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Abstract: The authors introduce a new simple 
encoding technique which allows the design of a 
wide variety of linear block codes. They present a 
number of examples in which the most widely 
used codes (Reed-Muller, Hamming, Golay, 
optimum etc.) have been designed. They also 
introduce a novel trellis design procedure for the 
proposed codes. It is shown that the trellises of the 
designed codes are similar to the trellises of coset 
codes and allow low complexity soft maximum 
likelihood decoding. 

1 Introduction 

Trellis decoding technique for linear block codes has 
been under investigation since 1974 [l-31. Later, a 
number of efficient soft decision maximum likelihood 
decoding (MLD) algorithms for block codes were pro- 
posed [4, 6,  71. Recent publications by Forney [S, 91 and 
others [S, 10, 111 have stimulated interest in low- 
complexity trellis decoding of block codes for both prac- 
tical and theoretical reasons. On the practical side, a 
minimal trellis structure of a block code can be used for 
performing low-complexity maximum likelihood soft 
decision decoding. From the theoretical viewpoint, such 
trellises can be used for construction of other codes [lo]. 

Recently, generalised array codes (GACs) and their 
trellis structures have been introduced [12]. The tech- 
nique allows the design of array codes with the same 
code length, n, and d,, = 4, but with an increased 
number of information digits. These codes are simple and 
flexible to design; they also allow low-complexity soft 
maximum likelihood trellis decoding (SMLTD). It has 
been shown that the concept of GACs can be applied to 
the design of Hamming, Reed-Muller (RM) and Golay 
codes with a low-complexity trellis structure [13, 141. In 
this paper we describe a new encoding/decoding tech- 
nique for different types of linear codes based on GACs 
and their trellis structure. The trellises of the designed 
codes are similar to trellises of the coset codes designed 
by Forney [SI and provide lower complexity SMLTD 
than that achievable with conventional techniques. 
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2 Code construction 

A generalised (n, k,  dmiJ array code is an array code in 
which the column and row subcodes may have different 
numbers of information and parity check symbols; the 
code length n = n1n2 and the total number of informa- 
tion digits k = k ,  + k ,  + . ' .  + k,, , where n ,  and n,  
represent the number of columns and rows respectively, 
k ,  is the number of information digits in the pth row 
[12]. Using the concept of the GACs, a wide variety of 
known linear block codes together with their low com- 
plexity trelisses can be designed. The procedure for 
designing a linear (no ,  ko , do) GAC is as follows: 

(i) Design a binary, n = n1n2, (n = no) basic product 
code, C,, as shown in Fig. la, with a single parity check 
column and R I  = ( n l ,  k , ,  d , )  row codes, where d ,  = 
rd0/21 and 1.1 is the nearest greatest integer (if no is a 
prime number choose n = no + 1). 

(ii) Design a binary, n l n 2 ,  additional product code, 
C, = I P A \ ,  as shown in Fig. lb, where P is a binary 
k , n , ,  array with only parity check elements; A is a 
binary, ( n , - k , ) n , ,  matrix where the first row consists of 
only k' = n, ~ k ,  information digits, and all column 
codes are repetition codes. 

(iii) Design (if not all information digits have been 
used) a second additional binary product code, C,, as 
shown in Fig. IC, where B = (n ,  , 1, do) is a repetition row 
code with k ,  th information digit. 

(iv) Add the designed codes as follows: 

c = c, 0 c2 0 c, (1) 

where addition is on modulo - 2 basis. 
(iv) If n = no + 1, delete the symbol which is located in 

the n2 th row and n, th column. 
This procedure can be also described as an array rep- 

resentation of coset codes introduced by Forney [SI. 
Code C,, is a linear product codes, and the overall 
designed C can be represented as a union of cosets of C,. 
This union forms a linear nonsystematic code with the 
following parameters: (no ,  k o ,  do). In this section we 
show that the proposed technique can be employed for 
the design of a wide variety of linear block codes. 
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2.1 
An example is given for an (8, 4, 4) GAC which is equiva- 
lent to the well known (8, 4, 4) RM code [l5, 161. The 
procedure for code design is given below: 

