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Music, Intelligence and Artificiality 

Alan Marsden 

Abstract 

The discipline of Music-AI is defined as that activity which seeks to program 

computers to perform musical tasks in an intelligent, which possibly means human-

like way. A brief historical survey of different approaches within the discipline is 

presented. Two particular issues arise: the explicit representation of knowledge; and 

symbolic and subsymbolic representation and processing. When attempting to give a 

precise definition of Music-AI, it is argued that all musical processes must make some 

reference to human behaviour, and so Music-AI is a central rather than a peripheral 

discipline for musical computing. However, it turns out that the goals of Music-AI as 

first expressed, the mimicking of human behaviour, are impossible to achieve in full, 

and that it is impossible, in principle, for computers to pass a musical version of the 

Turing test. In practice, however, computers are used for their non-human-like 

behaviour just as much as their human-like behaviour, so the real goal of Music-AI 

must be reformulated. Furthermore, it is argued that the non-holistic analysis of 

human behaviour which this reformulation entails is actually informative for our 

understanding of human behaviour. Music-AI could also be fruitfully concerned with 

developing musical intelligences which were explicitly not human. Music-AI is then 

seen to be as much a creative enterprise as a scientific one. 

Introduction 

Computers are machines. Intelligence is a human characteristic, and though it is 

often taken to be the characteristic which distinguishes us from animals, computers 

rarely approach the intelligence even of animals. One of the characteristics of 

machines is that they are man-made, and in that sense artificial (the sense of artificial 

as “unreal” will be discussed briefly below). The characteristic which distinguishes 

them from other artificial things is behaviour, and this characteristic is one which they 

share with humans and animals. In fact everything has behaviour, in that everything 

responds in a particular way in interaction with an environment: if one drops a ball it 

bounces; if one drops a glass it smashes. The real distinction between machines and 

other artificial objects cannot be made without reference to human values and 

“intentions”: we value machines because of their behaviour and not because of other 

characteristics (e.g. their shape, dimensions and solidity, as in the case of chairs). We 

use machines to extend our own behaviour. A class of machines which has become 

particularly important during this century is machines whose behaviour concerns 

information. This class contains such ancient machines as the printing press and such 

common ones as the telephone — it is a mistake to regard “information technology”, 

at least in this sense, as something new.  

The characteristic which computers have which is genuinely new, and which sets 

them apart from other information-processing machines, is that their behaviour is not 

only controllable by the user (this is an important characteristic of all useful 

machines) but that their behaviour is definable by the user. Other machines can have 

this characteristic, both information-processing machines and others, but only within 

tight constraints. In the case of a computer, on the contrary, its behaviour is highly 

unconstrained, at least in the domain of the processing of information (the 

possibilities for physical behaviour are usually very limited). In fact, the ideal 



computer is a “universal processing machine” which is capable of performing any 

kind of behaviour in the domain of abstract information processing. At the level of 

programming, the “input” which a computer reads is a definition of a kind of 

behaviour, or in other words, a definition of an abstract machine. If computers are 

thus intended to be able to mimic any kind of behaviour, it is not surprising that there 

should be interest in programming computers to behave in ways that are human-like 

and which could be called intelligent. There has also been interest in having 

computers perform musical tasks, whether it be playing music, processing music, or 

creating music. Whether behaving in a musical manner implies behaving in a human 

manner is discussed below. For now, it is sufficient to note that the combination of the 

two — the intention to behave in a human-like fashion and to perform a musical task 

— is the topic of this paper. 

History 

An argument is presented below that no attempt to have a computer perform a 

musical task can be totally unconcerned with the issues of Artificial Intelligence, but 

customarily Music-AI has included only those musical computer systems which have 

involved a degree of complexity which is not the complexity of mathematical 

formulae, nor the complexity of large quantities of data, but rather a kind of 

complexity of ideas. As in other domains, certain tasks have been considered to 

involve intelligence while others have not. (This is a problematic issue, which will be 

returned to below.) Sound synthesis, for example, is an area which has attracted a 

great deal of very successful work, but little of it is regarded as being in the domain of 

Music-AI because it has concerned acoustic and psycho-acoustic phenomena and the 

mathematics of signal processing rather than being concerned with thinking. 

