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Let Tn be the operator algebra of upper triangular nxn complex matrices. Three families of limit algebras of
the form lim(7^J are classified up to isometric algebra isomorphism: (i) the limit algebras arising when the
embeddings Tnk-+Tnktl are alternately of standard and refinement type; (ii) limit algebras associated with
refinement embeddings with a single column twist; (iii) limit algebras determined by certain homogeneous
embeddings. The last family is related to certain fractal like subsets of the unit square.

1991 Mathematics subject classification: 47 D25.

1. Introduction

The isomorphism class of a direct limit of full matrix algebras (a UHF C*-algebra) is
completely determined by the supernatural number associated with the sequence of
ranks of the matrix algebras ([3]). A number of recent papers [1, 4, 5, 6, 8, 9, 10, 12, 13,
14] have been devoted to non-self-adjoint subalgebras of UHF algebras (and, more
generally, of AF C*-algebras). Usually, the algebras in question contain a canonical
masa in the sense of Stratila and Voiculescu [11]; often they are triangular: the
intersection with the adjoint algebra is the canonical masa. The purpose of this note is
to give a complete classification of three particular families of triangular subalgebras of
UHF algebras: The first family consists of those algebras which arise as the direct limit
of a system of upper triangular matrix algebras, where the embeddings are alternately
the refinement and the standard embeddings. The second family arises from refinement
embeddings with a twist (cf. [5]), and the third family is a class of homogeneous nest
subalgebras related to fractal subsets of the unit square.

For all classifications we use the topologized fundamental relation, which we believe
to be an effective and intuitive discriminant.

For the first family it will be convenient to write the full matrix algebras in the direct
systems which arise as tensor products; so our systems will have the form

Upper triangular subalgebras, Tklkl kn, in Mkt ® • • • ® Mkn are specified by giving a
total order to the minimal projections in the natural diagonal algebra Dkl (g> • • • ® Dkn,

107



108 A. HOPENWASSER AND S. C. POWER

where for each k, Dk is the algebra of diagonal matrices in Mk. Let [fc] denote the set
{1,2,...,k) and suppose that {e,| Je[fcm]} are the minimal projections of Dkm, totally
ordered according to the order on the index set. Then the set of minimal projections of
Dkl ® • • • ® Dkn is [eh ® ••• ®ein\ime[k^],m = l , . . . ,n} . Totally order this set by the
lexicographic order on the natural index set 7tm = 1[/cm]; this yields the order with respect
to which Tklk2 km is the algebra of upper triangular matrices.

Throughout this paper we fix one set of canonical matrix units for each algebra
Mkl ® • •• ® Mkn. These matrix units will be indexed by pairs of multi-indices i, j in
7C=i[fcJ: i f '=(»i.•••>'») and j = (ju---,j») then eu=eilh ® ••• ® eWn. Note that
etJeTklk2...*„ if, and only if, i^j (lexicographic order).

Now suppose that the (UHF) C*-algebra B is given as the direct limit of the system

Mkl ^Mkl ® Mh-+Mkl ® Mk2 ® Af»,-» • • •,

with unital embeddings which carry the diagonal algebras into diagonal algebras and
the upper triangular algebras into upper triangular algebras. Then this yields subsystems

and

with limits D and T respectively. We have DzT^B, D is a (regular) canonical masa in
B, and TnT*=D.

There are many isomorphism types of such canonical triangular algebras. Indeed,
certain UHF algebras contain uncountably many distinct types in each of the three
families under consideration.

The two embeddings used in the first family are the refinement embedding, p, and the
standard embedding, a, given by

p,: Mk^Mk ® M(: [ao]

and

o,:Mk->Mk® Mt:a^>a@---®a (t factors).

The positive integer t is the multiplicity of the embedding. Note that a, = AdUnopt for a
suitable unitary operator l/n induced by a permutation n of the minimal projections in
Dk ® Dt.

The action of pknt, on the matrix units of Mkl ® • • • ® Mkn may be described in terms
of indices as follows: the matrix unit bearing the indices (i1,...,in) and {ji,..-,jn) is
carried to the sum of all those matrix units in Mkl ® ••• ® M t n + 1 with indices
{iu...,in,h) and {jlt..., jn,h), where he\_kn+ J .

