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July 24, 2007

Abstract

Analyzing functional data often leads to finding common factors, for which
functional principal components analysis proves to be a useful tool to summa-
rize and characterize the random variation in a function space. The represen-
tation in terms of eigenfunctions is optimal in the sense of L2 approximation.
However, the eigenfuntions are not always directed towards an interesting and
interpretable direction in the context of functional data and thus could obscure
the underlying structure. This paper proposes an alternative to functional
principal component analysis that produces directed components which may
be more informative and easier to interpret. These structural components are
similar to principal components, but are adapted to situations in which the do-
main of the function may be decomposed into disjoint intervals such that there
is effectively independence between intervals and positive correlation within
intervals. The approach is demonstrated with examples as well as real data.
Properties for special cases are also studied.

Keywords: Functional data analysis, Functional principal component anal-
ysis, PCA, Longitudinal data, Smoothing

1 INTRODUCTION

Repeated measurements in the form of curves are increasingly common in the fields
of biomedicine and physical sciences. Examples include blood pressure profiles over
24 hours, evoked brain potentials and growth curves. Individual measurements are
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taken at consecutive time points and repeatedly observed for different subjects. Such
measurements are generally called functional data.

Figure 1 about here.

An example of children growth data is shown in Figure 1. These are height
measurements (left) and velocity curves (right) of 10 boys at ages between 2 and
21 years (Gasser et al., 1984). Velocity curves are estimated nonparametrically with
Gasser-Müller estimator. In order to perform a functional data analysis, these curves
will be aligned to eliminate time variability, known as registration. In this paper, we
shall assume that registration, if necessary, has been carried out and we shall treat
the registered curves as raw data. For details on registration, we refer to Ramsay and
Silverman (1997, 2002).

Usually the sample of curves is assumed to have some homogeneous structure
in the functional shape, while allowing for individual variability. This variability is
commonly charaterized with a few components. Let yij be the jth observation on the
ith individual at time tj and consider the following regression model

yij ≡ yi(tj) = µ(tj) +
K∑

k=1

ξikφk(tj) + εij , i = 1, · · · , n; j = 1, · · · , T ,

where εij are independent errors. Here the design points are assumed the same for
each subject. This is not an essential assumption but it will simplify presentation in
Section 2. From now on, such φks are referred to as components.

When viewing each curve as an independent realization of a stochastic process
X(t) in function space, the model has an optimal representation when the common
functions {φk} and the coefficients {ξik} are derived from eigenfunctions and eigen-
values of the covariance function of X. These are known as functional principal
components. Such models appear in the context of both longitudinal and functional
data analysis. In longitudinal data analysis, the random coefficients ξik are often
associated with random effects with known covariates and may have sparse design
points. See also Yao et al. (2005). While the components are prespecified in the lon-
gitudinal models, they may be completely determined by the data in functional data
analysis. However, situation may arise when some restriction would be useful without
fully specifying the components. In particular, when some variability shows certain
structure along the time axis, it is beneficial to have components that reflect such
a phenomenon. For example, whether the growth process experiences a qualitative
change in time would be of interest.

We mainly focus on nonnegative covariance functions, although in practice we
would tolerate small negative entries to extract the essential features of a basically
positive relationship.
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Figure 2 about here.

Consider a simple scenario with two underlying subprocesses that have almost
non–overlapping support as shown in Figure 2. Assume that a sample of curves is
generated from the sum of these processes when 1) the two processes are independent
and when 2) they are positively highly correlated. In the latter case, it can be viewed
as being one homogeneous process.

Figure 3 about here.

Figure 3 shows the result of functional PCA for these two cases. The left column
corresponds to the nearly uncorrelated case and the right column to the positively
correlated case. The first components shown in the top row both suggest an overall
level of the process as major source of variability (in our terminology these are block
components) and the second components, in the second row, suggest the difference
between the first and the second processes as the next source (we shall call these
difference components). Although the percentage of variance differs, functional PCA
provides qualitatively the same answer whether there are two independent subpro-
cesses or only one process.

Figure 4 about here.

On the other hand, the covariance structure, seen as contour plots in top pan-
els of Figure 4, clearly indicate that the observed process is approximated by two
subprocesses in the former case and by one process in the latter case. Below are the
corresponding correlation functions. Note that the minimum correlation for the latter
is 0.69, compared to 0.2 for the former.