Similarly, the vast area of systems for capturing, processing and using performance 

data via sequencers and the like is excluded from the domain of Music-AI, as are 

systems for music notation. A brief historical survey is presented here, organised 

around different architectures of system. 

Early attempts at programming computers to perform musical tasks took an 

algorithmic approach. The objective was to describe the procedures which must be 

performed in order to produce a musical result. An example of high-quality work of 

this kind can be found in the research of Longuet-Higgins and his co-workers 

(Longuet-Higgins, 1978; Longuet-Higgins & Steedman, 1971). The objective of this 

work was a system which could transcribe music played on a keyboard (the work 

began in the days before MIDI) to music notation. This involves resolving issues 

about the representation of pitch (should a note be written as C sharp or D flat, for 

example), which involves determining key, and issues about the representation of 

rhythm, which involves both determining metre and coping with the variations from 

metronomic playing of a real performance (which can be quite severe). Algorithms 

with a moderate to high degree of success for these tasks were designed and 

implemented in the language Pop-11. Projects which have also taken an algorithmic 

approach have been directed at tasks as diverse as composition (e.g. Ames & Domino, 

1992; Cope, 1991) and transcription of lute tablatures (Charnassé and Stepien, 1992). 

While this approach can produce good results, if those results are to be applicable in 

other programs to perform other tasks, then it is up to the researcher to make certain 

that the algorithms are suitably designed and explained. Some authors, (Longuet-

Higgins among them) are excellent at explaining what their algorithm does; others are 

not so. The algorithms themselves, without explanation, cannot be expected to be 



transferable to a program to perform another task, however similar. At issue here is 

really the nature of the principal objective of research in Music-AI. Is it to design and 

implement computer systems which perform musical tasks (an engineering objective), 

or is it to discover and explain the knowledge which underlies these tasks (a 

cognitive-science objective)? Most researchers would claim the latter, but this can 

only be tested by achieving the first objective to some degree also. 

While every computer program ultimately comes down to algorithms, there has 

been considerable interest in devolving the translation from knowledge to algorithm 

to the computer so that the representation in which a system is expressed can be more 

directly a representation of the knowledge underlying a particular task. A number of 

formalisms intended to achieve this have been designed. The one most often been 

used in music, usually because of a perceived similarity with language, has been 

formal grammars. Another early example of Music-AI is the harmonic analysis 

system of Winograd (1968). The core of this was a systemic grammar which 

described the configurations of chords, harmonies and tonalities possible in 

homophonic tonal music such as the chorale harmonisations of J.S. Bach. This gave 

an extremely clear exposition of the “knowledge” of tonal theory. The grammar could 

be applied in the analysis of a piece of music to discover how the grammar accounts 

for the piece, and thereby, by reporting the steps of the derivation, producing a 

harmonic analysis of the piece. However, many different analyses were possible for 

any one piece (musicians will be familiar with the idea of different possible analyses, 

but they might be surprised at quite how many were allowed by Winograd’s grammar, 

which was quite a faithful reproduction of classical tonal theory.) The part of the 

system which derived analyses, therefore, called the “parser”, had to be quite complex 

and make use of other, procedural, “knowledge” in order to arrive at harmonisations 

which were acceptable. In principle a grammar should be applicable in either 

direction, i.e. to either analyse music of produce music. It might be possible to use 

Winograd’s grammar to produce harmonisations, but Winograd did not attempt this. 

A well-known grammar which did produce music was that of Baroni et al. (1992), 

who produced a number of grammars to generate chorale melodies, eighteenth-

century French chansons, and the text repetition patterns of Legrenzi arias. In both 

Baroni et al. and Winograd’s work, the business of translating the grammar to an 

algorithm was not devolved to the computer, as suggested above, but coded by hand. 

In the case of Kippen & Bel’s Bol processor (1989, 1992), however, the computer 

system operated directly on the grammars. The Bol processor was a system intended 

to assist in the understanding of a style of tabla drumming found in North India. It 

was capable both of producing new pieces of music, and of analysing existing pieces. 

Their publications also include excellent discussions of the principles of using 

grammars in this kind of work and of some of the issues involved.  

