
Low-complexity trellis decoding of linear block
codes

B. Honary
G. Markarian
M. Darnell

Indexing terms: Trellis decoding, Linear block codes

Abstract: The authors introduce a new simple
encoding technique which allows the design of a
wide variety of linear block codes. They present a
number of examples in which the most widely
used codes (Reed-Muller, Hamming, Golay,
optimum etc.) have been designed. They also
introduce a novel trellis design procedure for the
proposed codes. It is shown that the trellises of the
designed codes are similar to the trellises of coset
codes and allow low complexity soft maximum
likelihood decoding.

1 Introduction

Trellis decoding technique for linear block codes has
been under investigation since 1974 [l-31. Later, a
number of efficient soft decision maximum likelihood
decoding (MLD) algorithms for block codes were pro-
posed [4, 6, 71. Recent publications by Forney [S, 91 and
others [S, 10, 111 have stimulated interest in low-
complexity trellis decoding of block codes for both prac-
tical and theoretical reasons. On the practical side, a
minimal trellis structure of a block code can be used for
performing low-complexity maximum likelihood soft
decision decoding. From the theoretical viewpoint, such
trellises can be used for construction of other codes [lo].

Recently, generalised array codes (GACs) and their
trellis structures have been introduced [12]. The tech-
nique allows the design of array codes with the same
code length, n, and d,, = 4, but with an increased
number of information digits. These codes are simple and
flexible to design; they also allow low-complexity soft
maximum likelihood trellis decoding (SMLTD). It has
been shown that the concept of GACs can be applied to
the design of Hamming, Reed-Muller (RM) and Golay
codes with a low-complexity trellis structure [13, 141. In
this paper we describe a new encoding/decoding tech-
nique for different types of linear codes based on GACs
and their trellis structure. The trellises of the designed
codes are similar to trellises of the coset codes designed
by Forney [SI and provide lower complexity SMLTD
than that achievable with conventional techniques.

0 IEE, 1995
Paper 20371 (E5), first received 2nd September 1994 and in revised form
24th April 1995
B. Honary and G. Markarian are with the Communications Research
Centre, Lancaster University, Lancaster LA1 4YR, United Kingdom
M. Darnell is with the Department of Electronic and Electrical Engin-
eering, University of Leeds, Leeds LS2 9JT, United Kingdom

I E E Proc.-Commun., Vol. 142, No. 4, August 1995

2 Code construction

A generalised (n, k, dmiJ array code is an array code in
which the column and row subcodes may have different
numbers of information and parity check symbols; the
code length n = n1n2 and the total number of informa-
tion digits k = k , + k , + . ' . + k,, , where n , and n,
represent the number of columns and rows respectively,
k , is the number of information digits in the pth row
[12]. Using the concept of the GACs, a wide variety of
known linear block codes together with their low com-
plexity trelisses can be designed. The procedure for
designing a linear (no , ko , do) GAC is as follows:

(i) Design a binary, n = n1n2, (n = no) basic product
code, C,, as shown in Fig. la, with a single parity check
column and R I = (n l , k , , d ,) row codes, where d , =
rd0/21 and 1.1 is the nearest greatest integer (if no is a
prime number choose n = no + 1).

(ii) Design a binary, n l n 2 , additional product code,
C, = I P A \ , as shown in Fig. lb, where P is a binary
k , n , , array with only parity check elements; A is a
binary, (n , - k ,) n , , matrix where the first row consists of
only k' = n, ~ k , information digits, and all column
codes are repetition codes.

(iii) Design (if not all information digits have been
used) a second additional binary product code, C,, as
shown in Fig. IC, where B = (n , , 1, do) is a repetition row
code with k , th information digit.

(iv) Add the designed codes as follows:

c = c, 0 c2 0 c, (1)

where addition is on modulo - 2 basis.
(iv) If n = no + 1, delete the symbol which is located in

the n2 th row and n, th column.
This procedure can be also described as an array rep-

resentation of coset codes introduced by Forney [SI.
Code C,, is a linear product codes, and the overall
designed C can be represented as a union of cosets of C,.
This union forms a linear nonsystematic code with the
following parameters: (no , k o , do). In this section we
show that the proposed technique can be employed for
the design of a wide variety of linear block codes.

The authors would like to express their gratitude
towards Prof. R.J. McEliece for his very helpful
advice and comments regarding the revision of the
paper. This work was supported by the Science
and Engineering Research Council (SERC), UK.

201

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 3, 2008 at 11:48 from IEEE Xplore. Restrictions apply.