The permutation n for which akn+l can be expressed as AdUnopkn+i is obtained via a
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process of "reverse lexicography": the set [fcn + 1 ] x [k^ x ••• x [fcj with the lexico-
graphic order is totally ordered and has the same cardinality as [ I t j x ••• x [ d j x
[/cn + 1 ] . Let (^ [ fcn+jxr jc jx ••• x r j c j - ^ f c j x ••• x[fcj x[ /cn + 1 ] be the unique order
isomorphism between these two sets. Define n of the minimal projection with index
(ii,...,in,in+1) in Dkl ® • ® Dkntl to be the minimal projection with index

The classification of the family of direct limits of type

hi -* h,k2 ~* lkxkzk3 -*

appeared in [1, 5, 8], while classification of the corresponding family with p in place of
a appeared in [5, 8]. For each family, the supernatural number associated with the
sequence kl,k2,k3,... is a complete invariant, i.e. two algebras from the same family are
isoinetrically isomorphic if, and only if, their associated supernatural numbers are equal.
By the way it is evident that no refinement limit can be isomorphic to a standard limit:
the refinement limits are all nest subalgebras of the ambient U H F algebra while the
standard limits possess no invariant projections.

One direction of the classification result cited above follows from [8, Theorem 6.14]:

Theorem 1. Let D^T^Bi, i = 1,2, where Bt is a UHF algebra, £>, is a {regular)
canonical masa, and 7] is a closed subalgebra of Bt (or even a closed Di-bimodule) which
generates B; as a C*-algebra. If Tt and T2 are isometrically isomorphic than Bl and B2

are isomorphic C*-algebras.

This theorem will be useful in the classification of the pa-alternation algebras. See
also [5, Theorem 3.26 and 2, Theorem 3.3] for a similar result.

Another major tool in this classification will be the fundamental relation introduced
in [8]. Its value lies in the fact that it acts as a complete invariant for triangular
subalgebras of AF C*-algebras [9]. Given a triple D^T^B as above, the fundamental
relation will be a topologized relation defined on the maximal ideal space M(D) of D in
terms of normalizing partial isometries in I A partial isometry, v, in T is normalizing if
vDv*^D and v*Dv^D. For elements x and y in M(D), viewed as states on D, define
yR{T)x if, and only if, there is a normalizing partial isometry veT such that
x(d) = y{odv*), for all deD. [8, Lemma 6.3].

We shall need to specify the fundamental relation for the pa-algebras; for complete-
ness, we will do the same for the pure refinement and pure standard algebras, although
these are in the literature [8]. The task is made simpler by the fact that it is sufficient to
use the canonical set of matrix units for T in place of all normalizing partial isometries,
see [9].

If e is a matrix unit, let E = {(y,x)\yR(T)x via the matrix unit e}. The fundamental
relation is topologized by taking all such sets £ as a base for a topology on R(T). It
turns out that the basic sets, E, are compact in this topology, and this will be useful
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later in classifying the twisted refinement embeddings. This topology is not the same as
the relative product topology obtained from the Gelfand topology on M{D). The main
theorem in [9] states, amongst other things, that two canonical triangular subalgebras
of AF C*-algebras are isometrically isomorphic if, and only if, their associated
fundamental relations are isomorphic as topologized relations.

The first step in describing the fundamental relation is the identification of M(D) with
n™=l [fcn]. Indeed, x is completely determined by its values on the projections of D, each
of which necessarily lies in one of the finite dimensional subalgebras Dkl ® • • • ® Dkn. In
each such subalgebra there is a unique minimal projection, say e{xi Xn) = ex, ® ' " ®
eXn, at which x takes the value 1 and the index coordinates are coherent from level to
level; thus we may identify x with an element (xl,x2,x3,...) in n™= t [fcj. Conversely,
each point in n% x \k„] determines a state on D and this correspondence between M(D)
and n™= j [&„] is a homeomorphism with respect to the Gelfand topology on M{D) and
the product topology on n™=1 [/cn].

A projection of the form e = eiU in) in D corresponds to a subset of M(D); that
subset is {xenn°=i[kn]\x1 = il,...,xn = in}. Normalizing partial isometries, v, act by
conjugation e-*vev* on projections in D, and so carry certain totally ordered families of
projections {e(Xl Xn)} corresponding to points x in 7C=1[/cn] into other totally ordered
families; in other words, each v induces a partial homeomorphism on n™=, [/cj. In
particular, if i = (i1,...,in) and j = {ji,---,jn) then the matrix unit ei} has domain
{x\x1 = j 1 , . . . , x n = j n } , r a n g e {y\yi = ii,...,yn = in}, a n d a c t s b y ( A , . . . , ; B , x n + 1 , . . . ) ! - » •
(il,...,in,xn+ !,...)• (This follows from repeated use of the fact that the matrix unit with
indices (iu...,Q and (ju..., jn) in Mkl ® • • • ® Mkn is carried by p into a sum of matrix
units, each with indices of the form (il,...,in,xn+1) and (ju...,jn,xn + l).) Since the
canonical matrix units determine the fundamental order, we have yR(T)x if, and only if
y and x have a common tail (ye = xe, for all s>n) and the initial segment of y for this
tail, (y!,..., yn), precedes (x,,..., xn) lexicographically.