(i) Design the basic, (8, 3, 4), (n = 2 x 4, n, = 2, n, = 4) 
array code, C,, with the single-parity check (4, 3, 2) 
column and repetition R ,  = (2, 1, 2) row codes (d, = 

(8,4,4) and (7,4,3) codes design row, the designed (8,4,4) code will be transformed to the 
(7,4, 3) Hamming code: 

x4 0 PI I'; :::;:I c = C, C, = 

P4 d0/2 = 2): 
- = (XI, x4 0 PI, x,, x4 0 P2 > x3 > x4 0 P3 9 P4) (6) 
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2.2 (16, 5, 8) and (15, 5 7 )  codes design 
An example is now given for (16, 5, 8) and (15, 5, 7) 
GACs. The procedure for codes design is shown below: 

(i) Design the basic, (16, 3, 8), (n = 4 x 4, n, = n2 = 4) 

(2) 

"1 

"2 

a 
Fig. 1 Code structures 
D Basic product code, C, b Additional product code, 

c 2 =  Elnz: 
c Additional product code, C, 

where xi, i = 1, 2, 3 represent information digits and pj, 
j = 1, . . . ,4, represent parity check symbols: 

pj = xj Vj  < 3 
p4 = XI + x2 + x3 (3) 

(ii) Design an additional array code, C, = I P A  I with 
the following structure: 

c2 = (4) 

where x4 is an information digit, and P is an all-zero 
column. 

(iii) Since all information digits have been used, there 
is no need to design a second additional array code, C3 . 

(iv) Add the two codes C ,  and C, on a modulo-2 basis 
and read the designed code row-by-row as follows: 

=(x,,x4OP1.x2,x48P,,X~,X40P3,P4rX40P4) 

(5) 
(v) Since no = n, there is no need for the deletion of the 

parity-check symbol which is located in the 4th row and 
2nd column. 

The designed code is a linear nonsystematic code and 
has the following parameters: (no = 8, ko = 4, do = 4). 
The weight distribution function (WDF) of the code is 
shown in Fig. 2 and is similar to the WDF of the (8,4,4) 
RM code. It has been shown [13] that by deleting the 
symbol which is located in the second column and 4th 
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C,= 

product code, C,, with the repetition row code R I  = (4, 1, 
4), and (4, 3, 2) single parity check column code (d, = 
d0/2 = 4): 

PI PI PI 

(7) 
P3 P3 P3 

P4 P4 P4 P4 

where xi, i = 1, 2, 3, represent information digits and 
parity check symbols, pj, j = 1, 2, 3, 4, are defined 
according to eqn. 3. 

(ii) Design an additional product code, C, = IPA1 
with the following structure: 

A- 
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where x4 and x5 are information digits, P is a 2 x 4 

(iii) Since all information digits have been used, there 

(iv) Add the two codes C, and C2 on a modulo 2 basis 

parity matrix and p5 = x4 + x 5 .  

is no need to design a second additional array code, C3. 

as follows: 

This code is equivalent to the (16, 5, 8) RM code from 
which a (15, 5, 7) GAC can be derived by simple deletion 
of the parity chack symbol located in the 4th row and 4th 
column: 

The weight distribution function (WDF) of the designed 
code is shown in Fig. 3. It is evident that the derived code 
has the following parameters: (no = 15, k ,  = 5 ,  do = 7), 
and is equivalent to a corresponding BCH code. 

1 6  

141 

g 10 

u 8  4 e 

0 
0 1  2 3 4 5 6  

.,,,,,n, 
9 10 11 12 13 14 15 

weight 

Fig. 3 Weight distributionfunction o f ( l 5 , 5 ,  7 )  GAC 

2.3 (76,17,4)and(75,11,3)codesdesign 
The proposed technique can be implemented for the 
design of other RM codes with higher information rates. 
An example is gven for a (16, 11, 4) GAC which is equiv- 
alent to the corresponding RM code. The procedure for 
code design is as follows: 

(i) Design a basic 4 x 4 array code C,, with the single 
parity check row and column codes (RI = (4, 3, 2), d, = 

: 

X I  x 2  x3 P I  

x4 x5 x6 P 2  c, = 
x 7  X8  x 9  P 3  

LP4 P 5  P 6  P ~ J  

where x i ,  i = 1, 2, . . . , 9, represent information digits and 
pj, j = 1, 2, . . . , 7, represent single parity check digits for 
row and column codes. 
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(ii) Design a binary 
IPA1 

r o  o o x I o  
0 0 0 Xl0  

c 2 = (  0 0 0 X I 0  

3dditional product code C2 = 

(12) 

where P is an all zero 4 x 3 matrix, A is a 4 x 1 repeti- 
tion column matrix and xIo is an information digit. 