2.1
An example is given for an (8, 4, 4) GAC which is equiva-
lent to the well known (8, 4, 4) RM code [l5, 161. The
procedure for code design is given below:

(i) Design the basic, (8, 3, 4), (n = 2 x 4, n, = 2, n, = 4)
array code, C,, with the single-parity check (4, 3, 2)
column and repetition R , = (2, 1, 2) row codes (d, =

(8,4,4) and (7,4,3) codes design row, the designed (8,4,4) code will be transformed to the
(7,4, 3) Hamming code:

x4 0 PI I'; :::;:I c = C, C, =

P4 d0/2 = 2):
- = (XI, x4 0 PI, x,, x4 0 P2 > x3 > x4 0 P3 9 P4) (6)

1 L -

1 2

? I O -

8 - 8
6 -

Ln

2
c

0

L -

2 -

c, =

-

C1=

v -

x3 P3

P4 :: P4

n

2.2 (16, 5, 8) and (15, 5 7) codes design
An example is now given for (16, 5, 8) and (15, 5, 7)
GACs. The procedure for codes design is shown below:

(i) Design the basic, (16, 3, 8), (n = 4 x 4, n, = n2 = 4)

(2)

"1

"2

a
Fig. 1 Code structures
D Basic product code, C, b Additional product code,

c 2 = Elnz:
c Additional product code, C,

where xi, i = 1, 2, 3 represent information digits and pj,
j = 1, . . . ,4, represent parity check symbols:

pj = xj Vj < 3
p4 = XI + x2 + x3 (3)

(ii) Design an additional array code, C, = I P A I with
the following structure:

c2 = (4)

where x4 is an information digit, and P is an all-zero
column.

(iii) Since all information digits have been used, there
is no need to design a second additional array code, C3 .

(iv) Add the two codes C , and C, on a modulo-2 basis
and read the designed code row-by-row as follows:

=(x,,x4OP1.x2,x48P,,X~,X40P3,P4rX40P4)

(5)
(v) Since no = n, there is no need for the deletion of the

parity-check symbol which is located in the 4th row and
2nd column.

The designed code is a linear nonsystematic code and
has the following parameters: (no = 8, ko = 4, do = 4).
The weight distribution function (WDF) of the code is
shown in Fig. 2 and is similar to the WDF of the (8,4,4)
RM code. It has been shown [13] that by deleting the
symbol which is located in the second column and 4th

202

C,=

product code, C,, with the repetition row code R I = (4, 1,
4), and (4, 3, 2) single parity check column code (d, =
d0/2 = 4):

PI PI PI

(7)
P3 P3 P3

P4 P4 P4 P4

where xi, i = 1, 2, 3, represent information digits and
parity check symbols, pj, j = 1, 2, 3, 4, are defined
according to eqn. 3.

(ii) Design an additional product code, C, = IPA1
with the following structure:

A-

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 3, 2008 at 11:48 from IEEE Xplore. Restrictions apply.

where x4 and x5 are information digits, P is a 2 x 4

(iii) Since all information digits have been used, there

(iv) Add the two codes C, and C2 on a modulo 2 basis

parity matrix and p5 = x4 + x 5 .

is no need to design a second additional array code, C3.

as follows:

This code is equivalent to the (16, 5, 8) RM code from
which a (15, 5, 7) GAC can be derived by simple deletion
of the parity chack symbol located in the 4th row and 4th
column:

The weight distribution function (WDF) of the designed
code is shown in Fig. 3. It is evident that the derived code
has the following parameters: (no = 15, k , = 5 , do = 7),
and is equivalent to a corresponding BCH code.

1 6

141

g 10

u 8 4 e

0
0 1 2 3 4 5 6

.,,,,,n,
9 10 11 12 13 14 15

weight

Fig. 3 Weight distributionfunction o f (l 5 , 5 , 7) GAC

2.3 (76,17,4)and(75,11,3)codesdesign
The proposed technique can be implemented for the
design of other RM codes with higher information rates.
An example is gven for a (16, 11, 4) GAC which is equiv-
alent to the corresponding RM code. The procedure for
code design is as follows:

(i) Design a basic 4 x 4 array code C,, with the single
parity check row and column codes (RI = (4, 3, 2), d, =

:

X I x 2 x3 P I

x4 x5 x6 P 2 c, =
x 7 X8 x 9 P 3

LP4 P 5 P 6 P ~ J

where x i , i = 1, 2, . . . , 9, represent information digits and
pj, j = 1, 2, . . . , 7, represent single parity check digits for
row and column codes.