Another formal systems for representing knowledge applied in Music-AI is KL-

ONE, a well-developed system of knowledge representation, derived from frames and 

semantic nets, which expresses knowledge in terms of concepts and roles, and defines 

inheritance and other relations between them. Here again, the intention is to allow a 

clear expression of knowledge which is susceptible to direct implementation by 

computer. Furthermore, this knowledge is, in principle at least, expressed abstractly 

without any reference to its application in any particular task. KL-ONE is used to 

provide the symbolic layer of HARP, a hybrid system applied to a number of musical 

tasks, often involving real-time interaction between a performer and a music-

production system (Camurri et al., 1994). 



One of the problems Kippen & Bel identified in developing their Bol-Processor 

grammars was the difficulty of knowing what should go into a grammar: how is the 

researcher to determine what the rules of the grammar should to be? The common 

paradigm has been to make a first attempt, to examine its results, then, on a rather ad 

hoc basis, to attempt some revisions to the grammar which will correct the errors of 

the previous results. The cycle of testing and revision then begins again. Such a 

strategy will probably never produce a perfect system, though it might approach 

perfection, but the ad hoc nature of the rule revision is disconcerting: how can the 

researcher have any confidence that the revisions are the best to propose in the 

circumstances? It is a characteristic of an intelligent animal that it learns from its 

experience and performs better next time in similar circumstances. In fact, this 

behaviour is more characteristic of intelligence than is behaving well in every 

circumstance. One of the goals of Artificial Intelligence, then, is systems that learn, 

and these can be found in Music-AI also. Kippen & Bel attempted to build learning 

into their system so that rule strengths could be adapted automatically and so that at 

least some of the new-rule generation process could be automated (1989). Musical 

learning systems, however, are best exemplified in the work of Widmer, who has 

completed projects which learn counterpoint rules (1992) and which learn expressive 

performance (1996). Cope’s EMI system (1991), which learns to compose music in 

the style of the music given to it, does not properly belong in this category of 

intelligent learning systems because the learning requires a considerable degree of 

input from the user of the system also. While it is true that intelligent animals often 

learn best with teachers, these teachers do not interfere with the functioning of the 

animal in any way other than the normal channels of interaction. (Teachers do not 

resort to brain surgery, in other words.) Furthermore, it is a characteristic of intelligent 

animals that they learn spontaneously, and it is this characteristic that is most sought 

in AI research in learning. 

A number of characteristics of intelligent behaviour, including the one of 

spontaneous learning just mentioned, gave rise at the end of the 1980s to a new 

paradigm in computing variously called connectionism, parallel distributed 

processing, and neural networks. Two of the most important motivations were the 

observation that intelligent behaviour could not possibly arise from the mechanisms 

proposed by traditional “sequential” AI approaches at the speed at which it does in 

animals. Furthermore, it is a characteristic of intelligent animals that, in surroundings 

which they have never before encountered, and therefore surroundings for which they 

have no perfectly applicable knowledge, they are able to perform tolerably well. 

Traditional AI systems, however, when presented with something somewhat different 

from their intended task, generally perform spectacularly badly. This is sometimes 

referred to as “brittleness”. In the new paradigm, which is clearly explained in Leman 

(1992) and other sources, the behaviour of a system results from the net effect of the 

behaviour of a number, possibly a very large number, of simple but interacting 

processing units. When appropriately configured, such systems are capable of 

learning, in the sense that their behaviour approaches the desired behaviour. 

Furthermore they typically perform moderately well with unfamiliar input rather than 

exhibiting the brittleness of classical systems. Such systems have been used with 

remarkable success in such diverse domains as tonal theory (Leman, 1994, 1995), the 

classification of timbre (Cosi et al., 1994), and the quantisation of rhythm (Desain & 

Honing, 1992). Desain & Honing (1992) include a direct comparison of a classical 

and a network system performing the same task. From the engineering perspective, 

such systems often perform well. From the cognitive-science perspective, however, 



they involve a total shift of philosophy. It in inappropriate to use a network system in 

the hope of discovering the rules of tonal harmony, for example, at least in the form 

that they are traditionally expressed. The “knowledge” which a network system 

acquires during its learning is distributed through the connections of the network; one 

cannot necessarily examine the state of the network after training and directly extract 

from it a rule in the form “if X then Y”, as one often can from a learning system based 

on classical computing.  