(iii) Since not all information digits have been used, 
design second additional array, C3 , with the repetition 
code at the last row: 

r o  o o 0 1  
C 3 = l  O O O O I 

0 0 0 0  
Lxii x i 1  x i 1  xiiJ 

where x, ,  is an information digit. 

follows: 
(iv) Add the three codes on a modulo-2 basis as 

c = c, 0 c2 0 c3 

1 = [  :: xs x9 P 3  0 X I 0  

X I  x 2  x 3  P I  0 X I 0  

x5 x6 P 2  8 X I 0  

P 4 @ x 1 1  P 5 @ x 1 1  P 6 @ x 1 1  P 7 @ x 1 1 e x 1 0  

(14) 

It follows from the construction that the designed code is 
a (16, 11, 4) GAC which is equivalent to the correspond- 
ing RM code. It is also apparent that the (15, 11, 3) 
Hamming code can be simply derived by deleting the 
parity check symbol located in the 4th row and 4th 
column of the designed (16, 11,4) code. 

2.4 (15. 7,5) code design 
The procedure outlined above can be applied to the 
design of a (15, 7, 5) GAC. To illustrate the flexibility of 
the proposed technique, we choose a different size of the 
basic array. The encoding procedure is as follows: 

(i) Design the basic, (15, 4, 6) (n = 5 x 3, n,  = 5, n2 = 
3) product code, C,, with a R I  = ( 5 , 2 ,  3) row code ( d ,  = 
[do/2] = 3)  and (3 ,2 ,2)  single parity check column code: 

X I  x 2  P I  P 2  

(15) 
P 7  Ps P 9  P I 0  P I 1  

where xi, i = 1, 2, 3, 4, represent information digits and 
pj, j = 1, . . . , 11, represent parity check symbols. 

(ii) Design two additional product codes, C2 and C3 
with the following structure: 

0 0 0 0 0  

where xi ,  i = 5, 6, 7 represent information digits and 
P 1 2 = x 5 + x 6 '  
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(iii) Add the three codes on a modulo-2 basis, as 
follows: 

c = c, 0 c2 @ c3 
x 2  P I  0 P12  =[  :: x 4  P 4  0 P12 

p 7 @ x 7  p S B x 7  P 9 @ x 7 @ P 1 2  

x 6 @ P 6  (17) 
x6 @ P 3  1 x5  0 PZ 

xs 0 Ps 
P 1 0 @ x 7 0 x 5  P 1 1 @ x 7 @ x 6  

The designed code has the following parameters: (no = 
15, k ,  = 7, do = 5), and is equivalent to a corresponding 
BCH code. 

2.5 ( 1  7 , 9 , 5 )  code design 
Application of the proposed technique is not restricted to 
the RM and Hamming codes. The technique provides a 
'good' co-ordinate reordering for other codes, for 
example optimum codes. An example is given for (17, 9, 
5 )  optimum code [16]; however, other known optimum 
codes can be obtained easily. The procedure is as follows: 

(i) Design the basic (18, 6, 6) ( n  = 6 x 3, n, = 6, n2 = 3, 
n = no + 1) product code, C,, with a R I  = (6, 3, 3) row 
code (d, = rd,/21 = 3), and (3, 2, 2) single parity check 
column code : 

Lx9 x9 x 9  x 9  x 9  x 9 J  

;: 1 (18) 
x1 x 2  x3 P I  Pz 

cl = x4 x 5  x6 P 4  P5 I P7 P8 P9 P I 0  P 1 1  P I 2  

where xi ,  i = 1, 2, . . , , 6, represent information digits and 
p j ,  j = 1, . . . , 12, represent parity check symbols. 

