Lemma 2 Recall that Sadd = PaddS∗Padd. Put s(x) = S∗radd(x). The components are

given as

s0(x) = S0,0(x)r0
add(x) +

d∑
j=1

S0,j(x)rj
add(xj) ,

sk(x) = Sk,0(x)r0
add(x) +

d∑
j=1

Sj,k(x)rj
add(xj) .

Write the additive function r0
add(x) =

∑d
j=1 radd,j(xj). Then, the components of Saddradd(x) may

be written as

(Saddradd)0(x) =
1

2d−1

d∑
j=1

∫
s0(x) dx−j −

d− 1
2d

∫
s0(x) dx ,

(Saddradd)k(x) =
1

2d−1

∫
sk(x) dx−k .

Further simplification yields∫
s0(x)dx−k

= radd,k(xk)
∫

S0,0(x) dx−k +
∑
j 6=k

∫ (∫
S0,0(x) dx−(j,k)

)
radd,j(xj) dxj

+rk
add(xk)

∫
S0,j(x) dx−k +

∑
j 6=k

∫ (∫
S0,j(x) dx−(j,k)

)
rj
add(xj) dxj ,∫

s0(x)dx

=
d∑

j=1

∫ (∫
S0,0(x) dx−j

)
radd,j(xj) dxj +

d∑
j=1

∫ (∫
S0,j(x) dx−j

)
rj
add(xj) dxj ,∫

sk(x) dx−k

= radd,k(xk)
∫

Sk,0(x) dx−k +
∑
j 6=k

∫ (∫
Sk,0(x) dx−(j,k)

)
radd,j(xj) dxj

rk
add(xk)

∫
Sk,k(x) dx−k +

∑
j 6=k

∫ (∫
Sj,k(x) dx−(j,k)

)
rj
add(xj) dxj .

Hence the convergence of the operator is governed by the convergence of
∫

S0,k(x) dx−j ,
∫

S0,k(x) dx−(j,k),∫
Sj,k(x) dx−(j,k), j = 1, · · · , d, k = 0, · · · , d, which are simply one– and two–dimensional kernel es-

timators. Let ŝ(x) be one of those estimators. The uniform convergence result can be applied to
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derive

sup
x

∣∣ŝ(x)− Eŝ(x)
∣∣ = O

(√
log n

nhd

)
(see e.g. Masry 1996). Without boundary correction, the range of x is understood as the set of

interior points. Note that the expectation of E, as a function of x, is used to describe unconditional

expectation. When used as a function of x and Y elsewhere, it is conditional expectation. The

pointwise rate of convergence is O(
√

nhd). Similar argument applies to the locally additive estimator

with X replaced by U. As long as w is larger than h, the kernel estimators are not affected by the

transformation and thus the same holds true for the estimator with U. For example, the convergence

of
∫

S0,k(x) dx−j can be formulated as, for l ≥ 0,

sup
uj

∣∣∣ 1
ñ

ñ∑
i=1

Kh̃j
(Ui,j , uj)

(Ui,j − uj

h̃j

)l

− E
[ 1
ñ

ñ∑
i=1

Kh̃j
(Ui,j , uj)

(Ui,j − uj

h̃j

)l]∣∣∣ = O

(√
log n

nh

)
,

where uj = (xj − x0j)/w. Note that the convergence does not depend on the output point x0 and

the local region w. Now assume that w → 0 as n →∞. Then

sup
uj

∣∣∣E[ 1
ñ

ñ∑
i=1

Kh̃j
(Ui,j , uj)

(Ui,j − uj

h̃j

)l]
− 1

2

∫
ulK(u) du

∣∣∣ = O(w) .

Therefore, S̃add = S̃add,n(x) converges uniformly in x as n → ∞, provided that nh/ log n →

∞, h/w → 0 and w → 0. The other estimators can be treated similarly. Further simplification

leads to the expression of the limiting operator defined above. Now we show that the finite operator

has also continuous inverse. As S̃add,∞ has an inverse operator, it is enough to show that

||S̃add,n − S̃add,∞|| <
1

||S̃−1
add,∞||

.

Because S̃add,n converges to S̃add,∞, the lefthand side can be made arbitrarily small for large n with

probability tending to one. Therefore, S̃−1
add,n exists and has continuous inverse with probability

tending to one as n →∞. �.

