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Quantum systems with discrete symmetries can usually be desymmetrized, but this strategy
fails when considering transport in open systems with a symmetry that maps different openings
onto each other. We investigate the joint probability density of transmission eigenvalues for such
systems in random-matrix theory. In the orthogonal symmetry class we show that the eigenvalue
statistics manifests level repulsion between only every second transmission eigenvalue. This finds its
natural statistical interpretation as a staggered superposition of two eigenvalue sequences. For a large
number of channels, the statistics for a system with a lead-transposing symmetry approaches that of
a superposition of two uncorrelated sets of eigenvalues as in systems with a lead-preserving symmetry
(which can be desymmetrized). These predictions are confirmed by numerical computations of the
transmission-eigenvalue spacing distribution for quantum billiards and for the open kicked rotator.
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I. INTRODUCTION

Mesoscopic systems exhibit variations in their phase-
coherent electronic transport properties that are con-
veniently characterized via statistical approaches. Ge-
ometries that classically give rise to chaotic motion typ-
ically display universal fluctuations which can be cap-
tured using ensembles of random scattering matrices [1].
For normal conductors the universal properties fall into
Dyson’s three universality classes with symmetry index
β = 1, 2, 4 [2], while a further seven universality classes
can be identified in the presence of superconducting or
chiral particle-hole symmetries [3]. A powerful tool to
distinguish these ensembles is the amount of level re-
pulsion between the transmission eigenvalues Tn. These
eigenvalues determine fundamental transport properties
such as the conductance G or the shot-noise Fano fac-
tor F [1, 4]. In the Dyson ensembles, the probability
density to find two closely spaced adjacent transmission
eigenvalues with small distance s = Tn+1 − Tn is sup-
pressed as P (s) ∝ sβ [5, 6]. This introduces a stiffness
in the transmission-eigenvalue sequence which suppresses
the fluctuations of the conductance and of the Fano factor
when compared to the case of uncorrelated transmission
eigenvalues (the latter being characteristic for classically
integrable systems with a complete set of good quantum
numbers) [1, 4].

From the investigation of closed systems it is well
known that discrete symmetries result in a reduction of
level repulsion. In such systems, desymmetrization deliv-
ers independent variants of the system which differ by the
boundary conditions on the symmetry lines (e.g., Dirich-
let and Neumann boundary conditions for eigenfunctions
of odd and even parity, respectively). The statistics of the
desymmetrized versions can depend on the dimensional-
ity of the irreducible representation [7], but still remain

within the conventional universality classes. The com-
bined level statistics is then built by superimposing the
independent level sequences of the desymmetrized vari-
ants [5]. In open systems, this concept of desymmetriza-
tion can be directly applied as long as the symmetry in
question preserves the shape and position of the leads
[8, 9].

This paper is motivated by the observation that sys-
tems with a lead-transposing symmetry (which maps dif-
ferent openings onto each other while leaving the dynam-
ics in the system unchanged) exhibit transport properties
that can only be understood as collective features of the
desymmetrized variants of the system [8, 9]. An obvi-
ous indication of this complication is the fact that the
symmetry-reduced variants only possess a reduced num-
ber of leads (we concentrate on systems with two leads,
for which the desymmetrized variants only possess a sin-
gle lead). We demonstrate that such systems exhibit nev-
ertheless a reduced repulsion of transmission eigenvalues
which is similar to that for systems with a lead-preserving
symmetry. For a large number N of transport chan-
nels, the local statistical fluctuations in the eigenvalue
sequence indeed become indistinguishable for both types
of symmetry. However, for a small numbers of channels,
the statistics differ from each other, which can be traced
back to the absence or presence of 1/N corrections in
these ensembles.

In the specific case of β = 1, we derive exact closed ex-
pressions for the joint probability density of transmission
eigenvalues thereby gaining detailed insight into these
statistical features. In particular, we find for both the
lead-preserving and the lead-transposing symmetry class
that level repulsion occurs only between every second
transmission eigenvalue. The fluctuations in the trans-
mission eigenvalue sequence hence find their most natu-
ral statistical interpretation in a staggered superposition
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of two independent level sequences. In such a superposi-
tion, the transmission eigenvalues alternate between the
two sequences when they are ordered by magnitude.

The exact expressions for the joint probability density
with β = 1 are different for the two types of symme-
try. Hence, the details of the transport statistics for a
lead-transposing symmetry deviate from those for a lead-
preserving symmetry. We show that these deviations are
most significant for a small number of channels, while for
a large number of channels the local eigenvalue statistics
do indeed converge onto each other.

Previous studies of open systems with lead-transposing
or lead-preserving symmetries have derived the distri-
bution of transmission eigenvalues for one or two open
channels and the one-point density for arbitrary numbers
of channels [8–11]. For time-reversal symmetric systems
with β = 1, a key observation of these works was an
enhancement of universal fluctuations for both types of
symmetry (when compared to asymmetric systems). For
systems with a lead-transposing symmetry it was found
that the weak localization correction is vanishing, lead-
ing to ensemble averaged expressions for the conductance
and for the shot noise Fano factor which are entirely in-
dependent of the channel number N [11]. The underlying
staggered level statistics embodied in the joint distribu-
tion of transmission eigenvalues provides a unifying ex-
planation for all of these observations. We verify our
predictions by numerical computations for quantum bil-
liards [12, 13] and for the open kicked rotator [14–16].

