Lancaster EPrints

Homology for operator algebras III: partial isometry homotopy and triangular algebras.

Power, Stephen C. (1998) Homology for operator algebras III: partial isometry homotopy and triangular algebras. New York Journal of Mathematics, 4. pp. 35-56. ISSN 1076-9803

Full text not available from this repository.

Abstract

The partial isometry homology groups Hn dened in Power [1] and a related chain complex homology CH are calculated for various triangular operator algebras, including the disc algebra. These invariants are closely connected with K-theory. Simplicial homotopy reductions are used to identify both Hn and CHn for the lexicographic products A(G)?A with A(G) a digraph algebra and A a triangular subalgebra of the Cuntz algebra Om. Specifically Hn(A(G)?A) =Hn((G))ZK0(C(A)) and CHn(A(G) ? A) is the simplicial homology group Hn((G);K0(C(A))) with coecients in K0(C(A)).

Item Type: Article
Journal or Publication Title: New York Journal of Mathematics
Subjects: Q Science > QA Mathematics
Departments: Faculty of Science and Technology > Mathematics and Statistics
ID Code: 19440
Deposited By: ep_ss_importer
Deposited On: 13 Nov 2008 11:22
Refereed?: Yes
Published?: Published
Last Modified: 09 Oct 2013 13:12
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/19440

Actions (login required)

View Item