I E E Proc.-Commun., Vol. 142, No. 4, August 1995

(ii) Design a binary
IPA1

r o o o x I o
0 0 0 Xl0

c 2 = (0 0 0 X I 0

3dditional product code C2 =

(12)

where P is an all zero 4 x 3 matrix, A is a 4 x 1 repeti-
tion column matrix and xIo is an information digit.

(iii) Since not all information digits have been used,
design second additional array, C3 , with the repetition
code at the last row:

r o o o 0 1
C 3 = l O O O O I

0 0 0 0
Lxii x i 1 x i 1 xiiJ

where x, , is an information digit.

follows:
(iv) Add the three codes on a modulo-2 basis as

c = c, 0 c2 0 c3

1 = [:: xs x9 P 3 0 X I 0

X I x 2 x 3 P I 0 X I 0

x5 x6 P 2 8 X I 0

P 4 @ x 1 1 P 5 @ x 1 1 P 6 @ x 1 1 P 7 @ x 1 1 e x 1 0

(14)

It follows from the construction that the designed code is
a (16, 11, 4) GAC which is equivalent to the correspond-
ing RM code. It is also apparent that the (15, 11, 3)
Hamming code can be simply derived by deleting the
parity check symbol located in the 4th row and 4th
column of the designed (16, 11,4) code.

2.4 (15. 7,5) code design
The procedure outlined above can be applied to the
design of a (15, 7, 5) GAC. To illustrate the flexibility of
the proposed technique, we choose a different size of the
basic array. The encoding procedure is as follows:

(i) Design the basic, (15, 4, 6) (n = 5 x 3, n, = 5, n2 =
3) product code, C,, with a R I = (5 , 2 , 3) row code (d , =
[do/2] = 3) and (3 ,2 ,2) single parity check column code:

X I x 2 P I P 2

(15)
P 7 Ps P 9 P I 0 P I 1

where xi, i = 1, 2, 3, 4, represent information digits and
pj, j = 1, . . . , 11, represent parity check symbols.

(ii) Design two additional product codes, C2 and C3
with the following structure:

0 0 0 0 0

where xi , i = 5, 6, 7 represent information digits and
P 1 2 = x 5 + x 6 '

203

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 3, 2008 at 11:48 from IEEE Xplore. Restrictions apply.

(iii) Add the three codes on a modulo-2 basis, as
follows:

c = c, 0 c2 @ c3
x 2 P I 0 P12 =[:: x 4 P 4 0 P12

p 7 @ x 7 p S B x 7 P 9 @ x 7 @ P 1 2

x 6 @ P 6 (17)
x6 @ P 3 1 x5 0 PZ

xs 0 Ps
P 1 0 @ x 7 0 x 5 P 1 1 @ x 7 @ x 6

The designed code has the following parameters: (no =
15, k , = 7, do = 5), and is equivalent to a corresponding
BCH code.

2.5 (1 7 , 9 , 5) code design
Application of the proposed technique is not restricted to
the RM and Hamming codes. The technique provides a
'good' co-ordinate reordering for other codes, for
example optimum codes. An example is given for (17, 9,
5) optimum code [16]; however, other known optimum
codes can be obtained easily. The procedure is as follows:

(i) Design the basic (18, 6, 6) (n = 6 x 3, n, = 6, n2 = 3,
n = no + 1) product code, C,, with a R I = (6, 3, 3) row
code (d, = rd,/21 = 3), and (3, 2, 2) single parity check
column code :

Lx9 x9 x 9 x 9 x 9 x 9 J

;: 1 (18)
x1 x 2 x3 P I Pz

cl = x4 x 5 x6 P 4 P5 I P7 P8 P9 P I 0 P 1 1 P I 2

where xi , i = 1, 2, . . , , 6, represent information digits and
p j , j = 1, . . . , 12, represent parity check symbols.

(ii) Design two additional product codes, C, and C,,
as follows:

P13 x7

0 0 0 p i 3 ~7 X S

(iii) Add the three codes, C,, C, and C3 on a modulo-2
basis:

It is apparent that the designed code is a linear non-
systematic optimum code with the following parameters:
(no = 17, k , = 9, d o = 5).