In this paper, we shall define structural components to reflect this information
both quantitatively and qualitatively. We introduce block components and difference
components to make a distinction between the two cases. In Section 2, we introduce
a general framework to obtain block components that reflect the underlying structure.
We use the simulated examples to illustrate the procedure. Statistical properties are
studied in Section 3. Numerical performance is evaluated in Section 4. In particular,
comparison to functional PCA and its Varimax rotation is made in simulation studies.
Application to real data is also included

2 METHODOLOGY

Consider a stochastic process X(t) with compact support T = [0, T ]. Denote the
mean function by µ(t) and the covariance function by γ(s, t) = cov(X(s), X(t)) and
assume that
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(A1) γ(s, t) ≥ 0 for all s, t ∈ T .

Processes with predominantly positive covariances are frequent in functional data and
in many cases this property should be satisfied to a good approximation.

We shall decompose a stochastic process into a system of components β1, · · · , βq

as in the regression model of Section 1. Similar in spirit to decomposition of analy-
sis of variance, where major variability is captured by main effect and contrasts, we
model the process with block components and difference components. These consti-
tute structural components in our model. Structural components were introduced in
the multivariate context by Rousson and Gasser (2004). Formal definitions will be
introduced below.

2.1 Block and difference components

A component is called a block component if β(t) ≥ 0 (or β(t) ≤ 0) for all t ∈ T , the
domain where it is strictly positive (strictly negative) being connected. A difference
component is an element of nonblock components, i.e. where the sgn(β) is not
constant. A simple example of difference component is seen when the domain where
it is strictly positive is connected and when the domain where it is strictly negative is
connected. For identifiability we assume that

∫
β2(t) dt = 1. We are mainly interested

in deriving block components but difference components could be of further interest.
For example, we would like to have two block components in the case of a sum of
two uncorrelated subprocesses, but to have only one block component in the case of
a sum of two highly correlated subprocesses (see Figure 2).

2.2 Correlation between components

Each component function is associated with a random variable Xk =
∫

βk(t)X(t) dt.
We measure the correlation between two components βk and βl by the random vari-
ables induced by them. Define

Corr(βk, βl) =

∫ ∫
βk(s)γ(s, t)βl(t) ds dt√∫ ∫

βk(s)γ(s, t)βk(t) ds dt
√∫ ∫

βl(s)γ(s, t)βl(t) ds dt

Thus, two components are said to be uncorrelated if
∫

βk(s)γ(s, t)βl(t) ds dt = 0.
On the other hand, two components are said to be orthogonal if

∫
βk(t)βl(t) dt = 0.

Functional principal components is the only system of components which is orthog-
onal and uncorrelated. In our approach, components may be non-orthogonal and/or
correlated. To avoid that components share too much information, we shall concen-
trate on systems where the maximal correlation

C = max
k 6=l

Corr(βk, βl)
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is smaller than some threshold Cmax.

2.3 Variance extracted by a system of components

We assess optimality of components by corrected sum of variances explained by com-
ponents. Following Gervini and Rousson (2004), we consider

V ar(β1) +

q∑
k=2

V ar(βk|β1, · · · , βk−1) ,

where

V ar(βk|β1, · · · , βk−1) =

∫ ∫
βk(s)γ(k−1)(s, t)βk(t) ds dt .

Here γ(k−1) is the residual covariance function subtracting linear prediction in terms
of (β1, · · · , βk−1). Normalization with respect to principal components φ1, · · · , φq

measures relative loss of optimality:

O =
V ar(β1) +

∑q
k=2 V ar(βk|β1, · · · , βk−1)

V ar(φ1) +
∑q

k=2 V ar(φk|φ1, · · · , φk−1)
.

This criterion has been introduced in the multivariate context and it has been shown
that O ≤ 1, equality holding if and only if the βk are principal components. It is
designed for penalizing systems of components which are correlated. The “price to
pay” for replacing principal components with a suboptimal system which is better
interpretable, for example, a system with more than one block component, can then
be quantified. This criterion hence allows to compare different candidate component
models. Note that this criterion is not symmetric with respect to the order of com-
ponents. For structural components, we order first block components by decreasing
variance, and then difference components by decreasing variance.

2.4 Problem statement

Now we can state our problem formally. We are interested in a system β1, · · · , βq

which maximizes

(1) the number of block components Nb

(2) the optimality criterion O

under the constraint that the maximum correlation C ≤ Cmax. Thus, if there is no
system with Nb > 1 and C ≤ Cmax, then the solution to this problem is given by
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principal components. Otherwise the solution is in general different from principal
components.