(ii) Design two additional product codes, C, and C,, 
as follows: 

P13  x7 

0 0 0 p i 3  ~7 X S  

(iii) Add the three codes, C,, C, and C3 on a modulo-2 
basis: 

It is apparent that the designed code is a linear non- 
systematic optimum code with the following parameters: 
(no = 17, k ,  = 9, d o  = 5). 

2.6 Golay codes design 
The (24, 12, 8) binary extended Golay code occupies a 
remarkable place among binary block codes [SI. It is a 
unique, perfect, self-dual code which has been intensively 
investigated with various efficient encoding and decoding 
algorithms [4, 6, 171. The trellis diagram for the (24, 12, 
8) extends Golay code, which consists of 64 states, has 
been introduced by Forney [SI. However, this technique 
requires complex encoder and can not be used for the 
trellis design of the (23, 12, 7) Golay code. In this section 
we implement the concept of GACs for the design of both 
(24, 12, 8) and (23, 12, 7) Golay codes. We start with the 
design of (24, 12, 8) extended Golay code. The procedure 
is as follows: 

(i) Design the basic (24, 8, 8) ( n  = 8 x 3, n,  = 8, n2 = 
3) product code, C , ,  with the (3, 2, 2) column and (8, 4, 4) 
row codes: :.I (21) 

1 

x1 x 2  x3 x 4  P1 P2 P 3  

c l  = x S  x6 x 7  x8 P5 P6  P7  I P 9  PlO P11 P12  P 1 3  P14 P l 5  P16 

where x i ,  i = 1, 2, . . . , 8, represent information digits; pj, 
j = 1, ..., 16, represent parity check symbols and the 
(8,4,4) row code has been described in Section 2.1. 

(ii) Design two additional product codes, C2 and C3 , 
with the following structures: 

c1 c 2  c3 c 4  c5 x 9  x10 x 1 1  

c1 c 2  c3 c 4  c5 x9 X I 0  x11 

c 2  = c1 c 2  c3 c 4  c5 x 9  X I 0  x11 

0 0 0 0 0 0 0  
[ 

0 0 0 0 0 0 0 

c , = o  r o o o o o o  0 0 0 0 0 1 where row code in C2 is (8, 3, 3) code and is shown in 
(19) Table 1. 

C =  

P1 0% P2 0 x9 P3 0 X I 0  P 4 @ x 1 1  

Ps 0 cs P6  @ x9 P7  0 X I 0  Ps 0 XI1 

x12 0 P I 3  0 c5 x12 @ p 1 4  0 x9 x12 @ P I S  0 x10 x 1 2  0 p16  0 xI1 

where xi ,  i = 7, 8, 9, represent information digits and 

(iii) Add the three codes, C,, C, and C3 , on a modulo- 

(iv) Delete the symbol which is located in the 3rd row 

P I 3  = x7 + xS ' 

2 basis; 

and 6th column: 

XI X2 x3 

X't x5 x6 

P7 0 x 9  P S 0 X 9  P 9 0 X 9  

C =  

The weight distribution function for the designed (24, 12, 
8) code is shown in Fig. 4a. This is similar to the WDF of 
the (24, 12, 8) extended Golay code [17], thus, following 
Reference 17, the designed code is an extended (24, 12, 8) 
Golay code. The (23, 12, 7) code can be derived by simple 
deletion of the parity-check symbol which is located in 
the 3rd row and 8th column. The weight distribution 
function of the designed (23, 12, 7) code is shown in Fig. 
46. This is identical to the weight distribution function of 
the (23, 12, 7) Golay code [17]. 
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Example: A binary vector of information digits is given 
as: x = (xl, x2,  . . . , xI2) = (001 10101 11 11). Following 
the procedure outlined above, C,, C2 and C3 codewords 

PS 0 x7 P6  0 xs (20) 

I E E  Proc.-Commun., Vol. 142, N o .  4, August 1995 

1 P1 @ P I 3  P 2 G x 7  p 3 @ x 8  

~4 0 p i 3  

PlO B P 1 3  B x 9  P I 1  @ x7 0 x 9  
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can be written as follows: 

In 1 0 0 0  
E 
$ 8 0 0 -  
U 0 

6 0 0 -  

0 0 1  1 1  1 0 0  
c , = o  1 0  1 1  0 1 0  

0 1 1 0 0 1 1 0  

1 0 0 0 0 1 1 1  
1 0 0 0 0 1 1 1 
1 0 0 0 0 1 1 1  

0 0 0 0 0 0 0 0  
1 

I 

1 [ 1 1 1 1 1 1 1 1  
c,= 0 0 0 0 0 0 0 0 

and the encoded codeword C = (101 1101 1 
00101 101). 