This paper is organized as follows. Section II provides
background information on the scattering approach to
transport and on standard random-matrix theory. In Sec.
III we revisit the case of systems with a lead-preserving
symmetry and provide the exact reformulation of the
eigenvalue statistics in the orthogonal symmetry class
(β = 1) as a staggered superposition of two eigenvalue
sequences. Section IV concerns systems with a lead-
transposing symmetry. In particular, for β = 1 we derive
the exact joint probability density of transmission eigen-
values for arbitrary N , and show that this again takes the
form of a staggered eigenvalue sequence. We also describe
the convergence of the local statistics for both types of
symmetry, which emerges in the limit N → ∞. Section
V provides numerical results that illustrate the similari-
ties and differences of the random-matrix ensembles for
the two symmetry classes. This section also contains the
comparison to specific model systems. Section VI pro-
vides a summary and discussion of our main results.

II. BASIC CONCEPTS

A. Scattering approach to transport

Figure 1 depicts open two-dimensional quantum bil-
liards representing mesoscopic systems with two attached
leads (L – left and R – right), each carrying N in-
coming and N outgoing modes. The systems in Fig.
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FIG. 1: (Color online) Sketches of quantum billiards (a,b)
without any spatial symmetry, (c) with a lead-preserving
symmetry, (d) with both a lead-preserving as well as a lead-
transposing symmetry, (e) with a lead-transposing reflection
symmetry, and (f) with a lead-transposing inversion symme-
try. The inversion symmetry in panel (f) survives in the pres-
ence of a finite magnetic field, as is indicated by a symmetric
pair of trajectories.

1(a,b) are asymmetric while those in Fig. 1(e,f) possess
a lead-transposing reflection or inversion symmetry, re-
spectively. In the middle panels, Fig. 1(c) shows a system
with a lead-preserving symmetry, and Fig. 1(d) shows a
system which possesses both a lead-preserving (up-down)
and a lead-transposing (right-left) symmetry.

In order to describe the phase-coherent transport
through these systems for small bias voltage V , one solves
the Schrödinger equation for fixed values of the 2N am-
plitudes a = [a(L)

n , a
(R)
n ]T in the incoming modes. This

results in linear relations b = Sa for the 2N amplitudes
b = [b(L)

n , b
(R)
n ]T in the outgoing modes, which delivers a

2N × 2N -dimensional scattering matrix of the form

S =
(

r t′

t r′

)
. (1)

Here r, r′, t, t′ are N×N -dimensional matrices describing
reflection at each lead and transmission from one lead to
the other, respectively.

The scattering matrix is unitary, and its structure is
further constrained by symmetries of the system. The
three main universality classes arise for systems with
time-reversal and spin-rotation symmetry (orthogonal
symmetry class with S = ST , symmetry index β = 1),
systems without time-reversal symmetry (unitary sym-
metry class with no constraints on S, β = 2), and sys-
tems with time-reversal but broken spin-rotation sym-
metry (symplectic symmetry class composed of self-dual
matrices S = SR, β = 4). Spatial symmetries entail ad-
ditional constraints on the scattering matrix, which are
detailed in Secs. III and IV.
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The transmission eigenvalues Tn are defined as the
eigenvalues of the hermitian matrix tt†. In the case of
spin-independent transport or Kramers degeneracy (the
latter occurs for β = 4), the transmission eigenvalues are
twofold degenerate. We then only account for each pair
of eigenvalues once and introduce a spin-degeneracy fac-
tor α = 2. When the two-fold degeneracy is lifted then
α = 1. From here on, N refers to the number of distinct
transmission eigenvalues (ignoring accidental degenera-
cies). Furthermore we will assume that the transmission
eigenvalues are ordered by magnitude,

T1 ≤ T2 ≤ T3 ≤ . . . ≤ TN , (2)

as this results in a number of technical simplifications.
The conductance quantum is defined as G0 = αe2/h.

With these conventions, the transmission eigenvalues
determine fundamental transport properties such as the
conductance via

G = G0

N∑
n=1

Tn (3)

and the shot-noise power via

P = 2G0eV

N∑
n=1

Tn(1− Tn). (4)

Here V is the bias voltage, which is assumed to be small.

B. Dyson’s circular ensembles

Random-matrix theory delivers a statistical descrip-
tion of transport by drawing the scattering matrices from
ensembles of unitary matrices which obey the constraints
of the given universality class. For the three main univer-
sality classes with β = 1, 2, or 4, random-matrix theory
is based on Dyson’s circular ensembles, for which the
probability measure is given by the Haar measure of uni-
tary symmetric, unitary, or unitary self-dual matrices,
respectively. The joint probability density of transmis-
sion eigenvalues then takes the form [1]

P ({Tn}) ∝
∏

m>n

(Tm − Tn)β
∏

l

T
−1+β/2
l . (5)

The first product in Eq. (5) involves pairs of transmis-
sion eigenvalues and favors sequences in which neighbor-
ing transmission eigenvalues do not approach each other
closely. (As we have ordered the transmission eigenval-
ues by magnitude, all differences Tm − Tn are positive.)
This suppresses fluctuations in the eigenvalue sequence
and ultimately results in conductance fluctuations of the
order of a single conductance quantum, which for large
N approach the asymptotic value

varG/G0 =
1
8β

. (6)

For large N , the one-point probability density of trans-
mission eigenvalues approaches

P (T ) =
1

π
√

T (1− T )
. (7)

The second product in Eq. (5) induces an asymmetry into
this bi-modal distribution, which for large N results in
the weak-localization correction

〈G〉 − N

2
G0 = G0

(
1
4
− 1

2β

)
(8)

of the ensemble-averaged conductance.
An insightful quantity derived from the joint proba-

bility density P ({Tn}) is the distribution P (s) of spac-
ings s = Tn+1 − Tn between neighboring transmission
eigenvalues. For uncorrelated eigenvalues with average
spacing s̄ one would expect a Poisson distribution,

P (s) = s̄−1e−s/s̄, (9)

while for the circular ensembles and N À 1, the spac-
ing distribution can be well approximated by the Wigner
distributions [5, 6],

P (s) =





π
2s̄2 s exp

(
−πs2

4s̄2

)
β = 1

32
π2s̄3 s2 exp

(
− 4s2

πs̄2

)
β = 2

218

36π3s̄5 s4 exp
(
− 64s2

9πs̄2

)
β = 4

. (10)

Lead-preserving and lead-transposing symmetries en-
tail further constraints on the scattering matrix. The
consequences of these constraints for the transmission
eigenvalue statistics are explored in the remainder of this
paper.