In subsequent sections, a stepwise approach for estimating the components from a
sample of curves is proposed. These are based on the covariance function estimator.

2.5 Estimation of covariance function

Estimating the covariance function γ is closely related to estimating functional prin-
cipal components. Diggle and Verbyla (1998), Staniswalis and Lee (1998), Wu and
Zhang (2002) and Yao et al. (2003) among many others have used kernel type smooth-
ing estimator. Alternatively, a prespecified basis function can be used as in Silverman
(1996). The differences center around the different smoothing techniques adopted.

Our approach can encompass different versions of covariance function estimators
and the subtle differences would not be a major issue for the purpose of our analysis.
The common mean function is estimated simply by taking the average of the data
at design points without smoothing followed by subtraction from data points. The
remaining curve corresponds to subject specific variation, subject to a measurement
error. At this stage individual (kernel) smoothing is applied before computing the
covariance function. To avoid any systematic bias caused by different smoothing
parameters, the same bandwidth is used. Our estimator of the covariance function is
the covariance function of the smoothed residual process.

2.6 Estimating block components

In this section, we explain how to estimate the block components, as well as their
number Nb. For this, we first consider all possible partitions of [0, T ] into two disjoint
intervals [0, t] and [t, T ]. Let αt and βt be the leading eigenfunctions of the covari-
ance functions restricted on these intervals. In general, these functions are positive,
otherwise, we approximate αt and βt to be positive by setting zero where they are
negative so that we extract a basically positive relationship. We extend αt and βt

to the whole interval [0, T ] by adding zero on the other interval. These functions
may have discontinuity at t, which is of measure zero. For each separation point t,
we evaluate the criteria C and O, obtaining functions C(t) and O(t). If the corre-
lation C(t) is larger than Cmax throughout T , the solution to our problem stated in
Section 2.4 is given by the principal components. Otherwise, we consider the two
block components αt, βt that maximize O(t) under the domain where C(t) ≤ Cmax.
Alternatively, we may choose the separation point t using specific knowledge from
the field of application (some values may make more “sense” than others). We then
try to split the block components obtained into two further block components using
a similar algorithm. This sequential approach ends when it is no longer possible to
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split the block components without surpassing the correlation threshold. In practice,
the algorithm often stops with Nb = 1 or Nb = 2 block components. In these cases,
the system obtained is considered the solution to our problem. If there are more than
two block components, however, this sequential algorithm may miss it. In order to
be sure to find the solution, one would need to use a global algorithm investigating
all possible partitions of [0, T ] into three or more disjoint intervals.

Remark 1: In our analysis, we allow discontinuity at t for α and β. It is possible,
though, to slightly modify the function so that it becomes continuous or differentiable.
For example, to obtain a continuous function, linear interpolation at the border may
be implemented. To obtain a smooth function, a constrained smoothing may be ap-
plied with boundary condition. However, because an additional refinement procedure
can be arbitrary and does not influence the conclusion, we do not pursue this topic
further.

Figure 5 about here.

The procedure is illustrated with the examples shown in Figure 3. Again, panels
from the left column correspond to two subprocesses and those to the right to one
homogeneous process. The functions C(t) and O(t) are seen in the top panels of
Figure 5. For two subprocesses, the correlation C(t) is found below the cut-off value
Cmax = 0.3 on a whole interval around 0, and the maximum of the optimality criterion
O(t) within that interval is found at t0 = −0.04. This leads to two block-components
(lower left panel). For one homogeneous process, the correlation function C(t) stays
well above the cut-off value, and we hence define only one block component (lower
right panel).

2.7 Adding difference components

Once block components are defined, we may add difference components to the sys-
tem. This is done in order to increase the percentage of variance extracted and to
obtain further structural information. For each i, define a residual process ri(t) by
subtracting its linear prediction in terms of βk, k = 1, · · · , Nb as

ri(tj) = yi(tj)− µ(tj)−
Nb∑
k=1

θikβk(tj) .

Denote the covariance function of the residual process by γr and apply principal
components analysis. Alternatively, the residual dispersion matrix subtracting its
best linear prediction in terms of the βk can be directly obtained from

Γr = Γ− ΓB(B′ΓB)−1B′Γ ,
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where Γ = {γ(ti, tj)} and B = {βi(tj)} are matrices evaluated at design points. See
Rao (1968).