Sketch of proof for Lemma 3 From the normal equation (1.8) and Lemma 2, the asymptotic

variance can be obtained from

V [r̂ladd(x)] =
1
4d

V [(Paddr̃L)0(x)]
(
1 + o(1)

)
,

and

V [(Paddr̃L)0(0)] =
σ2

4d−1ñ

∑
i

{∑
j

Kh̃j
(Ui,j , 0)− d− 1

2

}2

.

Lemma 3 now can be obtained from standard calculation. �.
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Sketch of proof for Lemma 4 From the normal equation (1.8) and Lemma 2, the asymptotic

bias can be calculated from

B[r̂ladd(x)] = S̃−1
add,∞{E[(Paddr̃L)0(x)]− r(x)}

(
1 + op(1)

)
=

( 1
2d

E[(Paddr̃L)0(x)]− r(x)
)(

1 + o(1)
)
.

Then it can be deduced that

E[(Paddr̃L)0(0)] =
1

2d−1ñ

∑
i

{∑
j

r̃(Ui)Kh̃j
(Ui,j , 0)− d− 1

2
r̃(Ui)

}
. (2.3)

Lemma 4 now can be obtained from standard calculation. �.

Proof of Lemma 5 From (2.3) together with Lemma 2, we may write

E[b̂add,w(u)] =
{

2
d∑

l=1

( 1
ñ

ñ∑
i=1

Ui,jUi,kKh̃l
(Ui,l, ul)

)
− (d− 1)

( 1
ñ

ñ∑
i=1

Ui,jUi,k

)}
(1 + op(1)) . (2.4)

Then, if f is twice continuously differentiable

(a) = E[UjUkKh̃l
(Ul, xl)] =

∫
ujukKh̃l

(ul, xl)f̃j,k,l(uj , uk, ul) dujdukdul

=
∫

ujuk

{∫
K(ul)

1
23f(x0)

(
f(x0) + w

(
f ′j(x0)uj + f ′k(x0)uk

+f ′l (x0)(xl + h̃lul)
)

+ O(w2)
)

dul

}
dujduk = O(w2)

(b) = E[UjUkKh̃k
(Uk, xk)]

=
∫

uj

{∫
(xk + h̃luk)K(uk)

1
4f(x0)

(
f(x0) + w

(
f ′j(x0)uj

+f ′k(x0)(xk + h̃kuk)
)

+ O(w2)
)

duk

}
duj

=
wf ′j(x0)
4f(x0)

∫
u2

j duj + O(w2) =
wxk

6

∂
∂uj

f ′′j,k(x0)

fj,k(x0)
+ O(w2)

(c) = E[UjUk] = O(w2)

Therefore, the result follows. �.

Proof of Proposition 1 Under the assumption (A.1′), the non–additive part r̃(2)(u) of r̃(u) can

be represented as

r̃(2)(u)

=
w2

2

∑
j 6=k

r′′j,k(0)ujuk +
w3

3!

∑
j,k,l

r′′′j,k,l(0)ujukul +
w4

4!

∑
j,k,l,m

r′′′′j,k,l,m(0)ujukulum + o(w4) .
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Note that f̃ is uniform on [−1, 1]d when f is uniform. This implies that

E[UjUk] = 0 , E[UjUkUl] = 0 , E[U2
j Uk] = 0

E[UjUkUlUm] = 0 , E[U2
j UkUl] = 0 , E[U3

j Uk] = 0 .

It turns out that the same holds true with the kernel function included when evaluated at u = 0.

Hence, bias is dominated by the term u2
ju

2
k with order of w4. From (2.4), the following Lemma

combined with Lemma 4 proves Proposition 1. �

Proof of Lemma 6

E[Uδ
j UkKh̃l

(Ul, ul)] = 0 , l 6= j 6= k or (l = j) 6= k , δ = 1, 2, 3

E[U3
j UkKh̃k

(Uk, uk)] = 0 , j 6= k

E[UjUkUlKh̃m
(Um, um)] = 0 , m 6= j 6= k 6= l or (m = j) 6= k 6= l

E[U2
j UkUlKh̃m

(Um, um)] = 0 , (m = j) 6= k 6= l or j 6= (m = k) 6= l

E[UjUkUlUmKh̃n
(Un, un)] = 0 , n 6= j 6= k 6= l 6= m or (n = j) 6= k 6= l 6= m ,

and

E[U2
j UkKh̃k

(Uk, uk)] =
1
6
uk , j 6= k .

