Lancaster EPrints

ATR microspectroscopy with multivariate analysis segregates grades of exfoliative cervical cytology.

Walsh, Michael J. and Singh, Maneesh N. and Pollock, Hubert M. and Cooper, Leanne J. and German, Matthew J. and Stringfellow, Helen F. and Fullwood, Nigel J. and Paraskevaidis, Evangelos and Martin-Hirsch, Pierre L. and Martin, Francis L. (2007) ATR microspectroscopy with multivariate analysis segregates grades of exfoliative cervical cytology. Biochemical and Biophysical Research Communications, 352 (1). pp. 213-219. ISSN 0006-291X

Full text not available from this repository.

Abstract

Although cervical cancer screening in the UK has led to reductions in the incidence of invasive disease, this programme remains flawed. We set out to examine the potential of infrared (IR) microspectroscopy to allow the profiling of cellular biochemical constituents associated with disease progression. Attenuated total reflection-Fourier Transform IR (ATR) microspectroscopy was employed to interrogate spectral differences between samples of exfoliative cervical cytology collected into liquid based cytology (LBC). These were histologically characterised as normal (n = 5), low-grade (n = 5), high-grade (n = 5) or severe dyskaryosis (? carcinoma) (n = 5). Examination of resultant spectra was coupled with principal component analysis (PCA) and subsequent linear discriminant analysis (LDA). The interrogation of LBC samples using ATR microspectroscopy with PCA–LDA facilitated the discrimination of different categories of exfoliative cytology and allowed the identification of potential biomarkers of abnormality; these occurred prominently in the IR spectral region 1200 cm−1–950 cm−1 consisting of carbohydrates, phosphate, and glycogen. Shifts in the centroids of amide I (≈1650 cm−1) and II (≈1530 cm−1) absorbance bands, indicating conformational changes to the secondary structure of intracellular proteins and associated with increasing disease progression, were also noted. This work demonstrates the potential of ATR microspectroscopy coupled with multivariate analysis to be an objective alternative to routine cytology.

Item Type: Article
Journal or Publication Title: Biochemical and Biophysical Research Communications
Uncontrolled Keywords: ATR microspectroscopy ; Cervical cancer ; Cervical intra-epithelial neoplasia ; Exfoliative cytology ; Principal component analysis ; Screening
Subjects: Q Science > QC Physics
Departments: Faculty of Science and Technology > Physics
Faculty of Science and Technology > Lancaster Environment Centre
Faculty of Health and Medicine > Health Research
Faculty of Health and Medicine > Biomedical & Life Sciences
Faculty of Health and Medicine
ID Code: 18636
Deposited By: ep_ss_importer
Deposited On: 30 Oct 2008 16:20
Refereed?: Yes
Published?: Published
Last Modified: 26 Jul 2012 15:19
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/18636

Actions (login required)

View Item