To determine the fundamental relation for the standard embeddings,

it is most convenient to reindex the minimal projections in each Dkl ® • • ® Dkn. (In
other words, we use a different isomorphism between M(D) and 7i"=1 [&„].) Recall that
Gk2'-Mkl->Mkl ® Mk2 has the form AdUn°pkl where n is induced from the total order
isomorphism (/>:[/c2]

 x [^lD^C'i] x [^2] with domain and range carrying the lexico-
graphic order. Replace the index <j>{i2,h) for a minimal projection in Dkl ® Dk2 by (ii,i2)
itself; the minimal projections of Dkl ® Dk2 are again indexed by [ki]x[&2], but now
the order is reverse lexicographic. Repetition yields the reverse lexicographic order on
each of the index sets [/cx] x ••• x [/cB] for the minimal projections of Dkl ® ••• ® Dkn.
Furthermore, with this reindexing, once again we have that a matrix unit in Mkl ® • • • ®
Mkn with indices i = (il,...,in) and j = (ji,...,jn) is carried to a sum of matrix units, each
with indices (il,...,in,xn + 1) and {jl,...,jB,xn + l), xn+l taking all values in [/cn+1]. Also
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the matrix unit ei} lies in Tk. kn if, and only if, i <rj (reverse lexicographic order). Thus,
we obtain yR(T)x if, and only if, y and x have the same tails and the initial segment of
y preceeds the initial segment of x in reverse lexicographic order.

The fundamental relation for the alternating embeddings,

lk0
 1kokl

can be obtained by alternating the procedures for p and a, or more simply from the
observation that ok2opki:Mko-*Mko® Mkl<g> Mk2 has the form AdU^opkik2 where n is
induced by the isomorphism

4>:[/cJ x [/c0] x [/c J^[/c0] x [fcj x [/c2],

domain and range ordered lexicographically. Relabelling the indices of minimal
projections as above, it follows that yR{T)x if, and only if, y and x have the same tails
and the initial segment of y precedes the initial segment of x in the "quasi-lexicographic"
order in which the highest even index of the initial segment takes precedence and we
then proceed down the even indexed terms and back up the odd indexed terms.

There is a variation of this which is notationally handy for the proof of the
classification of the alternating embedding: relabel the even terms so that they carry
negative indices (in reverse order, of course) and the odd terms so that they are indexed
by all the positive integers. If we then consider the system

then M(D) isomorphic to 7ini_00 [ s j X7t̂ °=1 [rn], and yR(T)x if, and only if, y and x
have the same double infinite tail (i.e. yj=Xj for j<—n and j>n) and the "middle"
segments (y-„,...,yn) and (x-„,..., xn) are ordered lexicographically.

As mentioned earlier, if two triangular subalgebras of AF algebras (with canonical
diagonals) are isometrically isomorphic, then their topologized fundamental relations are
isomorphic. We can use this fact to see that no algebra in one of the classes considered
above can be isometrically isomorphic to an algebra in another class. Of course, we
have already distinguished refinement embeddings from standard embeddings via the
respective existence and lack of invariant projections. The alternation embedding may
be distinguished from the refinement embedding in precisely the same way while the
distinction between alternation and standard is dealt with in [5, Ex. 3.2] with an
argument rather more complicated than the one below.

For xeM(£>), define the orbit of x to be {yeM(D)\yR{T)x}. Orbits and their
topological properties are preserved by isomorphism of fundamental relations. The
disjointness of the three classes of triangular algebra is apparent from the following
orbit structure properties of their fundamental relations. If T is a pure refinement
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algebra, then R(T) has one finite orbit (cardinality = 1; generator is x = (l, 1,1...)); one
dense orbit (generator is x = (kl,k2,k3,...)); while all remaining orbits are infinite and
non-dense. If T is a pure standard algebra, then R(T) has countably many finite orbits
(the generators are those x with tails in which all coordinates are l's), while all
remaining orbits are dense. If T is a pa-alternation algebra, then R(T) has one finite
orbit (cardinality = 1; generator is x = (..., 1,1,1,...)); uncountably many dense orbits
(generators have infinitely many coordinates greater than 1 in negatively indexed
locations); and uncountably many infinite, non-dense orbits (generators have at least
one coordinate entry greater than 1 while all but finitely many negatively indexed
coordinates are equal to 1). All of these facts have completely straightforward
verifications.