Hence, when u = 0, the average of those terms are of order O((h̃
√

ñ)−1). Thus bias is dominated

by the term u2
ju

2
k, provided that r′′′′j,j,k,k is bounded. For r̃(u) = r̃(2)(u), we get

d∑
l=1

(
2E
[∑

j 6=k

r′′′′j,j,k,k(x0)U2
j U2

kKh̃l
(Ul, 0)

])
− (d− 1)E[

∑
j 6=k

r′′′′j,j,k,k(x0)U2
j U2

k ]

=
∑
j 6=k

r′′′′j,j,k,k(x0)
{

E
[
U2

j U2
k

]
(d− 2) + 2E

[
U2

j U2
k

(
Kh̃j

(Uj , 0) + Kh̃k
(Uk, 0)

)]}
−(d− 1)

∑
j 6=k

r′′′′j,j,k,k(x0)E
[
U2

j U2
k

]
=

∑
j 6=k

r′′′′j,j,k,k(x0)
{

2E
[
U2

j U2
k

(
Kh̃j

(Uj , 0) + Kh̃k
(Uk, 0)

)]
− E

[
U2

j U2
k

]}
=

∑
j 6=k

r′′′′j,j,k,k(x0)
{

µ2(K)
h2

j + h2
k

3w2
− 1

9

}
.

B
(2)
ladd(x0) =

{
− w4

4! · 9
∑
j 6=k

r′′′′j,j,k,k(x0) +
w2

4! · 3
µ2(K)

∑
j 6=k

r′′′′j,j,k,k(x0)(h2
j + h2

k)
}

+ o(w4)

Assuming that h = o(w), the leading term is O(w4). This proves Proposition 1. �
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Proof of Proposition 2 From Proposition 1, the leading terms of asymptotic MSE (AMSE) can

be expressed as

AMSE(w) = w8
(C2

hµ2(K)
2

d∑
j=1

r′′j,j(x0)−
1

4! · 9
∑
j 6=k

r′′′′j,j,k,k(x0)
)2

+
2µ0(K2)σ2d

Chnwd+1

= w8(aC2
h − b)2 +

c

Chnwd+1
.

Then,

AMSE′(w) = 8(aC2
h − b)2w7 − (d + 1)c

Chnwd+2
= 0

leads to

wd+9 =
(d + 1)c

8Ch(aC2
h − b)2

n−1 .

As AMSE′′(w) ≥ 0, the extremal point is minimal, which proves Proposition 2. �

Proof of Proposition 3 From Proposition 2, the optimal AMSE can be expressed as

AMSE = (aC2
h − b)2w8 +

8(aC2
h − b)2

d + 1
w8 =

d + 9
d + 1

(aC2
h − b)2w8 .

Substituting w with the optimal one and writing x = Ch give

AMSE =
d + 9
d + 1

(ax2 − b)2
( (d + 1)c

8x(ax2 − b)2
) 8

d+9
n−

8
n+9 ,

{AMSE}d+9 =
(d + 9

d + 1

)d+9

n−8(ax2 − b)2(d+9)
( (d + 1)c

8x(ax2 − b)2
)8

=
(d + 9

d + 1

)d+9

n−8
( (d + 1)c

8

)8 (ax2 − b)2(d+1)

x8
.

Let

g(x) =
(ax2 − b)2(d+1)

x8
.

It can be shown that all other cases except for ab < 0 produce degenerated solutions. When ab < 0,

the minimizer can be found from the solution of g′(x) = 0.

g′(x) =
2ax2(d + 1)(ax2 − b)2d+1x8 − 8x7(ax2 − b)2(d+1)

x16

=
(ax2 − b)2d+1

(
4a(d− 1)x2 + 8b

)
x9

.

Thus, g′(x) = 0 leads to

ax2 − b = 0 , or a(d− 1)x2 + 2b = 0 .

Assuming that ab < 0,

x =

√
2

d− 1

(
− b

a

)
. �

28