3 Properties

To establish statistical properties of the proposed procedure, we shall restrict our
attention to two important situations. If there are two subprocesses, the procedure
should be able to detect it by defining two block components. If there is only one
process, we should come up with one block component. The following assumptions
will be used.

(A2) The covariance function γ is continuous, strictly positive-definite, and the trace
of γ,

∫
γ(u, u) du, is finite.

(A3) All eigenvalues λj have multiplicity 1, so that λ1 > λ2 > · · · > 0.

(A4) supu,v∈T |γ̂(u, v)− γ(u, v)| → 0 in probability .

Assumption (A2) is standard. When some eigenvalues have multiplicity greater
than 1, the corresponding eigenfunctions are not uniquely defined and thus one needs
to deal with the subspace generated by the eigenvectors as in Dauxois et al. (1982)
and Boente and Fraiman (2000). Because our criteria only require the leading eigen-
function for each partition, we assume that it is uniquely defined as in (A3). Our
focus is not so much on the covariance function estimator as on the behaviour of
criteria functions based on it, as long as it is (uniformly) consistent. For example,
kernel-based smoothing estimators used in Staniswalis and Lee (1998) and Yao et al.
(2005), similar to our estimator, satisfy (A4). For roughness penalty approach, see
Silverman (1996) and Cardot (2000). Thus, any reasonable covariance function esti-
mator could be incorporated in the procedure and the properties stated below would
be equally applicable. Proofs are found in the Appendix.

Below we write Ĉ(t) and Ô(t) for the respective estimators of C(t) and O(t) cal-
culated with γ̂. Theorem 1 shows that these estimators are consistent. In particular,
one can estimate consistently the minimum value of C(t). This will be needed to
show the consistency of our procedure in subsequent sections.

Theorem 1 Assume (A2)-(A4). Then, we have

sup
t
|Ĉ(t)− C(t)| → 0 in probability ,

sup
t
|Ô(t)−O(t)| → 0 in probability ,

as n →∞.
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3.1 Case of two subprocesses

Consider the case of two subprocesses. Equivalently, suppose that the covariance
function has an ideal partition with two blocks.

(A1′) For a fixed t0, γ(u, v) = 0 for (u− t0)(v− t0) < 0. Otherwise, γ(u, v) ≥ 0, where

0 < c1 ≤
∫ T

t0
γ(u, u) du∫ t0

0
γ(u, u) du

≤ c2 < ∞ ,

for some positive constants c1 and c2.

It turns out that one cannot detect this cut-point t0 based on the correlation criterion
C(t) alone. The reason for this is that this function does not have a unique minimum,
but is equal to zero on an interval. Thus we look for the point where the optimality
criterion O(t) reaches maximum on that interval.

Lemma 1 Assume (A1′), (A2)− (A3) Then, there exists a neighborhood of t0, N (t0)
such that

C(t) = 0 , for all t ∈ N (t0) ,

and
O(t0) ≥ O(t) , for all t ∈ T .

Moreover, the maximizer is unique.

Theorem 2 Assume (A1′), (A2)− (A4). Define for given τ > 0

t̂0 = arg max
t:|Ĉ(t)|≤τ

Ô(t) .

Suppose that for large enough N , t̂0 is uniquely defined for n ≥ N as n → ∞ with
probability tending to one. Then

t̂0 → t0 in probability .

In summary, in such an ideal case as assumed in (A1′), our procedure will con-
sistently define block components which correspond to the blocks in the covariance
function.
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3.2 Case of one process

Now we consider the case of one homogeneous process. In terms of the covariance
function, this means that

(A1′′) γ(u,v)

(γ(u,u)γ(v,v))1/2 ≥ c > 0 , for all u, v ∈ T .

Here we are mainly concerned with c relatively large, for example c = 0.5 or larger.
The following lemma shows that the correlation criterion C(t) will in turn be larger

than this threshold c. Its corollary states that this will also happen consistently in
the sample.

Lemma 2 Assume (A1′′), (A2)− (A3). Then, we have

C(t) ≥ c , for all t ∈ T .

Corollary 1 Assume (A1′′), (A2) − (A4). Then, there exists a sequence cn that
converges to c as n →∞ such that

Ĉ(t) ≥ cn in probability .

Therefore, in case (A1′′) holds, our procedure will consistently define only one
block-component as soon as threshold c is larger than the pre-specified cut-off value
Cmax.

4 Numerical performance

Numerical performance was studied through simulation and application to three real
data sets including growth data shown in Figure 1. Further examples are weather
data and gait data from Ramsay and Silverman (1997). Motivating examples shown
in Figure 2 serve as the basis of simulation studies.