2.6 Golay codes design
The (24, 12, 8) binary extended Golay code occupies a
remarkable place among binary block codes [SI. It is a
unique, perfect, self-dual code which has been intensively
investigated with various efficient encoding and decoding
algorithms [4, 6, 171. The trellis diagram for the (24, 12,
8) extends Golay code, which consists of 64 states, has
been introduced by Forney [SI. However, this technique
requires complex encoder and can not be used for the
trellis design of the (23, 12, 7) Golay code. In this section
we implement the concept of GACs for the design of both
(24, 12, 8) and (23, 12, 7) Golay codes. We start with the
design of (24, 12, 8) extended Golay code. The procedure
is as follows:

(i) Design the basic (24, 8, 8) (n = 8 x 3, n, = 8, n2 =
3) product code, C , , with the (3, 2, 2) column and (8, 4, 4)
row codes: :.I (21)

1

x1 x 2 x3 x 4 P1 P2 P 3

c l = x S x6 x 7 x8 P5 P6 P7 I P 9 PlO P11 P12 P 1 3 P14 P l 5 P16

where x i , i = 1, 2, . . . , 8, represent information digits; pj,
j = 1, ..., 16, represent parity check symbols and the
(8,4,4) row code has been described in Section 2.1.

(ii) Design two additional product codes, C2 and C3 ,
with the following structures:

c1 c 2 c3 c 4 c5 x 9 x10 x 1 1

c1 c 2 c3 c 4 c5 x9 X I 0 x11

c 2 = c1 c 2 c3 c 4 c5 x 9 X I 0 x11

0 0 0 0 0 0 0
[

0 0 0 0 0 0 0

c , = o r o o o o o o 0 0 0 0 0 1 where row code in C2 is (8, 3, 3) code and is shown in
(19) Table 1.

C =

P1 0% P2 0 x9 P3 0 X I 0 P 4 @ x 1 1

Ps 0 cs P6 @ x9 P7 0 X I 0 Ps 0 XI1

x12 0 P I 3 0 c5 x12 @ p 1 4 0 x9 x12 @ P I S 0 x10 x 1 2 0 p16 0 xI1

where xi , i = 7, 8, 9, represent information digits and

(iii) Add the three codes, C,, C, and C3 , on a modulo-

(iv) Delete the symbol which is located in the 3rd row

P I 3 = x7 + xS '

2 basis;

and 6th column:

XI X2 x3

X't x5 x6

P7 0 x 9 P S 0 X 9 P 9 0 X 9

C =

The weight distribution function for the designed (24, 12,
8) code is shown in Fig. 4a. This is similar to the WDF of
the (24, 12, 8) extended Golay code [17], thus, following
Reference 17, the designed code is an extended (24, 12, 8)
Golay code. The (23, 12, 7) code can be derived by simple
deletion of the parity-check symbol which is located in
the 3rd row and 8th column. The weight distribution
function of the designed (23, 12, 7) code is shown in Fig.
46. This is identical to the weight distribution function of
the (23, 12, 7) Golay code [17].

204

Example: A binary vector of information digits is given
as: x = (xl, x2, . . . , xI2) = (001 10101 11 11). Following
the procedure outlined above, C,, C2 and C3 codewords

PS 0 x7 P6 0 xs (20)

I E E Proc.-Commun., Vol. 142, N o . 4, August 1995

1 P1 @ P I 3 P 2 G x 7 p 3 @ x 8

~4 0 p i 3

PlO B P 1 3 B x 9 P I 1 @ x7 0 x 9

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 3, 2008 at 11:48 from IEEE Xplore. Restrictions apply.

can be written as follows:

In 1 0 0 0
E
$ 8 0 0 -
U 0

6 0 0 -

0 0 1 1 1 1 0 0
c , = o 1 0 1 1 0 1 0

0 1 1 0 0 1 1 0

1 0 0 0 0 1 1 1
1 0 0 0 0 1 1 1
1 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0
1

I

1 [1 1 1 1 1 1 1 1
c,= 0 0 0 0 0 0 0 0

and the encoded codeword C = (101 1101 1
00101 101).

-

Table 2 illustrates the code design procedure for a
number of codes with lengths up to 64. This Table
includes the quasiperfect codes listed in [16], and pro-
vides all parameters that are required for the design of a
GAC. For example, the optimum (20, 11, 5) code [16]
can be designed by choosing a 3 x 7 basic array with the
RI = (7, 4, 3) row and (3, 2, 2) column codes. The first
additional code C , , should consist of a (7, 2, 3) row and
(3, 1, 3) column codes while the second additional code
C, , should have xl, repeated in the last row.

Similar to the technique, introduced by Forney [8],
the proposed technique can be implemented for the design
of the (16, 8, 8) Nordstrom-Robinson code [20]. This
code can be obtained from the (24, 12, 8) Golay code by
simple deletion of the second row in the C , , C,, C , and
C.