III. LEAD-PRESERVING SYMMETRIES

A useful reference point for our subsequent investiga-
tion of systems with a lead-transposing symmetry (in Sec.
IV) are open systems with a lead-preserving symmetry,
to which one can directly apply the standard ideas of
desymmetrization. The goal of the present section is to
reformulate the resulting random-matrix statistics for the
case of a lead-preserving symmetry with β = 1 as a stag-
gered level repulsion, as this will allow us to establish a
connection to the case of a lead-transposing symmetry.

A. Constraints on the scattering matrix

An example of a system with a lead-preserving reflec-
tion symmetry is shown in Fig. 1 (c). Figure 2 (a,b)
shows the desymmetrized version of the system, which
is halved at the symmetry line. Dirichlet boundary con-
ditions on the line of symmetry select scattering wave
functions with an odd parity, while Neumann boundary
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FIG. 2: (Color online) (a,b) Desymmetrization of the quan-
tum billiard with a lead-preserving reflection symmetry,
shown in Fig. 1(c). (c) Sketch of the individual transmis-
sion eigenvalue sequences of fixed parity. (d) Reorganization
as a staggered level sequence, where transmission eigenvalues
alternate after ordering by magnitude.

conditions yield even parity. Consequently, the transmis-
sion matrix t assumes a block structure where each block
corresponds to a given parity. As dictated by the one-
dimensional transverse-mode quantization in the leads,
the block of even parity has dimension N1 ≡ [(N +1)/2],
while the block of odd parity has dimension N2 ≡ [N/2]
(here [·] denotes the integer part of a number). Hence,
both blocks have either the same size (when N = N1+N2

is even), or the block with even parity is by one larger
than the block with odd parity (when N is odd).

The total transmission-eigenvalue sequence is therefore
obtained from a superposition of two sequences of size
N1 and N2 [for illustration see Fig. 2(c)]. In order to
fix the way we address the elements of this superposi-
tion, we impose the ordering of Eq. (2) and denote by
P the set of all strictly increasing sequences of indices
In ∈ {1, 2, 3, . . . , N}, where each sequence is of length
N1. Such sequences are of the form I = (I1, I2, . . . , IN1),
where 1 ≤ I1 < I2 < I3 < . . . < IN1 ≤ N . For
each sequence we also define a complementary sequence
Ī = (Ī1, Ī2, Ī3, . . . , ĪN2), which consists of the indices
1 ≤ Ī1 < Ī2 < Ī3 < . . . < ĪN2 ≤ N not contained in
I. This partition delivers two ordered subsequences TIn

and TĪn
.

B. Conventional random-matrix theory

Within random-matrix theory, the joint probability
distribution of the total transmission-eigenvalue sequence
is the sum of the corresponding probabilities for each way
to distribute the transmission eigenvalues into two sets
containing N1 and N2 eigenvalues. With each sequence
obeying the statistics of the appropriate Dyson ensemble

one finds with Eq. (5)

P ({Tn}) ∝
∑

I∈P

∏
m>n

(TIm − TIn)β
∏

m>n

(
TĪm

− TĪn

)β

×
N∏

l=1

T
−1+β/2
l . (11)

For large N , the separation into two effectively inde-
pendent systems with Dirichlet and Neumann boundary
conditions naturally results in a doubling of the con-
ductance fluctuations (6) and a doubling of the weak-
localization correction (8). Moreover, level repulsion is
only effective for transmission eigenvalues which are part
of the same sequence. This modifies the spacing proba-
bility density, which can be calculated from the general
expression [5]

P (s) =
d2

ds2

∏

i

∫ ∞

0

∫ ∞

0

pi(
ρi

ρ
s + y + z)dydz (12)

for multiple sequences i, where pi(s) is the spacing proba-
bility densities of each sequence, while ρi

ρ is the associated
fractional eigenvalue density.

For two sequences following the Wigner distribution
(10), the resulting spacing probability densities is (s̄ ≡ 1)

Pβ=1(s) =
e−2x2

2
+
√

π

2
xe−x2E(x), x =

√
πs

4
(13a)

Pβ=2(s) =
6x2e−2x2

π
+ 2

x− x3

√
π

e−x2E(x) +
E2(x)

2
,

x =
s√
π

(13b)

Pβ=4(s) =
x

3
√

π
(6 + 4x2 − 4x4)e−x2E(x) +

E2(x)
2

+
2x2

9π
(9 + 28x2 + 8x4)e−2x2

, x =
4s

3
√

π
, (13c)

where E(x) = erfc (x) denotes the complementary error
function.