4.1 Simulation studies

We compare our method (SCA) to functional PCA and its varimax rotation (imple-
mented in Matlab) to assess differences with respect to the three criteria proposed in
Section 2: number of block components (Nb), correlation(C) and optimality(O). We
consider the following model

yi(tj) = αi1
1√

2π0.3
exp

(
−(tj + 0.5)2

0.3

)
+ αi2

1√
2π0.3

exp

(
−(tj − 0.5)2

0.3

)
,
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Table 1: Comparison of methods for approximate block structure (left) and nonblock
structure (right).

σ12 = 0.0 σ12 = 0.5
Nb Nb(10%) Opt Corr Nb Nb(10%) Opt Corr

SCA 1.95 1.95 0.98 0.04 1.0 1.0 1.0 0.0
FPCA 0.97 1.41 1.0 0.0 1.0 1.0 1.0 0.0
Varimax 0 2.0 0.99 0.06 0 2.0 0.78 0.70

where

(αi1, αi2) ∼ iid Normal

(
0,

(
σ11 σ12

σ12 σ22

))
.

We are mainly interested in the dependence of Nb on the underlying covariance struc-
ture. We set σ11 = 0.8, σ22 = 0.7 and σ12 between 0 and 0.5. Results below are based
on 1000 simulations, where 50 random curves are observed at 101 equally spaced
design points on [-1,1]. For SCA, we use Cmax = 0.3.

Table 1 presents average results for σ12 = 0.0 and σ12 = 0.5. The former case cor-
responds to two independent subprocesses (with almost non-overlapping supports),
whereas the latter case corresponds to one homogeneous process. Thus, a good so-
lution according to our criteria should have Nb = 2 and Nb = 1, respectively. While
this is mostly achieved by SCA (Nb being on average 1.95 and 1), FPCA has only one
block component in either cases (Nb being on average 0.97 and 1). Strictly speaking,
Varimax had no block component (Nb = 0). However, it often produces components
which resemble block components. If we relax a bit our criterion to allow small per-
turbation, say 10% of squared norm, in counting the number of block components
as

Nb(10%) =

q∑
k=1

I
(
min

{∫
βk>0

β2
k(t) dt,

∫
βk<0

β2
k(t) dt

}
< .1

)
then Varimax has 2 block components in both cases (Nb(10%) = 2). Thus, neither
FPCA nor Varimax could distinguish between one and two subprocesses, whereas
SCA mostly does. Moreover, the average optimalty of SCA is larger than 0.98 in
both cases, the average correlation between components remaining smaller than 0.04.
By way of contrast, the average optimality of Varimax is only 0.78 in the one process
case, the average correlation between components being as high as 0.7.

Further simulations point into the same direction; details can be obtained from
the first author.
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4.2 Real data examples

Now we present application to three real data sets.

Growth data: The procedure is applied to the growth data shown in Figure 1.
It has been conjectured (Karlberg, 1987; Karlberg et al., 1987) that during growth
there are at least two (or three if including infancy) nearly non–overlapping periods
in which onset of secretion of new hormones promotes different phase of growth. This
prompted the use of different parametric forms for different periods, however, phase
changes are rather manually identified based on individual growth curves. Stützle
et al. (1980) adopted a semiparametric approach, where two almost non-overlapping
additive components are estimated by nonlinear regression via shape–invariant mod-
eling. It is an interesting question whether our method can identify the separation
between the different phases.

For 120 boys and 112 girls, measurements were taken from age 0 to age 20, half-
yearly around puberty and yearly otherwise. Because of the huge variability in in-
fancy, the analysis is restricted to age 2 to 20, for which two subprocesses could be
postulated. The analysis is based on the velocity trajectories, estimated directly from
the raw data using Gasser-Müller estimator. A registration step is implemented based
on landmarks (Gasser et al., 1984; Kneip and Gasser, 1992). The pattern is similar
for both sexes but the timing of the pubertal growth spurt, corresponding to a peak
in the velocity curves, occurs earlier and is smaller for girls than for boys.

Figure 6 about here.