(12)

11011101

Table 1 : Code table of (8. 3) code

Information vector Encoded codeword Information vector Encoded codeword
(x s XI0 XI 1) (x s . x10. x11)

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0
0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1 0
0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0
0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1

2.7 Other known codes
The technique described can be readily implemented for
the design of other known codes. For example, following
the procedure outlined above, one can design the (32, 6,
16) RM code by choosing a 4 x 8 (nl = 4, n, = 8) basic
array code, C,, with an R , = (8, 1, 8) row and (4, 3, 2)
single parity check column codes. The first additional
product code, C, , should consist of a 4 x 5 matrix P and
a 4 x 3 matrix A of repetition column codes. The third
additional product code, C, , must be an all zero matrix.
The (31, 6, 15) code can be derived easily be deleting the
parity check symbol which is located in the 4th row and
8th column.

The (32, 26, 4) and (32, 16, 8) RM codes which were
discussed in [SI can also be designed by using the pro-
posed algorithm. The (31, 26, 3) and (31, 16, 7) codes,
which are equivalent to the corresponding BCH codes,
can be derived from the corresponding RM codes by
deleting the parity check symbols, located in the last
column and row. It is apparent that since any RM code
can be decomposed into two codes with shorter code
lengths [I91 the concept of GACs can be applied for the
design of all RM codes.

3 Trellis design procedure

The trellis design procedure for GACs [12] can be
extended for the design of low-complexity regular trellises
for all the codes described above. The procedure is as
follows:

(i) Choose the trellis depth (number of columns), N , ,
and number of states, N , , as

N , = n2 = 1 N , = 2markp (25)

(ii) Identify each state of depth p by the max{k,}-tuple
binary vector S,(A) = S,(n,, a,, . . . , amax ,w), where aj =
0, 1.

(iii) The trellis branches start and finish at depth p = 0
and p = n,; these are labelled as So(OO, . . . , 0) and S,,(00,
. . . , 0), respectively.

(iv) The trellis branches at depth p are labelled X J C , ,
where X, represent k,-tuple binary vectors of informa-
tion digits for the pth row code and C, correspond to the
encoded codewords in the pth row:

C, = Xk G, + C: (26)

12 00

3000 r

4 0 0

200

weight
b

O L
0 2 4

weight
a

b (23, 12.7) Golay code

Fig. 4
a (24, 12.8) Golay code

I E E Proc.-Commun., Vol. 142, No. 4, August 1995

Golay code weight distribution funciion

205

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 3, 2008 at 11:48 from IEEE Xplore. Restrictions apply.

where G p is a generator matrix for the pth row code and
X: and C i are codewords from the pth rows of the C ,
and C, codes, respectively.

(v) There are 2kp branches starting from each state,
S,(A), at depth p, p < N,; each branch is connected with
state S p + , (A) at depth p + 1, which is defined as follows:

(vi) If a second additional code, C, , is used for a code
design, at the final depth all states must be connected to
final state, S,(OO, . . . , 0), with two parallel branches; the
labels of these branches complement to each other.

There are
"2

N o = n 2'1
p = I

distinct paths through this trellis diagram and each path
corresponds to a unique codeword from the code.

3.1 Trellis diagrams of the (8 , 4 , 4) and (7,4,3)
codes

Let our aim be to design the trellis diagram of the (8 ,4,4)
code described in the Section 2.1. Following the tech-
nique outlined above, the trellis diagram of the (8, 4, 4)
code will have N, = 4 + 1 = 5 columns and N, = 2' = 4
states. We identify the states by a 2-tuple binary vectors

and at states p = 0 and p = 5 the trellis has only one
state, namely So(OO) and S,(OO), respectively. Following
the above procedure, the trellis diagram for the (8, 4, 4)
code is presented in Fig. 5a, and is similar to that given
by Forney [8, 91. The trellis diagram of the (7, 4, 3)
Hamming code is similar to the trellis of the (8, 4, 4) code
and differs only in the number of digits being used for
labelling the branches at final depth (Fig. 56).

3.2 Trellis diagrams of (16,5,8) and (15,5, 7) code
Now, let our aim be to design the trellis diagrams of the
(16, 5, 8) and (15, 5, 7) code described in the Section 2.2.
Since the trellis diagram of the (15, 5, 7) code can be
derived from the trellis of the (16, 5, 8) RM code we start
this example with the trellis design for (16, 5, 8) code. The
trellis will have N , = 4 + 1 = 5 columns and N , = 23 = 8
states. We identify each state by a 3-tuple binary vector
and at depths p = 0 and p = 4, the trellis has only one
state, namely So(OOO) and S,(OOO), respectively. Following
the above procedure, the trellis diagram for the (16, 5, 8)
GAC will be similar to that given by Forney for a corres-
ponding RM code [SI. The trellis diagram of the (15, 5, 7)
code can be derived easily by deleting one parity check
symbol in the labelling of branches at depth p = 5, and is
presented in Fig. 6b. It is apparent that the designed
codes have similar trellis diagrams, which differ only in
the number of digits being used for labelling the branches
at the greatest depth.