2. Classification of pcr-alternation algebras

We now turn to the determination of the isometric isomorphism classes of the
per-alternation algebras. Supoose T is the limit of a system

and S is the limit of

f t Pti qr a"2 T Ptz T . . .
^ ' J i i * ( i u i i r i u i i 2

If T and S are isometrically isomorphic then, by Theorem 1, their enveloping UHF
C*-algebras are isomorphic and so we must then have that the supernatural number for
the multiplicities associated with T—denote by sn(rhs,)—equals sn(thUj), the super-
natural number associated with S. On the other hand, the supernatural numbers
associated with the refinement multiplicities, sn(rj) and sn(tj), need not be the same since
we can modify finitely many embeddings without changing the limit algebra. This turns
out to be all the freedom available. Define two supernatural numbers to be finitely
equivalent if they differ by finite factors. Let ~ f denote this equivalence relation. With
the notation above, we have the following result:

Theorem 2. Let T be a pa-alternation algebra with refinement multiplicities rt and
standard multiplicities s,- and let S be another such algebra with refinement multiplicities tt

and standard multiplicities ut. Then T is isometrically isomorphic to S if, and only if,
sn(rj, st) = sn(th «,-), sn{rj) ~ f sn(tt) and su{s() ~ f sn(ut).

The necessity of the condition on the supernatural numbers will require a way to
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recover the ~ j-equivalence classes of sn(r{) and sn(st) from the fundamental relation
R(T). With O(x) denoting the closure of the orbit, 0(x), of x, the following notion is the
key.

Definition. A pair (x,x+)eM(D)xM(D) is a gap pair if x+ $0{x) and O(xT) =
O[x]u{x+}.

The first task is to identify which elements (x,x+) form gap pairs. For xeM(D) and
p>0, let MSp(x) = (x_p,...,xp), the symmetric "middle segment" of length 2p. For each
x € M{D), a neighbourhood base for x in the Gelfand topology for M(D) is given by the
family Np(x) = {y \ MSp(y) = MSp(x)}, p= 1,2,3,.... Observe that yeOfx) if, and only if,
for any p>0 there is an integer q>p such that MSJiy)<MSJix). (The order is
lexicographic.) From this it follows that O(x) # M(D) (non-dense orbit) if, and only if,
there is an integer p such that x,= 1 for all q^p. If x is to be part of a gap pair, it must
have non-dense orbit; thus, x must have a left tail consisting of l's. The next lemma
shows that if we add the requirement that x have a right tail consisting of maximal
elements, then we will have identifed all the elements x in M(D) which are the left
coordinate of a gap pair. The context for this lemma is the fundamental relation R{T)
for a pa — alteration algebra with refinement multiplicities rf and standard multiplicities
s;. M(D) is identified with Jrn^0[/cn], where fen = s_n when n<0 and kn = rn when n>0.

Lemma. If(x,x+) is a gap pair, then x has the following two properties:
(1) There is an integer n such that xm= 1, for all m^n.
(2) There is an integer p such that xq = kq for all q^p.
Conversely, suppose that x satisfies (1) and (2) and that p is the smallest integer for which
(2) is valid. Define x+ by

,_! + ! ifj = P-l

Then (x,x+) is a gap pair.
Proof. We have already seen that condition (1) must hold when x is the left

coordinate of a gap pair. Suppose however, that condition (2) is not satisfied. So, for
infinitely many n>0, xn#/cn. Suppose that zeM(D) satisfies z£O(x) and xe0(z) We
claim that O(z)\0(x) has infinite cardinality. This is more than enough; even card
[0(z)\0(x)] ^ 2 for all such z shows that x cannot be the left coordinate of a gap pair.

As for the claim, when z does not have a left tail consisting of l's, we may produce
from z a point in 0(z)\0(x) by decreasing a single coordinate of z which lies sufficiently
far to the left. Under the hypothesis on z there are infinitely many ways to do this. On
the other hand, if z does have a left tail consisting of l's, then we can produce from x a
point in 0(z)\0(x) by increasing a single coordinate of x which lies sufficiently far to the
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right. Thus, if (x,x+) is a gap pair, x must satisfy both conditions (1) and (2). The
converse is straightforward to verify.

Proof of Theorem 2. Assume that T with refinement and standard multiplicities r,
and s, and S with refinement multiplicities t, and «, are isometrically isomorphic. As
mentioned earlier, it then follows that sn(rt,sD = sn(ti,u^ and R(T) is isomorphic to R(S)
as topological binary relations. Furthermore, this order isomorphism is implemented by
an order preserving homeomorphism il/:M(DT)-*M(Ds), where DT and Ds are the
respective canonical masas.

Let (x,x+) be a gap pair in M(DT)xM(DT). Then (\j/(x),4/(x+)) is a gap pair in
M(DS) x M(DS). The restriction of \\i to 0(x) induces an order isomorphism from O(x)
with the relative R(7>fundamental relation to 0(<A(x)) with the relative R(S)-
fundamental relation.