C. β = 1: Reformulation as a staggered eigenvalue
sequence

In most situations encountered in random-matrix the-
ory, the combinatorial sum over partitions involved in the
superposition of eigenvalue sequences ([as in Eq. (11)]
cannot be performed explicitly. For the specific case
β = 1, however, the combinatorial sum over I in Eq.
(11) can be carried out (see below), which then yields a
closed-form expression

P ({Tn}) ∝
∏

m>n,
both odd

(Tm − Tn)
∏

m>n,
both even

(Tm − Tn)
∏

l

1√
Tl

.

(14)
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(A similar simplification does not present itself in the
cases β = 2 and β = 4.) This result finds its nat-
ural statistical interpretation as a staggered superposi-
tion of two sequences, which is illustrated in Fig. 2(d).
In such a superposition, the transmission eigenvalues in
each sequence are not distinguished by the parity of
the associated wavefunction under the symmetry oper-
ation. Instead, the transmission eigenvalues are ordered
by magnitude (irrespective of parity), and one sequence
is composed of all odd-indexed transmission eigenvalues
(of which there are N1) while the other sequence is com-
posed of all even-indexed transmission eigenvalues (of
which there are N2). Compared to the original super-
position of two independent sequences, this differs by the
additional constraint

TI1 ≤ TĪ1
≤ TI2 ≤ TĪ2

≤ TI3 ≤ TĪ3
. . . (15)

(which is satisfied when all the ordered indices In are odd
while the indices Īn are all even).

In order to demonstrate the equivalence of Eq. (11)
(for β = 1) and Eq. (14) we have to show that the level-
repulsion terms are proportional to each other (both ex-
pressions share the same product of one-point weights∏

l T
−1/2
l , and the proportionality constant is fixed by

normalization). We set out to work towards this goal by
defining a matrix

M =
( −v1 v2 −v3 v4 −v5 v6 . . . (−1)NvN

w1 w2 w3 w4 w5 w6 . . . wN

)
,

(16)
which is composed of column vectors

vn = (1, Tn, T 2
n , . . . , TN1−1

n )T , (17)
wn = (1, Tn, T 2

n , . . . , TN2−1
n )T . (18)

The determinant detM can be evaluated in two dif-
ferent ways. In the first way, we expand it in terms of
subdeterminants with N1 vectors vn from the first N1

rows and N2 vectors wm from the remaining rows. In
other words, we sum over all determinants of the form

det
( −v1 v2 0 v4 0 0 . . .

0 0 w3 0 w5 w6 . . .

)
, (19)

etc., where the indices of the vectors vIn form an or-
dered subsequence I and the indices of the vectors wĪn

are given by the complementary subsequence Ī. The al-
ternating signs in front of the vectors vIn can be pulled
out of the determinant at the cost of an overall fac-
tor (−1)I1+I2+...+IN1 . Next, we use permutations of
neighboring rows to bring all vectors vIn to the left
(into row n). This results in an additional sign factor
(−1)(I1−1)+(I2−2)+...+(IN1−N1). The determinant of the
resulting block matrix factorizes. Overall, this expansion
yields

det M = (−1)N1(N1+1)/2

×
∑

I∈P
det(vI1 ,vI2 , . . . ,vIN1

) det(wĪ1
,wĪ2

, . . . ,wĪN2
).

(20)

Each subdeterminant is of the form of a Vandermonde
determinant, and therefore

det M = (−1)N1(N1+1)/2

×
∑

I∈P

∏
m>n

(TIm − TIn)
∏

m>n

(
TĪm

− TĪn

)
.

(21)

Secondly, the determinant det M can be evaluated by
adding in Eq. (16) the first N2 rows to the last N2 rows.
This yields

det M = det
( −v1 v2 −v3 v4 −v5 v6 . . .

0 2w2 0 2w4 0 2w6 . . .

)
.

(22)
Proceeding again with the evaluation of subdeterminants
we are left with a single choice, namely, to select vectors
vn with odd index and vectors wn with even index. Ac-
counting for all signs and now also factors of two, this
results in

detM = (−1)N1(N1+1)/2 2N2

×det(v1,v3,v5, . . .) det(w2,w4,w6, . . .). (23)

As this again involves Vandermonde determinants, we
find

detM = (−1)N1(N1+1)/2 2N2

×
∏

m>n,
both odd

(Tm − Tn)
∏

m>n,
both even

(Tm − Tn). (24)

The two results Eqs. (21) and (24) deliver the remark-
able identity

∑

I∈P

∏
m>n

(TIm − TIn)
∏

m>n

(
TĪm

− TĪn

)

= 2N2
∏

m>n,
both odd

(Tm − Tn)
∏

m>n,
both even

(Tm − Tn), (25)

which shows that the level-repulsion term in Eq. (11)
is indeed proportional to the level-repulsion term in
Eq. (14). As already mentioned, the one-point prod-
uct

∏
l T

−1/2
l in both expressions is identical, and the

proportionality constant is fixed by normalization. It
follows that for β = 1, the independent superposition
of two transmission-eigenvalue sequences with N1 and
N2 levels (with N1 and N2 constrained to differ at most
by one) is identical to a staggered superposition of two
transmission-eigenvalue sequences with N1 and N2 levels,
which are correlated by the ordering requirement (15).