- 

Table 2 illustrates the code design procedure for a 
number of codes with lengths up to 64. This Table 
includes the quasiperfect codes listed in [16], and pro- 
vides all parameters that are required for the design of a 
GAC. For example, the optimum (20, 11, 5) code [16] 
can be designed by choosing a 3 x 7 basic array with the 
RI = (7, 4, 3) row and (3, 2, 2) column codes. The first 
additional code C ,  , should consist of a (7, 2, 3) row and 
(3, 1, 3) column codes while the second additional code 
C, , should have xl, repeated in the last row. 

Similar to the technique, introduced by Forney [8], 
the proposed technique can be implemented for the design 
of the (16, 8, 8) Nordstrom-Robinson code [20]. This 
code can be obtained from the (24, 12, 8) Golay code by 
simple deletion of the second row in the C , ,  C,, C ,  and 
C. 

(12) 

11011101 

Table 1 : Code table of (8. 3) code 

Information vector Encoded codeword Information vector Encoded codeword 
( x s  XI0 XI 1 )  ( x s .  x10. x11) 

0 0 0  0 0 0 0 0 0 0 0  1 0 0  1 1  1 0 0 1 0 0  
0 0 1  1 1 0 1 0 0 0 1  1 0 1  1 1 0 0 1 0 1 0  
0 1 0  1 0 1 1 0 0 1 0  1 1 0  0 1 0 1 0 1 1 0  
0 1 1  1 0 0 1 1 1 0 0  1 1 1  1 0 0 0 0 1 1 1  

2.7 Other known codes 
The technique described can be readily implemented for 
the design of other known codes. For example, following 
the procedure outlined above, one can design the (32, 6, 
16) RM code by choosing a 4 x 8 (nl  = 4, n, = 8) basic 
array code, C,, with an R ,  = (8, 1, 8) row and (4, 3, 2) 
single parity check column codes. The first additional 
product code, C, , should consist of a 4 x 5 matrix P and 
a 4 x 3 matrix A of repetition column codes. The third 
additional product code, C, , must be an all zero matrix. 
The (31, 6, 15) code can be derived easily be deleting the 
parity check symbol which is located in the 4th row and 
8th column. 

The (32, 26, 4) and (32, 16, 8) RM codes which were 
discussed in [SI can also be designed by using the pro- 
posed algorithm. The (31, 26, 3) and (31, 16, 7) codes, 
which are equivalent to the corresponding BCH codes, 
can be derived from the corresponding RM codes by 
deleting the parity check symbols, located in the last 
column and row. It is apparent that since any RM code 
can be decomposed into two codes with shorter code 
lengths [I91 the concept of GACs can be applied for the 
design of all RM codes. 

3 Trellis design procedure 

The trellis design procedure for GACs [12] can be 
extended for the design of low-complexity regular trellises 
for all the codes described above. The procedure is as 
follows: 

(i) Choose the trellis depth (number of columns), N ,  , 
and number of states, N , ,  as 

N ,  = n2 = 1 N ,  = 2markp (25) 

(ii) Identify each state of depth p by the max{k,}-tuple 
binary vector S,(A) = S,(n,, a,, . . . , amax ,w), where aj = 
0, 1. 

(iii) The trellis branches start and finish at depth p = 0 
and p = n,; these are labelled as So(OO, . . . , 0) and S,,(00, 
. . . , 0), respectively. 