Since x is the left coordinate of a gap pair, there are integers n and p such that xm = 1
for all m^n and xq = kq for all q^p. Assume that n is the largest such integer and p the
smallest. Also, keep in mind that kj=Sj if j < 0 and kj=rj if 7>0.

Observe that yeO(x) if, and only if, ym=l for all m^n and (_vn + 1,...,_yp_1)<
(xn + 1 X p - j ) . The right p-tail of y is arbitrary. Let h be the cardinality of the set of
words preceding, or equal to, (xn+l,...,xp^1) in [/cn+1] x ••• x [kp-{]. Then O(x)s[h] x
7t,gp[/c(,] and the relative R(T) order on O(x) corresponds to the order in which initial
segments are lexicographically ordered and tails are the same, i.e. the pure refinement
order with multiplicities h, kp, kp+u.... (If it should happen that p = n + l, simply delete
h). Note that sn(r{) ~fsn(h,kp,kp+u...).

Now make exactly the same observations for 0{\li{x)). But O(x) ̂  0(i/f(x)) and they
both carry the fundamental relation of a pure refinement algebra, so their associated
supernatural numbers are equal. Thus sn(rt) and sn{ti) are finitely equivalent to the same
supernatural number, hence to each other.

It remains to show that sn(Si) and sn(Ui) are finitely equivalent. We shall write kn and
k'n, n # 0 , for the multiplicities in the defining systems for T and S. It suffices to prove
the following fact: there are integers q and h — 1 such that, for any integer / < q there
exists an integer j< — 1 so that ^...k^-y divides (h—l)kj...k_l. (Of course we also
need the symmetric fact expressed by interchanging the roles of the sequences k and k',
but this is obtained by replacing ip by ij/ ~1 in the argument below.)

Again we shall exploit the facts that \]/ preserves closed orbits generated by left
coordinates of gap pairs and that such closed orbits with the relative fundamental
relation are naturally isomorphic to the fundamental relations of pure refinement
algebras. A close orbit of this form is determined by integers n<m and a word / in
[/cn] x ••• x [/cm]. Denoting the orbit by [n ,m;/] we have [n ,m; / ] = {xeM{D)|x; = 1 for
i<n and ( x n , . . . , x m ) g / } . Abusing notation somewhat, we shall let / also denote the
number of words, w, in [/cj x • • • x [/cm] such that w ̂  / lexicographically.

Let /! = [—1,1,/cj]. Then B = tplA) = [p,q;h] for some integers p<q and word h. Let
l<q be given. Without loss of generality, we may assume l<p.

Choose an integer j< — 1 so that any element x in \j/~i\_l-l,l;k'e] has the property
that x, = l for all i^j. Let E = [j-l,j;kj] and let F = i]/(E) = [_v,w;/]. Because
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F2[/-I,/;&;], we will have w^l. We now have AzE, B<=F, ip(A) = B and ip(E) = F.
Now view £ and F as fundamental relations of appropriate pure refinement algebras.
The subsets A and B correspond to projections in the canonical masas and, since
ip(A) = B, these projections have the same traces. (The trace in each case is the unique
trace in the enveloping UHF C*-algebra). Easy calculations yield tr{A) — (kj...k_1)~

l

and tr[B) = (h — l){f-k'w...k'q-i)~
1. Here, / and h have the integer interpretation. Thus

f •k'w...k'q_1=(h—l)kJ...k-l. Since w<l, ^ . . . / c ^ divides (h—l)kj...k-1, as desired.
For the sufficiency of the conditions on the supernatural numbers, observe first that

we may as well assume that sn{rj = sn(ti) and sn(st) = sn(M,). (Limit algebras are
unchanged by modifying finitely many embeddings.) The suffiency flows out of the
simple observation that p and a commute, i.e. pras=aspr, for all r, s. Then, with
n2 = r1slnl and n3 = r2r1s2slnl = r2s2n2, the following diagram commutes:

From this, it is a routine matter to construct the usual zig-zag diagram between the
systems

T Pr'> T g " ) T Pr2> •••
'n\ 'ni 'ns

"T P'> T ^m y Pt2 . . .
mi 'rrt2 W13

to show that the limit algebras are isometrically isomorphic.

Remarks 1. In [10] it was shown that within a certain family of limits of upper
triangular matrix algebras the Banach algebra isomorphism type and the isometric
isomorphism type agree (10, Corollary 3.2 and Remark 3.4). In view of this, and the fact
that this family contains the pa-alternation limit algebras, Theorem 2 is also valid with
isometric isomorphism replaced by Banach algebra isomorphism.