IV. LEAD-TRANSPOSING SYMMETRIES

Systems with a lead-transposing symmetry require a
separate treatment since the symmetry operation only
commutes with the Hamiltonian, but not with the cur-
rent operator (which changes its sign). In the presence
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FIG. 3: (Color online) (a,b) Desymmetrization of the quan-
tum billiard with a lead-transposing reflection symmetry,
shown in Fig. 1(e). (c,d) Eigenphases Θn of the matrix Q
on the unit circle, and their projection Eq. (28) which deliv-
ers the transmission eigenvalues.

of an applied bias, the symmetry operation exchanges
the electronic source and drain reservoirs. An obvious
symptom of this complication is the fact that the desym-
metrized system only possesses a single lead (see Fig.
3). Mathematically, the transmission matrix does not
assume a block structure but remains full. We will first
adapt the concept of desymmetrization to derive the con-
straints of the scattering matrix, and then turn to the
joint probability density of the transmission eigenvalues
in random-matrix theory. Just as in the previous section,
we then focus on the orthogonal symmetry class (β = 1)
and derive a closed expression for the joint probability
density, which again assumes the form of a staggered level
repulsion.

A. Constraints on the scattering matrix

The presence of a lead-transposing symmetry immedi-
ately results in the constraint r = r′, t = t′ (when time-
reversal symmetry is broken by a magnetic field, this can
be achieved by an inversion symmetry but not by a re-
flection symmetry). In order to further exploit the con-
sequences of the symmetry, let us inspect a time-reversal
symmetric system with a reflection symmetry, as shown
in Fig. 1(e). As shown in Fig. 3(a,b), the desymmetrized
versions are cut at the symmetry line, where they are
equipped with Dirichlet or Neumann boundary condi-
tions for wavefunctions of odd (−) or even parity (+),
respectively. Such wave functions are readily constructed
starting from the original system when one chooses in-
coming amplitudes of the form a(R) = ±a(L). The outgo-
ing amplitudes are then given by b(L) = (r±t)a(L). Con-

sequently, the scattering matrices of the desymmetrized
systems are given by

S± = r ± t. (26)

The desymmetrized systems only possess a single open-
ing. In order to revert to the scattering matrix of the
original system we invert Eq. (26). The transport in the
original system is therefore described by the transmission
matrix t = 1

2 (S+ − S−), which gives

tt† =
1
4
(2− S+S†− − S−S†+). (27)

The properties of this matrix—and especially, of its
eigenvalues Tn—are not separable and depend on the in-
terplay of both desymmetrized variants.

B. Conventional random-matrix theory

Random-matrix ensembles for systems with lead-
transposing symmetry can be obtained by assuming
that the scattering matrices S+ and S− of the desym-
metrized variants are statistically independent realiza-
tions of the appropriate standard circular ensemble. The
resulting ensembles are identical to those introduced by
Baranger and Mello [9], who based their considerations
on a maximal-entropy principle.

Earlier works have addressed isolated aspects of these
ensembles, but not the complete transmission-eigenvalue
statistics. For instance, it has been observed that a lead-
transposing symmetry increases the conductance fluctu-
ations [8, 11] but eliminates the weak-localization cor-
rection [11]. For large N , the conductance fluctuations
double, just as is the case for lead-preserving symmetries.
We now provide a complete explanation of these observa-
tions on the basis of the joint probability density of the
transmission eigenvalues.

The starting point of these considerations is the rela-
tion

Tn = sin2(Θn/2) =
1
2

(1− cosΘn) (28)

between the transmission eigenvalues Tn and the eigen-
phases Θn of the unitary matrix Q ≡ S+S†−, which fol-
lows from Eq. (27). As illustrated in Fig. 3(c,d), the
statistics of transmission eigenvalues is hence directly im-
posed by the statistics of the real parts cos Θn of the
unimodular eigenvalues eiΘn of Q.

In random-matrix theory, the eigenphases Θn follow
the statistics of the associated circular ensemble. This
is evident for the unitary ensemble (β = 2), which is in-
variant under the multiplication of an arbitrary fixed ma-
trix (it hence suffices, e.g., to assume that S+ is random
while S− is fixed, or vice versa). In the orthogonal case
(β = 1), the unitary transformation Q′ = S

−1/2
− QS

1/2
− =

S
−1/2
− S+S

−1/2
− results in a symmetric matrix with identi-

cal eigenvalues. Their circular statistics then follows from
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the fact that the circular orthogonal ensemble is invariant
under the symmetric involution with any fixed symmet-
ric matrix (here, S

−1/2
− ). The same transformation also

succeeds in the case of self-dual matrices (β = 4).
Because of the uniform distribution of eigenphases in

the circular ensemble [5], the one-point probability den-
sity P (Tn) is given by Eq. (7) for any finite N (i.e., not
only in the limit N → ∞) [11]. The joint probability
density of the eigenphases Θn is given by [5]

PΘ({Θn}) ∝
∏

m>n

[
σm sin

Θm −Θn

2

]β

. (29)

Here we ordered the eigenphases by their moduli,

0 ≤ |Θ1| ≤ |Θ2| ≤ |Θ3| ≤ . . . ≤ |ΘN | ≤ π, (30)

and denoted σn = sgn Θn. Since Eq. (28) does not dis-
criminate the sign of Θn we proceed to the distribution
of the moduli θn = |Θn|,

Pθ({θn}) =
∑

{σn}
PΘ({σnθn}). (31)

With the help of the relations

sin(θn/2) =
√

Tn, cos(θn/2) =
√

1− Tn, (32)

and also accounting for the Jacobian

dθn

dTn
=

1√
Tn(1− Tn)

, (33)

this yields the joint probability density [11]

P ({Tn}) ∝
∏

l

1√
Tl(1− Tl)

×
∑

{σn}

∏
m>n

[√
Tn(1− Tm)− σmσn

√
Tm(1− Tn)

]β

.