The philosophical shift has justifications other than the utility of such network 

systems, expressed in Leman (1993), Lischka (1991) and Kaipainen (1996), but it is 

important to realise quite how different it is from the cognitive science which gave 

rise to grammars, KL-ONE, and the like. Nor should it be thought that the new 

paradigm has supplanted or should supplant the former one. Much recent work 

involves both kinds of computing (e.g. Camurri & Leman, 1992 and Goldman et al., 

1995), often assigning “subsymbolic” processing to a network while “symbolic” 

processing is carried out using a more traditional kind of architecture. However, care 

must be taken in ensuring that the mixture of the two philosophies is sound if the goal 

of improving understanding musical behaviour — the cognitive-science goal which 

was argued above to the fundamental to Music-AI — is not to be compromised. 

Philosophy 

In a precise discussion of Music-AI, there are three terms to be defined: “music”, 

“artificial” and “intelligence”. Some adumbrated definitions were given above. 

“Artificial”, for example, was taken to mean man-made and not occurring naturally in 

the universe. By this definition music is also artificial, as is any other human product. 

A tightening of the definition is warranted, restricting the word “artificial” to refer to 

human products which are intended to emulate something else (which probably, but 

perhaps not necessarily, occurs naturally), hence artificial pearls, etc.  

“Music” is notoriously difficult to define (for a straightforward discussion of some 

of the issues, see Davies, 1978), but all agree that while it involves sound, it is 

impossible to define solely in terms of sound. The classic test case is John Cage’s 

4’33”, during the performance of which the only sounds heard are those which 

happen to occur in the environment — the performer is not instructed to make any 

sounds at all. If this piece, in which any sound can occur, is to be taken as music, then 

any sound is music and so all sounds are music. This is clearly unsatisfactory as a 

definition of the word as normally understood. Even if this extreme case is not 

admitted as a piece of music, it is not difficult to name pieces in which all kinds of 

normally non-musical sounds have been included, and it is extremely difficult to find 

physical differences between the sounds which characterise music and those that do 

not. Thus definitions of music generally make reference in some way or other to 

human activities, whether composition, performing or listening. If, then, the very 

definition of music requires reference to human activities, any computing system 

which is supposed to perform a musical task must also take account of those human 

activities. As an example, consider a sound-synthesis system, a common kind of 

musical computing system which is not normally considered an example of artificial 

intelligence. In designing any such system, choices must be made about the frequency 

ranges to be accommodated (and hence the sampling rates to be used). For a musical 

system, the appropriate choices are to set the frequency range to the maximum 

humanly audible range, since the results are intended to be listened to by people and 

not bats or any other animal with a different audible range. Pursuing the example 



further, suppose that the designer wishes the user of the system to be able to specify 

the sound output in terms of individual sound events, which we might call “notes”, 

and to specify the time of occurrence for each note. This will require some reference 

to the phenomena by which we segment a stream of sound into separate events, and 

also an understanding of where the perceived “start-time” of a note is in relation to the 

physical beginning of the sound, its amplitude envelope, etc. Going yet further, the 

user might want to be able to specify the grouping of notes into phrases and have this 

phrasing reflected in the synthesised sound. This would require an understanding of 

the relation of variations in timing and other factors to perceptions of phrase 

beginnings and endings (see Todd, 1985; Sundberg, Friberg, & Frydén, 1991). The 

point of the argument is that if any system is to be musical it must make reference to 

human behaviour, and to that extent any musical system must involve artificial 

intelligence. There is no obvious place at which to draw a boundary between where 

one must take into account human behaviour which is not intelligent, and where one 

must take into account behaviour which is intelligent. By this argument, furthermore, 

the discipline of Artificial Intelligence becomes not a peripheral specialisation but a 

core element of successful computer science. 

“Intelligence” is the most difficult of the three terms to define, and the one whose 

definition is most contentious. It was suggested in the introduction above that 

artificial intelligence meant programming computers to behave like people. Later, 

spontaneous learning and performing with moderate success in unfamiliar 

surroundings were suggested as characteristics of intelligent behaviour. A third 

definition is suggested by a common usage of the word “intelligent” with respect to 

software. An “intelligent help system”, for example, is one which determines the 

information to be provided to the user on the basis of the user’s recent activities. In 

other words the behaviour of the system is sensitive to its environment. This is true of 

every piece of software — its output it determined by its input — but here there is a 

significant difference in the domain of the input. Normally software uses a very 

restricted input; so-called “intelligent” software instead attempts to receive input from 

as much as possible of its environment. Clearly this is related to the definition of 