2. During the preparation of this manuscript we learned that Y.-T. Poon [7] has
independently obtained Theorem 2. The method of proof seems to be quite different.

3. Classification of refinement-twist embeddings

An important aspect of the pa-embeddings is that they commute: a composition of
refinement and standard embeddings is independent of the order of composition. This
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allowed us to obtain easily the sufficiency condition for isomorphism in the theorem
above. Consideration of classes of embeddings without such commutation leads to a
much tighter connection between the limit algebra isomorphism type and the ordered
sequence of embeddings. We illustrate this rigidity phenomenon with the following
theorem. Once more the fundamental relation serves as an effective discriminant.

Write xr:Tkl-*Tkxr for the unital embeddings of multiplicity r given by {AdUkir)opr

where Us is the permutation unitary in Ms which interchanges the last two minimal
projections of Ds. We refer to these as elementary twist embeddings. These embeddings
and their limit algebras were introduced by Peters, Poon and Wagner [5]. Notice that
the composition xri °prz-Tkl^Tkirir2 coincides with Trir2:7I,-»7Iirir2 but not with pr2oxrr

Theorem 3. Let T = lim Tnk and S = lim Tmk with respect to elementary twist embeddings.
Then T and S are isometrically isomorphic if and only if there is an integer j such that
nk+J = mk for all large k.

Proof. In order to describe the fundamental relation R(T) and its topology it is
helpful to identify the Gelfand space M(DT) with the Gelfand space of the unital
C*-algebra of functions on [0,1] generated by characteristic functions of intervals [a, b)
where a<b and a = i/nk, b = j/nt for some i, j , k, I. In particular there are natural maps
n:M(DT)->[0,1], n[2):R(T)-^-[0,1] x [0,1]. The map n is surjective. Notice that T and
the pure refinement algebra /4 = lim(Tnk, pk), where pk has multiplicity rk = nk+1/nk,
fc=l,2,..., have a common subalgebra T0 = \imT°k. Here, T°k<=Tnk is the unital
subalgebra (1— p)C + Tnkp, where p is the largest proper projection of Lat Tnk (the
invariant projection lattice). It follows that ni2)(R(T)) contains 7r(2)(R(T0)), and this set is
the union of the appropriate rational superdiagonals of [0,1) x [0,1) together with the
diagonal A = {(t,t):te[0,1]}.

Every compact, open set E in R(T) corresponds to a finite union of graphs E(v)
associated with the canonical matrix units v (see [9]). Here E{v) is the set of pairs (y, x)
with y = a(x), a. is the partial homomorphism induced by v (as described in the
introduction), and x is a point of the domain of a. If clni in Tnt has image v in T then it
is elementary to verify that n{2\E(v)) is the set suggested by the following diagram:

y

/

k
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In the diagram

J

and ak is defined inductively by

, frk-2 1 , rk-2\
\nk + 1 nk nk + 1j

Thus, 7t(2)(£(i;)) is the union of the closed diagonal segments of the diagrams

for fc=l,2,..., together with the initial segment from (0,1—^-) to au and the limit
point, (p, 1), say.

Similarly, any matrix unit w in 7^k\T°k has a graph nm(E(w)) which is eventually
congruent to 7i(2)(£(i;)). More precisely, there exists s in (0,1) such that
([0,1] x [1 - s , 1]) n ni2\E(v)) is a vertical translate of ([0,1] x [1 - s , 1]) n 7r(2)(£(w)).

Suppose now that (f>:T->S is an isometric isomorphism. Then <j> extends to a star
isomorphism $:C*(T)-»C*(S) (by [6], or [2]) and so <f> preserves the unique normalised
traces on T and S. Also <£(T0) = S0 (by the proof of Theorem 1). If 0:K(To)->/?(So) is the
induced topological isomorphism it follows that we have a commuting diagram:

id

Let v' be the image of elmi in S. Since v' is a normalising partial isometry in S\S0,
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(f>~l(v') must be a normalising partial isometry in T\T0, and so n(2\E((j>~l(v'))) is
eventually congruent to 7i(2)(£(t;)). But, because of the commuting diagram this means
that the sequence (ak) for v is eventually congruent to the sequence (a!,), say, for v', by a
vertical translation. The desired conclusion now follows. •

Remark. It is not difficult to indentify the fundamental relation for the twisted
refinement limit algebra with multiplicites ku k2,... as it appears in the 7i™=1[fen]
representation. For most matrix units etj in Tkl kn, T(ey) = p(ey). This equality fails to
hold only when j = (ku...,kn). In this case, p(etj) is a sum of kn + l matrix units in
Til...*„ + , of which two of the terms in the sum must be modified to produce t(gy). The
summands of p(ey) have multi-indices (i,h) and (j,h), for h=\,...,kn + i (where we write i
for (ij, . . . , in), etc.). The summands to be modified are the last two, corresponding to the
action of the twist on the last two columns. The two replacement partial isometries have
indices (i,kn + 1),(j,kn+1-l) and (i,kn + 1 -l),(j,kn + i).