(34)

This expression is symmetric under the replacement
Tn → 1 − Tn, which explains the absence of weak-
localization corrections to the conductance. Moreover,
transmission eigenvalues do not repel each other when
σn = −σm, i.e., when the underlying eigenphases Θn lie
on the opposite (upper and lower) arcs of the unit cir-
cle [see again Fig. 3(c)]. As the sets of eigenphases on
both arcs is only weakly cross-correlated, this explains
the doubling of the conductance fluctuations for large N .

C. Staggered level repulsion for β = 1

While the general conclusions of the previous section
can be drawn for any β, it should be noted that Eq.
(34) still involves a combinatorial sum, and hence is sim-
ilar in status as expression (11) for systems with a lead-
preserving symmetry. We now show that a much more

detailed insight is possible for the orthogonal symmetry
class (β = 1), where the combinatorial sum in Eq. (34)
can be carried out explicitly (see below). The result-
ing statistics again assume the form of a staggered level
repulsion, but are not identical to Eq. (14) (which was
derived from the superposition of two independent level
sequences): For N an odd integer, we find

P ({Tn}) ∝
∏

m>n, both odd

(Tm − Tn)
∏

l odd

1√
Tl(1− Tl)

×
∏

m>n, both even

(Tm − Tn), (35a)

while for even N

P ({Tn}) ∝
∏

m>n, both odd

(Tm − Tn)
∏

l odd

1√
Tl

×
∏

m>n, both even

(Tm − Tn)
∏

l even

1√
1− Tl

. (35b)

Similar to Eq. (14), the joint probability density again
separates into two factors, each involving only every sec-
ond eigenvalue. In particular, neighboring levels are not
prohibited to approach each other closely, and statisti-
cal fluctuations of observables are enhanced, as has been
earlier observed for the conductance and the Fano factor
[8–11]. The correlation between the two level sequences
is again imposed only indirectly by the requirement that
the sequences are staggered. This ordering requirement is
independent of the parity of the wave function – indeed,
in the present case, parity is not well defined as the trans-
mission eigenvalues arise from the combined properties of
S+ and S−.

In order to derive Eq. (35), let us first inspect Eq. (29).
Because of the ordering (30), each factor σm appears m−
1 times, and therefore

PΘ({Θn}) ∝
∏

l even

σl

∏
m>n

sin
Θm −Θn

2
. (36)

We next pass over to the joint distribution of moduli
(31). In order to evaluate the combinatorial sum over the
σn we express the factor of sine functions in Eq. (36) as
a Vandermonde determinant,

∏
m>n

sin
Θm −Θn

2
= (−i)N(N−1)/2 detB({σnθn}), (37)

where Bml({Θn}) = exp(iΘml), m = 1, 2, 3, . . . , N , while
the index l runs in integer steps from −(N − 1)/2 to
(N − 1)/2. The multilinearity of the determinant then
yields

Pθ({θn}) ∝ (−i/2)N(N−1)/2 detC, (38)

where Cml = 2 cos(θml) for odd m and Cml = 2i sin(θml)
for even m.
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For every l > 0 we now add the lth column in C to the
−lth column, which cancels all sine terms in the latter
columns. The determinant det C = det D detE then fac-
torizes, where Dml = cos θml, m odd, and Eml = sin θml,
m even. If N is even, the index l is now restricted to
l = 1/2, 3/2, . . . , (N − 1)/2. For odd N , this index is
restricted to l = 0, 1, 2, . . . , (N − 1)/2 for the matrix D,
and to l = 1, 2, . . . , (N − 1)/2 for the matrix E.

For odd N we can write Dml as a polynomial of de-
gree l in cos θm, and Eml as sin θm times a polynomial of
degree l − 1 in cos θm. We only need to keep the high-
est monomial, as the other terms are linear combinations
of the rows of lower index l. This leaves us again with
Vandermonde determinants,

detD ∝
∏

m>n, both odd

(cos θn − cos θm), (39)

det E ∝
∏

l even

sin θl

∏

m>n, both even

(cos θn − cos θm). (40)

For even N , the index l is half-integer, and the elements
of D can now be written as cos(θm/2) times a polynomial
in cos(θm), while those of E can be written as sin(θm/2)
times such a polynomial. This yields

detD ∝
∏

l odd

cos(θl/2)
∏

m>n, both odd

(cos θn − cos θm), (41)

det E ∝
∏

l even

sin(θl/2)
∏

m>n, both even

(cos θn − cos θm). (42)

The joint probability density (35) follows by transforming
from θn to Tn, where the Jacobian is given by Eq. (33),
while the factors in the expressions for D and E can
be rewritten with the help of Eq. (32) and the relation
cos θn − cos θm = 2(Tm − Tn).

D. Large-N asymptotics

It is natural to ask whether the similarity of Eq. (35)
to Eq. (14) indicates a possible interpretation as a super-
position of two independent level sequences [from which
Eq. (14) was derived]. In Eq. (35), however, this inter-
pretation is prevented by the different one-point weight
terms associated to the even and odd indexed eigenval-
ues. A symptom of this difference is the fact that Eq.
(14) implies finite-N weak-localization corrections to the
conductance, while Eq. (35) delivers the absence of such
corrections, in agreement with the general conclusions in
Sec. IV B. Hence, the statistics of systems with a lead-
transposing and a lead-preserving symmetry (with β = 1)
only find a common ground when both are interpreted as
a staggered level sequence.

For the case of a lead-preserving symmetry, the frame-
work of superpositions of independent level sequences
of course provides a powerful tool for the derivation of
low-point correlation functions and local statistics [such

as the two-point correlation function, or the level spac-
ing distribution (13)]. We now argue that in the limit
N →∞, this framework can also be adopted for systems
with a lead-transposing symmetry.