Table 2: Encodina orocedure for different GACs
~~

No. Type of R Size Row Column Row Last Last
code of code code in code row symbol

array in C, C, in C, in C,

1
2
3
4
5
6
7
8
9

10
11
12

d,,, = 3
(6, 3) 0.5
(7, 4) 0.57
(9, 5) 0.55
(9, 6) 0.67
(11, 6) 0.545
(12, 8) 0.67
(13. 7) 0.538
(15.11) 0.73
(18, 12) 0.67
(30, 20) 0.67
(45, 30) 0.67
(63, 42) 0.67

2 x 3
2 x 4
2 x 5
3 x 3
2 x 6
3 x 4
2 x 7
4 x 4
3 x 6
3 x 1 0
3 x 1 5
3 x 21

(2. 1. 2) (3. 2. 2)
(2. 1, 2) (4. 3. 2)
(2. 1. 2) (5, 4. 2)
(3. 2. 2) (3, 2. 2)
(2. 1. 2) (6, 5. 2)
(3. 2. 2) (4, 3, 2)
(2. 1 I 2) (7, 6, 2)
(4. 3. 2) (4, 3, 2)
(3. 2. 2) (6. 5. 2)
(3. 2. 2) (10. 9. 2)
(3. 2. 2) (1 5, 14, 2)
(3. 2. 2) (21, 20, 2)

(2. 1. 1) n/a exists
(2. 1. 1) nia deleted
(2. 1. 1) n/a deleted
(3. 1, 1) (3. 1, 3) exists
(2. 1. 1) n/a deleted
(3. 1. 1) (3. 1, 3) exists
(2. 1. 1) n/s deleted
(4. 1 I 1) (4. 1, 4) deleted
(3. 1. 1) (3. 1, 3) exists
(3. 1, 1) (3. 1, 3) exists
(3. 1, 1) (3. 1, 3) exists
(3. 1, 1) (3. 1, 3) exists

d,,, = 4
13 (8. 4) 0.5 2 x 4 (2. 1, 2) (4, 3, 2) (2, 1, 1) n/a exists
14 (10. 5) 0.5 2 x 5 (2. 1. 2) (5. 4, 2) (2. 1, 1) n/a exists
15 (12.7) 0.58 3 x 4 (3.2.2) (4,3,2) (3 .1 .1) nia exists . .
16 (14, 7 j 0.5 2 x 7 (2. 1. 2 j (7. 6, 2) (2, I. 1 j n/a exists
17 (15.9) 0.6 3 x 5 (3.2.2) (5.4,2) (3,1,1) n/a exists
18 (16. 11) 0.69 4 x 4 14. 3. 2) (4. 3. 2) (4. 1. 1) (4. 1. 4) exists
19 i30, 19 i 0.63 3 x 10 i3, 2, 2 j i3, 2, 2 j i3, 1, 15 nia ' exists

d,," = 5
20 (15, 7) 0.47 5 x 3 (5. 2. 3) (3, 2, 2) (5. 2, 2) (5, 1, 5) exists
21 (17, 9)) 0.53 6 x 3 (6, 3, 3) (3, 2, 2) (6, 2, 2) (6, 1, 6) deleted
22 (19. 10) 0.53 7 X3 (7. 4. 3) (3. 2, 2) (7, 1. 3) (5. 1, 5) 2 deleted
23 (20. 11) 0.55 7 x 3 (7. 4. 3) (3. 2, 2) (7, 2, 3) (6. 1, 6) deleted
24 (21. 12) 0.57 7 x 3 (7. 4. 3) (3, 2, 2) (7, 3, 3) (6, 1. 6) exists

d,,, = 7
25 (15. 5) 0.33 4 x 4 (4, 1. 4) (3, 2, 2) (4, 2, 2) n/a deleted
26 (23. 12) 0.52 8 x 3 (8. 4. 4) (3, 2, 2) (8, 3, 3) (7, 1, 7) deleted
27 (31. 16) 0.52 8 x 4 (8, 4, 4) (4, 3, 2) (8, 3, 3) (7,1, 7) deleted
28 (63. 32) 0.51 8 x 8 (8. 4. 4) (8, 7, 2) (8, 3, 3) (7. 1, 7) deleted