(iv) The trellis branches at depth p are labelled X J C , ,  
where X, represent k,-tuple binary vectors of informa- 
tion digits for the pth row code and C, correspond to the 
encoded codewords in the pth row: 

C, = Xk G, + C: (26) 

12  00 

3000 r 

4 0 0  

200  

weight 
b 

O L  
0 2 4  

weight 
a 

b (23, 12.7) Golay code 

Fig. 4 
a (24, 12.8) Golay code 
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Golay code weight distribution funciion 
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where G p  is a generator matrix for the pth row code and 
X: and C i  are codewords from the pth rows of the C ,  
and C, codes, respectively. 

(v) There are 2kp branches starting from each state, 
S,(A), at depth p, p < N,; each branch is connected with 
state S p + , ( A )  at depth p + 1, which is defined as follows: 

(vi) If a second additional code, C, , is used for a code 
design, at the final depth all states must be connected to 
final state, S,(OO, . . . , 0), with two parallel branches; the 
labels of these branches complement to each other. 

There are 
"2 

N o  = n 2'1 
p =  I 

distinct paths through this trellis diagram and each path 
corresponds to a unique codeword from the code. 

3.1 Trellis diagrams of the ( 8 , 4 , 4 )  and (7,4,3) 
codes 

Let our aim be to design the trellis diagram of the (8 ,4,4)  
code described in the Section 2.1. Following the tech- 
nique outlined above, the trellis diagram of the (8, 4, 4) 
code will have N, = 4 + 1 = 5 columns and N, = 2' = 4 
states. We identify the states by a 2-tuple binary vectors 

and at states p = 0 and p = 5 the trellis has only one 
state, namely So(OO) and S,(OO), respectively. Following 
the above procedure, the trellis diagram for the (8, 4, 4) 
code is presented in Fig. 5a, and is similar to that given 
by Forney [8, 91. The trellis diagram of the (7, 4, 3) 
Hamming code is similar to the trellis of the (8, 4, 4) code 
and differs only in the number of digits being used for 
labelling the branches at final depth (Fig. 56). 

3.2 Trellis diagrams of ( 16,5,8) and ( 15,5, 7 )  code 
Now, let our aim be to design the trellis diagrams of the 
(16, 5, 8) and (15, 5, 7) code described in the Section 2.2. 
Since the trellis diagram of the (15, 5, 7) code can be 
derived from the trellis of the (16, 5,  8) RM code we start 
this example with the trellis design for (16, 5, 8) code. The 
trellis will have N ,  = 4 + 1 = 5 columns and N ,  = 23 = 8 
states. We identify each state by a 3-tuple binary vector 
and at depths p = 0 and p = 4, the trellis has only one 
state, namely So(OOO) and S,(OOO), respectively. Following 
the above procedure, the trellis diagram for the (16, 5, 8) 
GAC will be similar to that given by Forney for a corres- 
ponding RM code [SI. The trellis diagram of the (15, 5, 7) 
code can be derived easily by deleting one parity check 
symbol in the labelling of branches at depth p = 5,  and is 
presented in Fig. 6b. It is apparent that the designed 
codes have similar trellis diagrams, which differ only in 
the number of digits being used for labelling the branches 
at the greatest depth. 

Table 2: Encodina orocedure for different GACs 
~~ 

No. Type of R Size Row Column Row Last Last 
code of code code in code row symbol 

array in C, C, in C, in C, 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

d,,, = 3 
(6, 3) 0.5 
(7, 4) 0.57 
(9, 5) 0.55 
(9, 6) 0.67 
(11, 6) 0.545 
(12, 8) 0.67 
(13. 7) 0.538 
(15.11) 0.73 
(18, 12) 0.67 
(30, 20) 0.67 
(45, 30) 0.67 
(63, 42) 0.67 

2 x 3  
2 x 4  
2 x 5  
3 x 3  
2 x 6  
3 x 4  
2 x 7  
4 x 4  
3 x 6  
3 x 1 0  
3 x 1 5  
3 x 21 

(2. 1. 2) (3. 2. 2) 
(2. 1, 2) (4. 3. 2) 
(2. 1. 2) (5, 4. 2) 
(3. 2. 2) (3, 2. 2) 
(2. 1. 2) (6, 5. 2) 
(3. 2. 2) (4, 3, 2) 
(2. 1 I 2) (7, 6, 2) 
(4. 3. 2) (4, 3, 2) 
(3. 2. 2) (6. 5. 2) 
(3. 2. 2) (10. 9. 2) 
(3. 2. 2) (1 5, 14, 2) 
(3. 2. 2) (21, 20, 2) 