In this limit, the transmission eigenvalues form a quasi-
continuum, and the asymptotical statistics follow from
the formal analogy to the statistics of coordinates of
a dense set of parallel line charges in one dimension
(the Coulomb gas), which exhibit a logarithmic repul-
sion [1, 5]. In leading order, the weight terms enter the
analysis of the statistical fluctuations only via the one-
point function P (T ): For fixed index n, the transmis-
sion eigenvalue Tn are confined to a small neighborhood
around a nominal equilibrium position T̄n, which is given
by the implicit equation n− 1/2 = N

∫ T̄n

0
P (T )dT . Sub-

sequently, the weight terms can be approximated by a
constant (with all the Tn fixed to T̄n), while the fluc-
tuations are exclusively governed by the level-repulsion
factors of the joint probability distribution. As the level-
repulsion factors are identical in Eqs. (14) and (35) one
concludes that the local statistics in both ensembles be-
come indistinguishable in the limit of N →∞.

We therefore obtain the following remarkable result of
purely statistical origin: For a lead-transposing symme-
try, as N is sent to infinity the local statistics (embodied
in low-point correlation functions) converges to that of a
superposition of two independent level sequences. This
is the case even though a classification of transmission
eigenvalues by parity is not possible. In particular, we ar-
rive at the prediction that in this limit, the level-spacing
distribution is well approximated by Eq. (13).

V. NUMERICAL INVESTIGATIONS

For the three standard Dyson ensembles of random-
matrix theory, the joint probability density (5) manifests
the celebrated repulsion between neighboring eigenval-
ues, since the probability to find two closely spaced ad-
jacent eigenvalues is suppressed as (Tn+1−Tn)β . In con-
trast, the joint densities (14) and (35) (both derived for
β = 1) describe sequences of reduced stiffness, where only
every second level is subject to mutual level repulsion. As
argued before, as long as N takes on moderate values,
the latter joint densities imply quantitative differences in
the transmission eigenvalue statistics for lead-preserving
and lead-transposing symmetries, while for large N these
statistics should converge onto each other.

In this section we illustrate the differences and simi-
larities between these scenarios for all three main sym-
metry classes (β = 1, 2, 4) via numerical sampling of the
random-matrix ensembles, and also compare to realis-
tic model systems. For convenient characterization of
the eigenvalue repulsion we employ the nearest-neighbor
spacing distribution P (s), as well as spacing distribu-
tions to more distant neighbors. As we will see, the lo-
cal statistics of systems with a lead-transposing symme-
try actually show a much weaker N dependence than for
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FIG. 4: (Color online) Probability density P (s) of
transmission-eigenvalue spacings for systems with a lead-
transposing symmetry, obtained from 104 random matrices
with N = 50. Smooth curves: Spacing probability den-
sity (13) for superpositions of eigenvalues of two independent
sequences from the standard circular ensembles. The inset
shows the Wigner distributions (10) from standard random-
matrix theory and the Poisson distribution (9) for uncorre-
lated eigenvalues.

systems with a lead-preserving symmetry. This feature
could be anticipated by (but also goes beyond) the ab-
sence of weak localization corrections in the one-point
function (discussed in Sec. IV B).

A. Random-matrix theory

We start with the characterization of the level statistics
within the various random-matrix ensembles. Let us first
consider the case of a lead-transposing symmetry with a
relatively large number of transport channels, for which
we expect that the local statistics is close to that of a su-
perposition of two independent level sequences. Starting
point of the numerical computations is Eq. (27), where
the matrix Q = S+S†− is drawn from the appropriate
Dyson ensemble. In order to obtain the nearest-neighbor
spacing distribution P (s), we unfold the eigenvalue se-
quences to a mean local spacing s̄ ≡ 1 [5, 6]. Figure 4
shows the resulting spacing distributions for N = 50. For
this large number of open channels we find that the nu-
merical histograms indeed match the predictions from the
superposition of two independent level sequences [solid
curves; see Eq. (13)].

For comparison, the inset in Fig. 4 shows the stan-
dard Wigner distributions (10), as well as the Poisson
distribution (9). In the Poisson distribution the eigen-
value spacing density is maximal at s = 0; for larger s
the probability density decreases monotonically. For the
Wigner distributions the most likely eigenvalue spacing
occurs at a finite value of s; for s → 0, the distributions
decay algebraically∝ sβ , while for s →∞ they decay as a
Gaussian. The distributions in the main panel combine
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FIG. 5: (Color online) Probability densities of spacings sn

to the first, second and third neighboring transmission eigen-
value for the random-matrix ensembles of systems with a lead-
transposing symmetry (solid curves) or a lead-preserving sym-
metry (dashed curves). In the left panels the number of trans-
port channels N = 4, while in the right panels N = 100. Top
panels: orthogonal symmetry class (β = 1). Middle panels:
unitary symmetry class (β = 2). Bottom panels: symplec-
tic symmetry class (β = 4). For each ensemble, the results
represent a sample of 104 realizations.

the partial absence of level repulsion for small s [with
P (s = 0) = 1/2] with the Gaussian decay of the Wigner
distributions for large s.