29 (16. 5) 0.31 4 x 4 (4, 1, 4) (3, 2, 2) (4, 2, 2) n/a exists
30 (24. 12) 0.5 8 x 3 (8. 4, 4) (3. 2, 2) (8, 3, 3) (8, 1, 8) exists
31 (32. 16) 0.5 8 x 4 (8, 4, 4) (4. 3, 2) (8, 3, 3) (8. 1. 8) exists
32 (64. 32) 0.5 8 x 8 (8, 4, 4) (8, 7, 2) (8, 3, 3) (8, 1. 8) exists

d,," = 8

206 I E E Proc.-Commun., Vol. 142, N o . 4, August 1995

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 3, 2008 at 11:48 from IEEE Xplore. Restrictions apply.

3.3 Trellis diagrams of the (I 6, 1 1 , 4) and (15, 11,3)
codes

The trellis diagram of the (16, 11, 4) GAC can be
designed in two different ways [12]:

(i) with N , = 5 columns and N , = 16 states (if no
parallel branches are used);

(ii) with N , = 5 columns and N, = 8 states (if parallel
branches are used at every depth of the trellis).

110
1111

0

Fig. 5 Trellis diagrams
(1 (8.4, 4) RM code b (7, 4, 3) Hamming code

0
Fig. 6 Trellis diagrams
a (16, 5.8) RM code b (I S , 5, 7) GAC

In both cases, the trellis has 211 different paths and is
isomorphic to the trellis diagram of the (16, 11, 4) RM
code [SI. The (15, 11, 3) Hamming code will have a
similar trellis with the only difference being that three
digits are used for labelling of branches at the final depth.

3.4 Trellis diagram of the (15, 7 , 5) code
The proposed technique can be applied to the design of
the trellis diagram for the (15, 7, 5) code described pre-
viously. Following the procedure outlined above, the
trellis will have N , = 16 and N , = 4. Each state of the
trellis is identified by a 4-tuple binary vector and trellis
branches are labelled according to eqn. 26. Since a
second additional code, C3, has been used for the code
design, at the depth p = N , each state is connected to the
state S,(oooO) with two parallel branches, as is shown in
Fig. 7. The number of states for the designed (15, 7, 5)
code can be reduced to 8, if parallel branches are used at
each depth of the trellis diagram [18].

3.5 Trellises of other known codes
The above technique can be implemented for the trellis
design of almost all known codes. Figs 8-11 present
trellis diagrams for different codes which were obtained
by using the new technique. The trellis diagram of the

I E E Proc.-Commun., Vol. 142, No. 4, August 1995

(31, 6, 15) (Fig. 8) has the following parameters: N, = 16,
N , = 5 and is similar to the trellis diagram of the (32, 6,
16) RM code [8]. The only difference is in the number of
digits which are used for labelling branches in the last
depth of the trellis.

The trellis diagram of the (24, 12, 8) Golay code (Fig.
9) represents a set of 8 similar subtrellises. Each subtrellis
has 8 states which are connected by the two parallel

b

b

Fig. 7 Trellis diagram of(l5 , 7,5) GAC

207

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 3, 2008 at 11:48 from IEEE Xplore. Restrictions apply.

branches. The labelling of each subtrellis can be easily
obtained from the labelling of the first subtrellis by
adding corresponding codewords of the (8, 3, 3) code
(Table 1). The overall trellis has the following param-
eters: N , = 64, N , = 3 and is similar to the trellis
diagram given in Reference 8. The trellis diagram of the
(23, 12, 7) code has the same structure as (24, 12, 8) code

\zg/
Fig. 0 Trellis diagram of(31, 6, 15) code

It is apparent from these Figures that the code design
technique described in this paper provides codes with
regular trellis structure, thus allowing the low-complexity
trellis decoding techniques, such as coset decoding, to be
implemented.

4 Conclusion

A new low-complexity encoding technique for linear
block codes, based on generalised array codes, is

\;:-: (24.9)co y 7 , 1 , 7) for (23,12,7)

code
8 state5

coset 8

Fig. 9 Trellis diagrams of Golay codes

Fig. 10 Trellis diagram of(17,9,5) GAC

and differs only in number of digits which are used for
labelling branches in the last column of the trellis (all
branches in this column are labelled with 7-tuple
codewords).

The trellis diagram of the (17, 9, 5) code has the fol-
lowing parameters: N , = 32, N , = 3, and is shown in Fig.
10. The trellis diagrams for some quasi-perfect codes are
shown in Fig. 11.

described. The technique allows the design of linear block
codes together with their low-complexity trellises. Exam-
ples are presented for a number of widely used codes,
(Reed-Muller, Hamming, Golay, optimum etc.); however,
the technique can be employed in the design of a wide
variety of known linear block codes. The designed trel-
lises have a regular structure and allow low-complexity
VLSI and DSP implementations.