The top left panel of Figure 6 shows 20 samples of smoothed velocity curves for
boys after registration, together with the mean function (thick line). The middle left
panel shows the correlation criterion (solid line) and optimality criterion (dashed line).
The curves are evaluated at the original data points and linearly interpolated. As the
correlation becomes negative after age 9.9, the absolute correlation is plotted. Observe
that the correlation stays low for a wide range of values, suggesting the presence
of independent subprocesses. Putting the correlation threshold to Cmax = 0.3, the
optimality criterion is maximized at age 11.8. Thus, our procedure define a first block
component between ages 2 and 11.8, and a second block component between ages 11.8
and 21, representing two roughly independent growth subprocesses. Alternatively,
since optimality is almost constant in the age range for which correlation is low, one
may select another age to separate subprocesses (in agreement with an expert in the
field) with practically no loss in optimality.

In particular, since the correlation function has a clear minimum at age 9.9, and
since the optimality criterion is almost as high at 9.9 as at 11.8, age 9.9 in this example
is also a natural estimate to separate blocks. In the bottom panel are added block
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components based on this separation (t0 = 9.9). These two block components cannot
be splitted into further blocks without surpassing the correlation threshold. Thus,
we conclude that two subprocesses, but not more, are present in the data. Similar
conclusions can be drawn for girls (not shown).

Weather data: Our second example is the monthly mean temperature of 35 Cana-
dian weather stations from Ramsay and Silverman (1997) shown in the top right panel
of Figure 6. The mean is estimated by kernel smoothing with a bandwidth 0.4, set
by visual inspection. Unlike the growth process, the climate process is expected to be
homogeneous across time and regions. The correlation criterion shown in the middle
right panel confirms this hypothesis, as the function remains very high, close to 1, on
the whole range. Thus, our procedure selects in this example only a single block com-
ponent to indicate that no structural change occurs and that the underlying process is
homogeneous. In that case, components suggested by our procedure are the same as
those produced by functional PCA, and the first two of them are shown in the bottom
right panel. The same conclusions hold for the daily temperature measurements.

Gait data: The procedure is now applied to gait data, concentrating on the knee.
These consist of the angles formed by the hip and knee of 39 children over a gait cycle
(Ramsay and Silverman 1997). This is an interesting example because it is not clear
in advance whether the underlying process consists of one homogeneous process or
not. As a registration step is required, landmark registration with maxima is used.

Figure 7 about here.

The smoothed curves of registered data are shown in the upper left panel of Figure 7,
with the mean curve in thick line. The corresponding correlation and optimality
criteria are shown in the upper right panel. In contrast to the first two examples, the
correlation function is neither negligible, nor very high, but is around 0.5 on a large
domain. When applied with a cut-off value of Cmax = 0.3, our procedure selects a
single block component, as is shown in the bottom right panel. However, using a more
liberal value of Cmax, a solution with two block components is conceivable for which
optimality is still above 80%, compared to functional principal components. The
two block components obtained are shown in the lower left panel, which separate the
earlier preparation movement from the later major movement. It would be interesting
to discuss with specialists of the field the merits of the two solutions.

5 Appendix

Proof of Theorem 1 We use the following lemma.
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Lemma 3 (p.147, Rudin (1976)) The sequence of functions {fn} defined on E, a
subset of metric space, converges uniformly on E if and only if for every ε > 0, there
exists an integer N such that m ≥ N, n ≥ N implies

|fn(t)− fm(t)| < ε

for each t ∈ E.

We first introduce some notations. Define the bounded linear operator associated
with the covariance function Γ : L2[0, T ] → L2[0, T ] as

(Γf)(u) =

∫ T

0

γ(u, v)f(v) dv for all f ∈ L2([0, T ]) ,

with norm ||Γ||L = sup||f ||≤1 ||Γf ||, where || · || is the usual norm in the space L2[0, T ],
distinguished from || · ||2 for the norm in L2([0, T ] × [0, T ]). Similarly, the empirical
covariance operator Γ̂ will be defined through the estimated covariance function γ̂.
Then it holds that

||Γ||L ≤ ||γ||2 . (1)

Note that, instead of Ĉ, we write Cn for the estimator of C based on n observations.
For each t, denote by αn,t and βn,t the extended leading eigenfunctions for each
partial covariance function, which are defined on the whole interval. Then Cn can be
written as

Cn(t) =
(αn,t,Γnβn,t)√

(αn,t,Γnαn,t)(βn,t,Γnβn,t)
. (2)