For large N , virtually identical results are obtained
for the conventional case of a lead-preserving symmetry.
This is demonstrated in detail in Fig. 5, which also shows
the spacing distributions to the second and third-nearest
neighbor. Here, solid curves are for a lead-transposing
symmetry, and dashed curves are for a lead-preserving
symmetry (corresponding to a superposition of indepen-
dent level sequences from the appropriate Dyson ensem-
ble). For N = 100 (right panels), dashed and solid curves
lie on top of each other and are practically indistinguish-
able. This clearly supports the convergence of the local
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FIG. 6: (Color online) (a) Nearest-neighbor spacing distri-
bution P (s) for the lead-asymmetric stadium billiard of Fig.
1(b), averaged over energies in the range N = 5 − 14, and
the lead-transposing symmetric stadium billiard of Fig. 1(e),
with N = 5, 6. (b) The same for open quantum kicked ro-
tators with N = 12. In both panels, the solid curves show
the Wigner distribution (10) with β = 1 and the prediction
of random-matrix theory for systems with a lead-transposing
symmetry [which can be safely approximated by Eq. (13a)].

statistics of both cases for large N .
The left panels in Fig. 5 show the level-spacing dis-

tributions for N = 4. In this case, the results for
a lead-transposing symmetry are distinctively different
from those for a lead-preserving symmetry. Interest-
ingly, the nearest-neighbor spacing distribution for a
lead-transposing symmetry is very similar for small and
large N ; the distribution for N = 4 is already well ap-
proximated by Eq. (13). In comparison, the nearest-
neighbor spacing distribution for a lead-preserving sym-
metry shows a much stronger N -dependence.

B. Comparison to model systems

In order to validate that realistic quantum systems can
indeed be described by random matrix theory (on which
all previous considerations are based), we compare our
predictions with numerical results for such systems. In
particular, we present results of numerical computations
for quantum billiards, which model a lateral quantum
dot, and for the open kicked rotator, which is based on
an efficient quantum map. We focus on systems in the
orthogonal symmetry class (β = 1) and contrast sys-
tems with a lead-transposing symmetry to systems with-
out any spatial symmetry.

The quantum billiards are derived from the stadium
geometry, with leads positioned to either break or con-
serve the reflection symmetry about the vertical center
line [see Figs. 1(b,e)]. The computations are performed
using a modular recursive Green’s function method [12,
13], with energies that permit 5 ≤ N ≤ 14 open chan-
nels in each of the two leads. As shown in Fig. 6(a), the

eigenvalue spacing distribution agrees well with the pre-
dictions of random-matrix theory, both in presence and
in absence of a lead-transposing symmetry.

The open quantum kicked rotator [14–16] is defined by
the scattering matrix

S = P [e−iε − F (1− PT P )]−1FPT , (43)

where ε is the quasi-energy,

Fnm = (iM)−1/2e
iπ
M (m−n)2− iMK

4π (cos 2πn
M +cos 2πm

M ) (44)

is the M×M -dimensional Floquet operator of the kicked
rotator, and P is an 2N ×M -dimensional matrix which
projects the internal Hilbert space onto the openings.
We assume that M is even and M À N . The reflec-
tion symmetry of the closed system is manifested in the
symmetry Fnm = FM−n,M−m, and the lead-transposing
symmetry of the open system is present when in addition
Pnm = P2N−n,M−m.

Figure 6(b) shows the spacing distributions obtained
for kicked rotators with symmetrical and asymmetrical
lead placement and N = 12. The data represents 6600 re-
alizations which are generated by varying the quasienergy
ε ∈ [0, 2π), the kicking strength K ∈ [10, 15], and the in-
ternal dimension M ∈ [498, 502]. Again, we find good
agreement with random-matrix theory, including the re-
duced eigenvalue repulsion in the lead-symmetric case.

The results in this section reveal clear signatures of
staggered level repulsion in realistic systems with a lead-
transposing symmetry (and β = 1). It is worth emphasiz-
ing that the applicability of this statistical concept [em-
bodied in the random-matrix results Eq. (35)] does not
rely on any pre- or postprocessing or -selection of the
transmission eigenvalues in the model systems (as there
is no intrinsic property of the transmission eigenvalues
or their associated scattering wave functions – such as a
parity – that could be used to divide these eigenvalues
into two sets).

VI. SUMMARY AND CONCLUSIONS

We analyzed the transport in open systems with a lead-
transposing or a lead-preserving symmetry via the com-
plete joint probability density of transmission eigenval-
ues, obtained in random-matrix theory.

For a lead-preserving symmetry, the standard concept
of desymmetrization reduces the problem to the inves-
tigation of independent non-symmetric variants of the
system. For a lead-transposing symmetry, however, the
transport characteristics only arise as a collective prop-
erty of the symmetry-reduced variants of the system. We
still found that both types of symmetry result in a similar
reduction of level repulsion, so that transmission eigen-
values can approach each other closely. For a large num-
ber of transport channels N , the local eigenvalue statis-
tics for both types of symmetry indeed become indistin-
guishable.
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Our main analytical results concern a detailed expla-
nation of these features for systems which also exhibit
time-reversal and spin-rotation invariance (the orthogo-
nal symmetry class, with symmetry index β = 1). In
this case, the transmission eigenvalue statistics of sys-
tems with a lead-transposing or lead-preserving symme-
try find a common natural interpretation as a staggered
superposition of two independent level sequences. In such
a superposition the eigenvalues alternate between the se-
quences when they are ordered by magnitude. The joint
probability densities for the two types of symmetry only
differ in one-point weight factors. For lead-preserving
symmetries these weight factor incorporate 1/N correc-
tions for quantities such as the ensemble-averaged con-
ductance, while these corrections are absent for a lead-
transposing symmetry. This results in differences of the
local eigenvalue statistics when N is small, but becomes
insignificant when N is large.

While we concentrated on systems with discrete spatial
symmetries, our results can also be applied for discrete
symmetries of different origin (e.g., arising from internal
degrees of freedom) that yield equivalent constraints on
the scattering matrix.
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