(2. 1. 1) n/a exists 
(2. 1. 1) nia deleted 
(2. 1. 1) n/a deleted 
(3. 1, 1) (3. 1, 3) exists 
(2. 1. 1) n/a deleted 
(3. 1. 1) (3. 1, 3) exists 
(2. 1. 1) n/s deleted 
(4. 1 I 1 ) (4. 1, 4) deleted 
(3. 1. 1) (3. 1, 3) exists 
(3. 1, 1 ) (3. 1, 3) exists 
(3. 1, 1 ) (3. 1, 3) exists 
(3. 1, 1) (3. 1, 3) exists 

d,,, = 4  
13 (8. 4) 0.5 2 x 4  (2. 1, 2) (4, 3, 2) (2, 1, 1) n/a exists 
14 (10. 5) 0.5 2 x 5 (2. 1. 2) (5. 4, 2) (2. 1, 1) n/a exists 
15 (12.7) 0.58 3 x 4  (3.2.2)  (4,3,2) (3 .1 .1 )  nia exists . .  
16 (14, 7 j  0.5 2 x 7 (2. 1. 2 j  (7. 6, 2) (2, I. 1 j n/a exists 
17 (15.9) 0.6 3 x 5  (3.2.2) (5.4,2) (3,1,1) n/a exists 
18 (16. 11) 0.69 4 x 4  14. 3. 2) (4. 3. 2) (4. 1. 1) (4. 1. 4) exists 
19 i30, 19 i  0.63 3 x 10 i3, 2, 2 j  i3, 2, 2 j  i3, 1, 15 nia ' exists 

d,," = 5 
20 (15, 7) 0.47 5 x 3 (5. 2. 3) (3, 2, 2) (5. 2, 2) (5, 1, 5) exists 
21 (17, 9)) 0.53 6 x 3 (6, 3, 3) (3, 2, 2) (6, 2, 2) (6, 1, 6) deleted 
22 (19. 10) 0.53 7 X3 (7. 4. 3) (3. 2, 2) (7, 1. 3) (5. 1, 5) 2 deleted 
23 (20. 11) 0.55 7 x 3  (7. 4. 3) (3. 2, 2) (7, 2, 3) (6. 1, 6) deleted 
24 (21. 12) 0.57 7 x 3 (7. 4. 3) (3, 2, 2) (7, 3, 3) (6, 1. 6) exists 

d,,,  = 7 
25 (15. 5) 0.33 4 x 4 (4, 1. 4) (3, 2, 2) (4, 2, 2) n/a deleted 
26 (23. 12) 0.52 8 x 3  (8. 4. 4) (3, 2, 2) (8, 3, 3) (7, 1, 7) deleted 
27 (31. 16) 0.52 8 x 4  (8, 4, 4) (4, 3, 2) (8, 3, 3) (7,1, 7) deleted 
28 (63. 32) 0.51 8 x 8  (8. 4. 4) (8, 7, 2) (8, 3, 3) (7. 1, 7) deleted 

29 (16. 5) 0.31 4 x 4  (4, 1, 4) (3, 2, 2) (4, 2, 2) n/a exists 
30 (24. 12) 0.5 8 x 3 (8. 4, 4) (3. 2, 2) (8, 3, 3) (8, 1, 8) exists 
31 (32. 16) 0.5 8 x 4  (8, 4, 4) (4. 3, 2) (8, 3, 3) (8. 1. 8) exists 
32 (64. 32) 0.5 8 x 8 (8, 4, 4) (8, 7, 2) (8, 3, 3) (8, 1. 8) exists 

d,," = 8 
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3.3 Trellis diagrams of the ( I  6, 1 1 , 4 )  and (15, 11,3) 
codes 

The trellis diagram of the (16, 11, 4) GAC can be 
designed in two different ways [12]: 

(i) with N ,  = 5 columns and N ,  = 16 states (if no 
parallel branches are used); 

(ii) with N ,  = 5 columns and N, = 8 states (if parallel 
branches are used at every depth of the trellis). 