In view of Lemma 3, we will study the behaviour of |Cn(t) − Cm(t)| for each t and
suppress the dependence on t in α, αn, β and βn from now on. First observe that

|(αn,Γnβn)− (αm,Γmβm)|
≤ |(αn, (Γn − Γm)βn)|+ |(αn −αm,Γmβn)|+ |(αm,Γm(βn − βm))|
≤ ||αn||||(Γn − Γm)βn||+ ||αn −αm||||Γmβn||+ ||αm||||Γm(βn − βm)||
≤ ||αn||||Γn − Γm||L||βn||+ ||αn −αm||||Γm||L||βn||+ ||αm||||Γm||L||βn − βm||
≤ ||αn||||γn − γm||2||βn||+ ||αn −αm||||γm||2||βn||+ ||αm||||γm||2||βn − βm|| ,

where the last inequality follows from (1). Note that (A4) implies that ||γn−γ||2 → 0
in probability. Thus, by Lemma 3, it is enough to show that ||αn−α|| and ||βn−β||
converge. In fact, the uniform convergence of the covariance function implies the
uniform convergence of the corresponding eigenfunctions. According to lemma 3.1 of
Bosq (1991), the jth eigenfunction estimator of φj satisfies

||φ̂j − φj|| ≤ aj||Γ̂− Γ||L ,
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where

a1 = 2
√

2(λ1 − λ2)
−1

aj = 2
√

2 max{(λj−1 − λj)
−1, (λj − λj+1)

−1} if j ≥ 2 .

(Remark: The original theorem is proved under non-smoothed empirical covariance
operator and its extension to a kernel-smoothed covariance operator is referred to
Boente and Fraiman (2000).) From (1), we may write it as

||φ̂j − φj|| ≤ aj||γ̂ − γ||2 .

This property still can be applied to our situation where for each t, αn is not an eigen-
function of Γn but an eigenfunction of Γn restricted to [0, t], for if the full covariance
function converges uniformly, so does its restriction on the subinterval. Write γn,t for
the corresponding covariance function associated with αn and γn,−t for the covariance
function associated with βn.

||αn −α|| ≤ a1,t||γn,t − γt||2 = a1,t

√∫ t

0

∫ t

0

|γn(u, v)− γ(u, v)|2 du dv

≤ a1,t

√∫ T

0

∫ T

0

|γn(u, v)− γ(u, v)|2 du dv

= a1,t||γn − γ||2 ,

where a1,t is the constant a1 calculated from γn,t. Similar result can be derived
for ||βn − β|| with an appropriate constant b1,−t. This leads to the convergence of
(αn,Γnβn), in particular, that of (αn,Γnαn) and (βn,Γnβn). It follows from (2) and
Lemma 3 that Cn converges uniformly. On the other hand, it can be seen that Cn(t)
converges to C(t) for each t. Therefore, we conclude that Cn converges to C uniformly.
Because O is also a functional of the covariance function and its eigenfunctions, similar
argument applies to O.

Proof of Lemma 1 For a given t, the leading eigenfunctions for each partition
satisfy:

(Γtα)(u) =

∫ t

0

γ(u, v)α(v) dv = λ1(t)α(u) ,

(Γtβ)(u) =

∫ T

t

γ(u, v)β(v) dv = λ2(t)β(u) ,

15



Here, for simplicity of notation, we suppress the dependence on t in α and β. Suppose
that t ≤ t0 and consider β. Because of condition (A1′), only one of the following
equations will be used to produce the leading eigenfunction β.∫ t0

t

γ(u, v)β1(v) dv = λ2,1(t)β1(u) t ≤ u ≤ t0∫ T

t0

γ(u, v)β2(v) dv = λ2,2(t)β2(u) t0 ≤ u ≤ T

Observe that λ2,2(t) does not depend on t, while

λ2,1(t) =

∫ t0

t

∫ t0

t

β1(u)γ(u, v)β1(v) du dv

≤

√∫ t0

t

∫ t0

t

γ(u, v)2 du dv

≤
∫ t0

t

γ(u, u) du ≤ sup
u∈[t,t0]

|γ(u, u)||t− t0| .