intelligent behaviour as performing moderately well in unfamiliar surroundings, 

because attention is payed to the totality of the surroundings. Furthermore, if the 

environment is taken to include the past, then this definition of intelligence as 

behaving appropriately in the environment will include learning also. However, 

computers generally have extremely limited channels for receiving input from the 

environment, and considerable work is needed in this area if we are to see behaviour 

which is really intelligent under this definition. In fact, if we really want an intelligent 

computer to behave in the same way in which a human would in a given environment, 

including that environment’s past, then the computer would have to have the same 

channels of input, the same memories, the same means of acting upon the 

environment, and indeed the same objectives. In short, the computer would be that 

person. Artificial intelligence under this definition, then, is an impossible goal. 

Some of these difficulties are overcome by limiting the channels of 

communication, as in the definition of intelligence encapsulated in the “Turing test”, 

proposed by Alan Turing at the very beginning of the discipline of Artificial 

Intelligence. The test is as follows. Two rooms have teletypes (the technicalities are 

not significant — any restricted means of communication usable  by both computers 

and humans would do) as the only means of communication with the outside world. 

In one room is a computer connected to the teletype, in the other a person. Those on 



the outside may ask questions via the teletype, in a restricted domain. If they cannot 

tell from the responses to the questions which room contains the computer and which 

the person, the computer has passed the test and may be described as intelligent. A 

musical version of this test could be proposed also. (For a similar argument making a 

point related to the one above about the essentially human nature of musical activity, 

see Cross, 1993.) Two rooms are set up with a channel by which music is 

communicated to the outside world. We might also allow a channel by which some 

sort of feedback (applause, perhaps, or other pieces of music) goes into the room. In 

one room is a composer; in the other is a computer. The test is passed when those 

outside the rooms cannot tell which contains the computer. While it might be possible 

for a computer to pass this test in practice (i.e. in an empirical sense), there is an 

argument that a computer could never pass the test in principle (i.e. in a rationalist 

sense). (While the test might appear inherently empirical, because it fundamentally 

involves observations, it is generally not conducted in practice but as a “thought 

experiment”, and so is not empirical at all.) It is often argued that originality is an 

essential characteristic of music. (From the perspective of composing, this is 

commonplace; for a perspective from listening, see Kunst, 1978). Computers are 

digital automata, and so their behaviour is always, in principle at least, predictable and 

therefore cannot be original. Thus a computer cannot, in principle, pass this test. 

There is a persuasive counter-argument that dynamic systems, and so-called chaotic 

systems in particular, can be deterministic, in the sense that their future state is 

entirely determined by their current state, but yet unpredictable. In fact such systems 

have been used for creating both music and visual art (the visual examples are quite 

well known; see Little, 1993 for a musical example). However, this depends, in 

principle, on the dynamic system operating in an infinite domain (e.g. using rational 

numbers), and computers can only simulate this by a finite domain of very many 

elements. The argument in principle, therefore, remains. The argument in practice will 

not be defended because clearly it is a hopeless task for a person to know all the 

details of the state of a computing system, finite as the number of possible states 

might be. Indeed, it is now to matters of practice that we will turn. 

Pragmatics 

If the goals of Music-AI suggested above — behaving in a completely human-like 

way and composing music indistinguishable from humanly-composed music — are 

impossible to achieve, what should Music-AI realistically aim at? In fact, we 

frequently want superhuman, and therefore non-human, behaviour from computers. 

We often want computers to process data in larger quantities, at greater speed and 

with greater accuracy than is humanly possible. In these cases, putting aside questions 

about whether the computer’s behaviour is really intelligent, it is precisely because it 

is artificial (other-than-human) that it is useful. Thus the real goal in developing a 

computer system is often for it to behave in a human-like manner in some respects but 

in a non-human-like manner in other respects. There are two difficulties of definition 

here. Firstly, the boundaries must be defined: in which respects is the behaviour to be 

human and in which respects is it to be super-human? Secondly, there is a difficulty in 

knowing what human behaviour is when constrained in the appropriate respects. We 

can realistically know what human behaviour is in total by observation. To observe 

only certain respects we are in danger of either getting a false picture or of distorting 

the behaviour so that it is no longer truly human. To take a concrete example, 

consider the case of designing a system which is to transcribe musical rhythms into 

notation. (For actual systems of this kind, see Lee, 1985 and Desain & Honing, 1992.) 