Tracking ei} forward under subsequent embeddings allows the identification of the
corresponding partial homeomorphism on M(D). The domain is the set of all sequences
in M(D) with initial segment j . If at least one jp # kp, then the partial homeomorphism
acts just as it does in the pure refinement setting. When j l = k1,...,jn = kn, the action on
a point (ki,...,kn, xn + l,...) can be described intuitively as follows: the first n coordinates
are converted to iu...,ia. Now look at the tail. If it begins with a coordinate ^fen + 1 —2,
the whole tail is unmodified. If it begins with kn+l — 1, then this term is changed to kn + l

and the rest of the tail is unmodified. If the tail begins with a string of maximal terms,
each of these is decreased by 1; the first non-maximal term, xm, is unchanged unless it is
equal to km— 1, in which case it is increased by 1. Subsequent terms are unchanged. If
the tail consists entirely of maximal terms, each is decreased by 1.

Although the partial homeomorphisms induced by etJ are different from those induced
in the refinement case (when j l = ki,...,jn=k^}, all but one point of the graph of eti in
the twisted embedding lies in the graph of some matrix unit in the refinement
embedding.

With T the twisted refinement limit algebra, we then have the following description of
R(T): If some xn#/cn, then yR(T)x if and only if y and x have identical tails and the
initial segment of y precedes the initial segment of x lexicographically. If xn = kn for all n,
yR(T)x if and only if ym = km— 1, for all m sufficiently large. These latter points are the
limit points on the right hand edge in the [0,1] x [0,1] representation.

4. Classification of some homogeneous limit algebras

If m = nr, define <j>r:Tm-*Tnr by 0(ay) = (ayl/;~'') where Ur in Mr is the cyclic backward
shift. For convenience we call such embeddings homogeneous embeddings; the associated
limit algebras T have the homogeneous property that subalgebras pTp, qTq determined
by interval projections p, q of equal trace, are isometrically isomorphic. We shall obtain
the following rigidity theorem by examining the fractal-like subsets of the square arising
as support sets for normalising partial isometries, as in the last section. Of course one
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could consider, more generally, homogeneous limit algebras relative to a sequence of
arbitrary permutation unitaries, but we focus here on the purely cyclic case.

Theorem 4. Let T = \imTnk and S = limTmic with respect to homogeneous embeddings
(associated with backward cyclic shifts). Then T and S are isometrically isomorphic if and
only if there is an integer j such that nk+j = mk for all large k.

Proof. As before, the trace functional gives rise to natural projections n:M(DT)->
[0,1], 7r(2):R(T)->[0,1](2), with similar maps for M(DS) and R(S). Assume that T and S
are isometrically isomorphic by an isomorphism <x:T->S. Once again, since trace is
preserved, we obtain a commuting diagram:

R{T)JLR(S)

[0,1] (2) .

id •[0,1] (2)

Let c.-.i+i be a superdiagonal matrix unit in Tnk with image v in T, and graph
E(v)<=R(T). Then the set E = ni2\E(v)) is an intersection EinE2n--- where Et is the
square of side \/nk in the i, i+l location of the n2 refinement of [0,1](2), and Ek + lcEk

is the finite union of rk = nk+Jnk subsquares of sidelength l/nk + l located in one of the rk

possible cyclic patterns. Note in particular that each Ek contains a superdiagonal
subsquare, E\ say, and that Ek+1 n Ek is always in the backward cyclic shift pattern. The
following diagram illustrates two generations of subsquares of a given square of Ek:

Recall that every normalising partial isometry is a sum of matrix units, modulo unitary
multipliers from the diagonal ([8, Lemma 6.3]). It follows from this, and the commuting
diagram, that n{2\E(v)) = 7t(2)(£(a(u))) is a disjoint union of sets E(w{),..., E(wk) asso-
ciated with matrix units w,, . . . ,wt in 7} for some j .

We claim that such an equality E = E(W1)V-KJ E(wk) is only possible if the scaling
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dimensions (nk) and (mk) are asymptotically equal. Here is one way to see this geometric
fact.

Note first that if nk + Jnk = 2 for all k^.k0, for some k0, then £ is a union of closed line
segments, and in the alternative case £ is a set containing no line segments. However, in
the former case if T and S are isometrically isomorphic then they have the same
supernatural number invariant, namely /2°° for some natural number /, and the
conclusion of the theorem follows trivially in this case. Accordingly we may assume the
latter "fractal" case for both (nk) and (mk).