208 I E E Proc.-Commun., Vol. 142, No. 4, August 1995

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 3, 2008 at 11:48 from IEEE Xplore. Restrictions apply.

1111 0

0101 0101 0101

0 b

Fig.
a (10

C

11 Trellis diagrams of GACs
, 5.4) GAC b (14, 7 . 4) GAC e (9, 6, 3) GAC d (12, 8, 3) GAC

5 References

1 BAHL, L.R., COCKE, J., JELINEK, F., and RAVIV, J.: ‘Optimal
decoding of linear codes for minimising symbol error rate’, IEEE
Trans. Inf Theory, 1974,20, pp. 284-287

2 WOLF, J.K.: ‘Eficient maximum likelihood decoding of linear
block codes using a trellis’, IEEE Trans. lnf Theory, 1978, 24, (1).
pp. 76-80

3 MASSEY, J.: ‘Foundation and methods of channel encoding’. Pro-
ceedings of international conference on Information theory, 65,
18-20 Sept., 1978, Berlin

4 CONWAY, J.H., and SLOANE, N.J.: ‘Soft decoding techniques for
codes and lattices, including Golay code and the Leech lattice’,
IEEE Trans. lnf Theory, 198632, (l) , pp. 41-50

5 KASAMI, T., TAKATA, T., FUJIWARA, T., and LIN, S.: ‘On
complexity of trellis structure of linear block codes’, IEEE Trans.
Inf Theory, 1993, 39, (l) , pp. 242-245

6 SNYDERS, J.: ‘Reduced lists of error patterns for maximum likeli-
hood soft decoding’, IEEE Trans. lnf Theory, 1991,37, (4), pp. 667-
672

7 BEERY, Y., and SNYDERS, J.: ‘Optimal soft decision decoders
based on fast Haddamard transform’, IEEE Trans. In& Theory,
1986,32, pp. 355-364

8 FORNEY, G. D.: ‘Coset codes - Part 2: Binary lattices and related
codes’, IEEE Trans. fnf Theory, 1988,34, (3, pp. 1152-1187

9 FORNEY, G.D., and TROTT, M.D.: ‘The dynamics of group
codes: state spaces, trellis diagrams, and cannonical encoders’, IEEE
Trans. In$ Theory, 1993,39, (5), pp. 1491-1523

10 MUDER, D.J.: ‘Minimal trellises for block codes’, IEEE Trans. lnf
Theory, 1988,34, (5), pp. 1049-1053

1 1 BERGER, Y., and BEERY, Y.: ’Bounds of the trellis size of linear
block codes’, IEEE Trans. In$ Theory, 1993,39, (l) , pp. 203-208

12 HONARY, B., MARKARIAN, G., and FARRELL, P.: ‘Generalised
array codes and their trellis structure’. Electron. Lett., 1993, 29, (6),
pp. 541-542

13 HONARY, B., and MARKARIAN, G.: ‘Low complexity trellis
decoding of Hamming codes’, Electron. Lett, 1993, 29, (12). pp.
1 1 14-1 116

14 HONARY, B., and MARKARIAN, G.: ‘New simple encoder and
trellis decoder for Golay codes’, Electron. Lett., 1993, 29, (25), pp.
21 70-2171

15 LIN, S., and COSTELLO, D.: ‘Error control coding: fundamental
and applications’ (Prentice-Hall, Englewood Cliffs, NJ, 1983)

16 PETERSON, W.W., and WELDON, E.J.: ‘Error correcting codes’
(MIT Press, 2nd edn., 1975)

17 GOETHALS, J.M.: ‘On the Golay perfect binary code’, J . Com-
binatorial Theory, 1971, 11, pp. 178-186

18 ZYABLOV, V.V., and SIDORENKO, V.: ‘Bounds of complexity of
trellis decoding of linear blockcodes’. Pioceedings of the Swedish-
Russian workshop on Information theory, Aug. 1993, Sweden

19 McWILLIAMS, F.J., and SLOANE, N.J.A.: ‘The theory of error
correcting codes’. NHPC, 1978.

20 NORDSTROM, A.W., and ROBINSON, J.P.: ’An optimum non-
linear code’, f n f & Control, 1967, 11, pp. 613-616

IEE Proc.-Commun., Vol. 142, No. 4 , August 1995 209

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 3, 2008 at 11:48 from IEEE Xplore. Restrictions apply.