What is the human behaviour which the system is to mimic? We could attempt to 

answer this question by examining musicians’ transcriptions of actual music. But real 

music contains details other than rhythm, and these almost certainly have an influence 

on the transcription. We could expand the task domain of the system so that some of 

these other factors are taken into account, but, by the argument above, there will 

always be factors not taken into account. On the other hand we could attempt to 

answer the question by having musicians transcribe material in which these other 

details were neutralised (e.g., all pitches could be the same). Now, however, the 

musicians would not be dealing with real music and so would be performing an unreal 

task. Thus we are caught between having to deal with only partial information or 

information which is of doubtful validity. The behaviour of the computer system is 

thus artificial also in the sense that even the supposedly human-like part of its 

behaviour is not really human behaviour. 

Although this has been described as a problem (and it is a problem also for 

psychology), it can be turned into a virtue. While the arguments above would suggest 

a holistic approach to the study of human behaviour, it can be argued that the 

understanding we seek is not holistic but analytical. Indeed if we are to design 

computer systems which behave sometimes like humans and sometimes not, we need 

to have an analytical, piece-by-piece, understanding of human behaviour. While the 

artificial division of human behaviour described above is anathema to a holistic 

approach, it is an essential tool in an analytical approach. Anyone taking this 

approach has to accept the artificiality, but its effects can be reduced, for example, by 

taking “slices” of human behaviour in different ways and attempting to unify the 

results, thus neutralising the effects of ignoring relevant factors or of studying an 

artificial task. (The rhythm-transcription study alluded to above, for example, might 

examine the results of both of the kinds of investigation suggested there, and it might 

also take into account data from studies of the grouping of notes in the pitch domain, 

since grouping is probably a factor in rhythm transcription and we might presume that 

common grouping behaviours are used in both domains.) But, on the other hand, the 

artificial division of human behaviour can be regarded as a tool to reveal the 

component details of behaviour, like a kind of dissection. It is only when we impose 

an artificial task that we can begin to break down behaviour into manageable pieces. 

The arguments here are closely related to those between network computing systems, 

which operate in a holistic manner and suggest a holistic approach to behaviour, and 

symbolic systems which operate in a step-by-step manner and suggest an analytical 

approach. 

Finally we must consider the possibility that artificial intelligence is not 

necessarily a copy of human intelligence. The definition of intelligence as “behaving 

appropriately in the current environment”, discussed briefly above, does not make any 

necessary reference to humans, so long as we can define “appropriately” without 

reference to humans. Appropriate behaviour might be defined, for example, as 

behaving in a manner which leads to a certain goal. Again, most software does this; 

the difference in “intelligent” software is that its response to the environment is more 

perspicuous and its means of achieving goals more adaptive. This suggests the 

possibility of computer systems which behave intelligently, but which do so in a 

manner quite different from our own: artificial intelligence in which “artificial” means 

unreal and unusual as well as man-made. For musicians this is an attractive 

possibility, since it suggests the generation of entirely novel approaches to music, but 

approaches which, because they are intelligent, are interesting and productive. The 



most obvious application of this kind of system would be in composition, whereby 

entirely novel kinds of composition could be generated. (See Laske, 1989, for further 

discussion.) There could equally well be applications in analysis, where an objective 

is often to arrive at a novel understanding of a piece of music, whereby unforeseen 

approaches could arise. The same applies also to performance. 

By both of the last two arguments, the argument that artificial intelligence is an 

analytical tool for the study of behaviour, and the argument that artificial intelligence 

can be explicitly non-human, Music-AI becomes a kind of creative enterprise rather 

than a purely scientific one. Designing explicitly non-humanly intelligent systems is 

obviously a creative task. Using artificial intelligence as an analytical tool, however, 

is less clearly so. We only need recognise, though, that at each stage of the process of 

developing a system we are making choices: when deciding on the domain of the task; 

when deciding how to circumscribe and observe the human behaviour to be 

mimicked; when combining data from different kinds of observations. Overall, one is 

creating a perspective on, and model of, human behaviour. Neither is it immediately 

obvious that the criteria by which the perspective and model are to be judged are 

scientific ones and not artistic ones. It is not so bizarre, then, to couple the artistic 

realm of music and the science of computation into the enterprise of Music-AI. 
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