It t is a subsquare ot the unit square, with vertices with rational coordinates, then
say that Fl,...,Fr is a permutation covering of F if Fu...,Fr are congruent closed
squares such that for some permutation n of { l , . . . , r} , F, is the square of the r2

refinement of £ located in the i, n(i) position. Call the reciprocal of the sidelength of a
set F, the size of the permutation cover. All squares are assumed to have sides parallel
to those of the unit square. For a given square F the set of sizes of permutation
coverings is an intrinsic property of F. We leave it as an elementary exercise to show
that for the set £ the set of permutation covering sizes is precisely {nk,nk+u...}. Since £
comes from a superdiagonal matrix unit it follows that one of wu...,wk is a
superdiagonal matrix unit in TmjcS. Its permutation covering sizes are ntj, mj+1,...,
and so the desired conclusions follows. •

Remark. In each of the proofs above we have made key use of the fact that the
topologised fundamental relation R(A) is an invariant for isometric isomorphism and
that this topology detects the essential algebraic structure of the algebra. We remark
that if R(A) is viewed simply as a binary relation on a topological space, then it does
not determine isomorphism type. More precisely, there exist non isomorphic triangular
subalgebras A, A' of AF C*-algebras, with canonical subalgebras C, C, such that there
exists a homeomorphism 6:M(C)-*M(C) with 9i2)(R(A)) = R(A'). To see this consider
the algebra Ao of compact operators on /2(Z) which have upper triangular representing
matrices with respect to the standard bases {en:neZ}. Let P + , P_ be the orthogonal
projections onto /2(Z+), /2(Z_) respectively, where Z + and Z_ are the nonnegative and
negative integers, and let U be a partial isometry on Z2(Z) with initial space /2(Z+) and
final space /2(Z_) such that Uen = eMn) for some bijection n:Z + -*Z_. Then the algebra
A = A0 + CU, with A0 = CP+ + CP_ +A0, is a canonical triangular subalgebra of an AF
C*-algebra. The fundamental relation, as a binary relation on the Gelfand space
M(A n A*) = { — 00} u l u { + 00}, is independent of the choice of n, and is simply the
total order on Z together with the points ( — 00, —00), ( — 00, +00), ( + 00, +00). On the
otherhand it is straightforward to show that two such algebras, associated with n, n'
say, are isometrically isomorphic if and only if there is an integer j such that
n(n) = n(n + j) for all large n in Z +.

REFERENCES

1. R. L. BAKER, Triangular UHF algebras, J. Fund. Anal. 91 (1990), 182-212.

2. K. R. DAVIDSON and S. C. POWER, Isometric automorphisms and homology for non-self-
adjoint operator algebras, Quart. J. Math. 42 (1991), 271-292.



CLASSIFICATION OF LIMITS OF TRIANGULAR MATRIX ALGEBRAS 121

3. J. GLIMM, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960),
318-340.

4. P. S. MUHLY and B. SOLEL, On triangular subalgebras of groupoid C*-algebras, preprint
1989.

5. J. R. PETERS, Y.-T. POON and B. H. WAGNER, Triangular AF algebras, J. Operator Theory 23
(1990), 81-114.

6. J. R. PETERS and B. H. WAGNER, Triangular AF algebras and nest subalgebras of UHF
algebras, J. Operator Theory, to appear.

7. Y.-T. Poon, A complete isomorphism invariant for a class of triangular UHF algebras, J.
Operator Theory, to appear.

8. S. C. POWER, Classifications of tensor products of triangular operator algebras, Proc. London
Math. Soc. 61 (1990), 571-614.

9. S. C. POWER, The classification of triangular subalgebras of AF C*-algebras, Bull. London
Math. Soc. 22 (1990), 269-272.

10. S. C. POWER, Algebraic orders on Ko and approximately finite operator algebras, / .
Operator Theory, to appear.

11. S. STRATILA and D. VOICULESCU, Representations of AF-algebras and the group U(co)
(Lecture Notes in Mathematics, 486, Springer-Verlag, New York, 1975).

12. M. A. THELWALL, Maximal triangular subalgebras of AF algebras, J. Operator Theory, to
appear.

13. M. A. THELWALL, Dilation theory for subalgebras of AF algebras, / . Operator Theory, to
appear.

14. B. A. VENTURA, Strongly maximal triangular AF algebras, Internal. J. Math. 2 (1991),
567-598.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ALABAMA UNIVERSITY OF LANCASTER
TUSCALOOSA, AL 35487 LANCASTER LAI 4YL

USA ENGLAND