As a consequence, λ2,1(t) → 0 and λ2,2(t) = λ2,2(t0) as t → t0. So, there exist a
neighborhood N (t0) such that for all t ∈ N (t0), β(u) = β2(u), t0 ≤ u ≤ T and 0
otherwise. Therefore,∫ T

0

∫ T

0

α(u)γ(u, v)β(v) du dv

=

∫ t0

0

∫ T

0

α(u)γ(u, v)β(v) du dv +

∫ T

t0

∫ T

0

α(u)γ(u, v)β(v) du dv

=

∫ t0

0

∫ t

0

α(u)γ(u, v)β(v) du dv +

∫ T

t0

∫ t

0

α(u)γ(u, v)β(v) du dv ,

where the first term is zero because β(u) = 0 for 0 ≤ u ≤ t0 and the second term is
zero because of (A1′). Symmetric arguments apply to α when t > t0. Therefore, this
implies that C(t) = 0 for all t ∈ N (t0). Regarding O, note that under the assumption
(A1′), the two block components separated at t0 are indeed eigenfunctions of the
covariance function γ, thus the weight functions of principal components. Because O
measures the sum of variability and the principal components uniquely maximize the
sum of variability, it follows that O(t0) is the unique maximum.

Proof of Theorem 2 We prove that the negation of the claim contradicts to
the argument below. To make the dependence on n of the estimator clear, write the
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nth criteria functions as Cn and On. All arguments below hold in probability without
making explicit references. Observe that t0 is uniquely defined for two block structure
(A1′). Then for every δ > 0, there exists some ε = ε(δ) > 0 such that

O(t) + ε < O(t0)− ε , if |t− t0| > δ .

Because of uniform convergence of On, we have for every ε1 > 0 and for all t, there
exists n0 = n0(ε1) ≥ N such that for all n ≥ n0,

|On(t)−O(t)| < ε . (3)

Then, for every δ > 0, there exists n0 = n0(ε(δ)) ≥ N such that for all n ≥ n0,

On(t) < O(t0)− ε(δ) , if |t− t0| > δ . (4)

This will contradict to the negation of the argument. To see why, suppose that the
claim is false. Define for n

t0,n = arg max
t

On(t) .

Then for some δ0 > 0, there exists n ≥ ñ, n ≥ N for all ñ such that

|t0,n − t0| > δ0 , and On(t0,n) ≥ On(t0) .

Given ε0 = ε(δ0), choose ñ = n0(ε0) that satisfies (3). Then, there exists n ≥ n0 ≥ N
such that

On(t0,n) > O(t0)− ε(δ0) , if |t0,n − t0| > δ0 ,

which is contradictory to (4).
Now suppose that Cn is also used and t0,n is defined as

t0,n = arg max
t:|Cn(t)|≤τ

On(t) ,

for some τ > 0. Note that C(t0) = 0. Then given τ and for all t ∈ N (t0), there exists
n1 such that for all n ≥ n1 ≥ N ,

|Cn(t)| ≤ τ .

If we replace ε by min(ε, τ) and n0 by max(n0, n1) in the above argument, the same
holds true.

Proof of Lemma 2 It follows from (A1′′) combined with Cauchy-Schwarz inqual-
ity.

17



Proof of Corollary 1 Because supt |Ĉ(t)− C(t)| → 0 in probability, with prob-
ability tending to 1, for every ε and for every t, there exists n0 ≥ N such that for all
n ≥ n0,

|Cn(t)− C(t)| < ε .

Because C(t) ≥ c, this implies that

Cn(t) ≥ c− ε .

For εn → 0, take cn = c− εn.
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Figure 1: Height growth curves (left) and velocity curves (right) for 10 boys. Velocity
curves are estimated nonparametrically with Gasser-Müller estimator. These curves
can be aligned to eliminate time variability.
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Figure 2: Example of curves that have almost non–overlapping support. Data are
constructed by adding up these two curves.
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Figure 3: Functional PCA for two subprocesses (left, shown in Figure 2) and one
process (right). Both provide qualitatively the same answer.
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Figure 4: Contour plots of covariance (top) and correlation (bottom) function. Dis-
tinct structures between two subprocesses (left) and one process (right) are visualized.
The higher, the darker. Ranges in numbers are added in the bottom of each plot.
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Figure 5: Top row shows diagnostic plots for two subprocesses (left) and one pro-
cess (right) cases, shown in Figure 4. For the left are suggested two block components,
separated at t = −.04 and one block component for the right. Bottom row shows
selected first two components.
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Figure 6: Analysis of structural components for growth curves (left) and weather data
(right). Criteria curves are shown in the middle panel, indicating two subprocesses
in the left and one process in the right. Suggested two components are drawn in the
bottom.
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Figure 7: Registered gait data (knee) in the upper left panel with criteria curves in the
right. Vertical line indicates possible separation of block components with relatively
high correlation (0.5). Two block components are shown in lower left, compared to
two principal components in lower right panel. Block components are approximately
85% optimal against principal components, as is indicated by dashed curve in top
right panel.
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