110 
1111 

0 

Fig. 5 Trellis diagrams 
(1 (8.4, 4) RM code b (7, 4, 3) Hamming code 

0 
Fig. 6 Trellis diagrams 
a (16, 5.8) RM code b ( I S ,  5,  7) GAC 

In both cases, the trellis has 211 different paths and is 
isomorphic to the trellis diagram of the (16, 11, 4) RM 
code [SI. The (15, 11, 3) Hamming code will have a 
similar trellis with the only difference being that three 
digits are used for labelling of branches at the final depth. 

3.4 Trellis diagram of the (15, 7 , 5 )  code 
The proposed technique can be applied to the design of 
the trellis diagram for the (15, 7, 5) code described pre- 
viously. Following the procedure outlined above, the 
trellis will have N ,  = 16 and N ,  = 4. Each state of the 
trellis is identified by a 4-tuple binary vector and trellis 
branches are labelled according to eqn. 26. Since a 
second additional code, C3,  has been used for the code 
design, at the depth p = N ,  each state is connected to the 
state S,(oooO) with two parallel branches, as is shown in 
Fig. 7. The number of states for the designed (15, 7, 5) 
code can be reduced to 8, if parallel branches are used at 
each depth of the trellis diagram [18]. 

3.5 Trellises of other known codes 
The above technique can be implemented for the trellis 
design of almost all known codes. Figs 8-11 present 
trellis diagrams for different codes which were obtained 
by using the new technique. The trellis diagram of the 

I E E  Proc.-Commun., Vol. 142, No. 4, August 1995 

(31, 6, 15) (Fig. 8) has the following parameters: N, = 16, 
N ,  = 5 and is similar to the trellis diagram of the (32, 6, 
16) RM code [8]. The only difference is in the number of 
digits which are used for labelling branches in the last 
depth of the trellis. 

The trellis diagram of the (24, 12, 8) Golay code (Fig. 
9) represents a set of 8 similar subtrellises. Each subtrellis 
has 8 states which are connected by the two parallel 

b 

b 

Fig. 7 Trellis diagram of( l5 ,  7,5) GAC 
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branches. The labelling of each subtrellis can be easily 
obtained from the labelling of the first subtrellis by 
adding corresponding codewords of the (8, 3, 3) code 
(Table 1). The overall trellis has the following param- 
eters: N ,  = 64, N ,  = 3 and is similar to the trellis 
diagram given in Reference 8. The trellis diagram of the 
(23, 12, 7) code has the same structure as (24, 12, 8) code 

\zg/ 
Fig. 0 Trellis diagram of(31, 6,  15) code 

It is apparent from these Figures that the code design 
technique described in this paper provides codes with 
regular trellis structure, thus allowing the low-complexity 
trellis decoding techniques, such as coset decoding, to be 
implemented. 

4 Conclusion 

A new low-complexity encoding technique for linear 
block codes, based on generalised array codes, is 

\;:-: (24.9)co y 7 , 1 , 7 )  for (23,12,7) 

code 
8 state5 

coset 8 

Fig. 9 Trellis diagrams of Golay codes 

Fig. 10 Trellis diagram of(17,9,5) GAC 

and differs only in number of digits which are used for 
labelling branches in the last column of the trellis (all 
branches in this column are labelled with 7-tuple 
codewords). 

The trellis diagram of the (17, 9, 5) code has the fol- 
lowing parameters: N ,  = 32, N ,  = 3, and is shown in Fig. 
10. The trellis diagrams for some quasi-perfect codes are 
shown in Fig. 11. 

described. The technique allows the design of linear block 
codes together with their low-complexity trellises. Exam- 
ples are presented for a number of widely used codes, 
(Reed-Muller, Hamming, Golay, optimum etc.); however, 
the technique can be employed in the design of a wide 
variety of known linear block codes. The designed trel- 
lises have a regular structure and allow low-complexity 
VLSI and DSP implementations. 
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1111 0 

0101 0101 0101 

0 b 

Fig. 
a (10 

C 

11 Trellis diagrams of GACs 
, 5.4) GAC b (14, 7 . 4 )  GAC e (9, 6, 3) GAC d (12, 8, 3) GAC 
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