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Abstract – The paper presents a solution to the problem of
planar contour tracking with a force-controlled robot. The
contour shape is unknown and is characterized at each time
step by the curvature together with the orientation angle and
arc length. The unknown contour curvature, continuously
changing, is supposed to be within a preliminary given
interval. An Interacting Multiple Model (IMM) filter is
implemented to cope with the uncertainties. The interval of
possible curvature values is discretized, i.e., a grid is formed
and several Extended Kalman filters (EKFs) are run in
parallel. The curvature estimate represents a fusion of the
values from the grid with the IMM probabiliti es. The
orientation angle estimate is also a fusion of the estimates,
obtained from the separate Kalman filters with the mode
probabili ties. A single-model EKF is implemented to localize
the unknown initial robot end-effector position over the
contour. The performance of both algorithms is investigated
and results,  based on real data, are presented.

Key words – estimation, robotics, IMM filter, model
and noise uncertainties, Kalman filter, force control

I. INTRODUCTION

Surface tracking along planar paths is required in
several industrial applications such as cleaning, poli -
shing and deburring of cast pieces. Often, these opera-
tions have to be executed by robots in the presence of
uncertainties (e.g. for the piece position and orientation,
shape deformations called burrs, calibration errors).
Moreover, the robotic operations should be performed
with a high speed and accuracy. Previous works
devoted to problems of such kind are [4, 5, 2, 3, 7].
Different approaches have been developed, both model-
based [4, 5] and non-model-based [2, 3, 5], in which
mathematical models are not present and look-up tables
with data are used.  A visual servoing-based determinis-
tic approach has been proposed in [2, 3] where, with the
help of a vision system, tracking and force control tasks
are performed. The visual information is not only used
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to estimate the tool position around the contour, but
also to predict approaching of sharp edges and corners.

This paper presents a solution for tracking contours
with continuously varying curvature, based on the
multiple-model approach, and, in particular, by the
Interacting Multiple Model (IMM) estimator [1, 8]. The
case with known initial position over the contour is
considered and the continuously varying curvature is
replaced by discrete values within its uncertainty
interval. The localization of the robot end-effector over
the contour with known curvature and unknown initial
position is performed by a single EKF.

II . PROBLEM STATEMENT

In many industrial applications a robot equipped with a
tool is required to track planar contours moving with a
given tangential velocity, keeping a specified orienta-
tion with respect to the normal of the contour, and
applying a preset normal contact force. Encoders on the
robot measure the end-effector's position in x  and y

directions.

In the present work the problem of tracking contours
with an arbitrary form, like the object represented in
Fig.1, is considered. To follow this contour the
orientation angle θ , the angle between the x  axis of
the absolute (fixed) coordinate system and the tangent
to the contour (Fig.2), is estimated. The normal and
tangential directions are denoted by n and t, respective-
ly, and  the applied force by nF .

The following problems are considered here: i) iden-
tification of the contour geometry, i.e., computation of
the contour curvature; ii) contour profile tracking
(following)  - the orientation angle kθ  has to be estima-

ted at each time instant k , and also the curvature as a
function of the arc length from the measured end-
effector positions;  ii i) localization of the initial robot
end-effector position along the contour.
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Fig.1. The considered planar contour

The velocities kxv ,  and kyv ,  of the tool in x  and y  di-

rections with respect to the absolute coordinate system
(Fig. 2) can be computed as follows

    ( ) T/XXv kkk,x −= +1 , ( ) T/YYv kkk,y −= +1    (1)

from the measured in two subsequent points positions
( kX , kY ) and ( 1+kX , 1+kY ), corrupted by noise.

f/T 1=  denotes the  sampling interval and f  the

sampling frequency.

Fig. 2. The contour with the absolute (fixed) coordinate
system xOy  and the moving coordinate system nPt ,

tangent to the contour

From the velocities of the tool the measured orientation
angle kθ  can be determined at each time step as

follows

ky,

kx,
k v

v
arctan=θ (2)

and the measured curvature as

kx

k
k v ,

ω
−=k ,           (3)

where kω  is the rotational velocity. Due to the pre-

sence of uncertainties as measurement errors, burrs
(small contour deformations), the variables (1),(2) and
(3) are inaccurate.

III. IMM ALGORITHM FOR PLANAR CONTOUR TRACKING

1.1 State and measurement models

Planar contour tracking can be considered as a hybrid
stochastic estimation problem (with continuous and
discrete uncertainties) and can be described by [1]

),,(1 kkkk mxfx η=+ ,            (4)

( )kkk xgz ξ,= ,           (5)

where kx  is the system state vector, kz  is the measure-

ment vector, kη  and kξ  are respectively the process

and measurement vectors, assumed zero mean white
Gaussian noises, mutually uncorrelated, with covarian-
ces Q  and R .  Functions (.)f  and (.)g  are nonlinear

in general. The unknown parameter km  corresponds

here to the unknown contour curvature. It is supposed
that the curvature change can be governed by a first-
order Markov chain with transition probabilities

fijkij njikmmkmP ...,,2,1,)},(|)1({, ==+=π .

A state model of form (4) for the contour tracking
problem (Fig. 1) can be derived from the fact that the
continuously varying  curvature k  represents the deri-
vative of the orientation angle θ  with respect to the arc
length s   [6]

=k
ds

dθ
.           (6)

Equation (6), written in a discrete form with respect to
the orientation angle is

kkkk s∆θθ k+=+1 ,

and taking into account that the arc length is the
integral of the constant tangential velocity tv  of the

robot end-effector, it follows

Tvtkkk k+=+ θθ 1  .           (7)

The unknown curvature of the contour is supposed to
vary in a preset interval: [ ]maxmink ,kkk ∈ . It is

assumed that the signed curvature is negative on locally
convex curve segments and positive on locally concave
curve segments [4, p.35] . The estimated state variable

kx  is the orientation angle θ , i.e. kkx θ= . Since k  is

unknown, multiple models for kθ  are constructed with
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different curvature values ik  from the uncertainty

interval. Then the state equation has the form:

ktikiki Tvxx η++=+ k,1, .                  (8)

The index i  denotes different models depending on the
curvature values. The process noise reflects  discretiza-
tion and model errors.

1.2 EKFs for Unknown Contour Tracking

The measured data are the positions kX  and kY  of the

robot end-effector, on the basis of which the velocities

kxv ,  and k,yv  are computed by (1). The velocity k,yv ,

corrupted by the noise kξ

kk,yk vz ξ+= ,

is used as measurement sequence { }kz  for the filtering.

The measurement function ( )kk xgz =  can be ex-

pressed in the following way 1

( )kkxkyk xtanvvxg ,,)( == .                (9)

With the state equations (8) and the measurement
equation (9), several Extended Kalman filters are
synthesized :

11111 +++++ += k,ik,ik/k,ik/k,i Kx̂x̂ ν ,          (10)

Tvxx tikkikki k+=+ /,/1, ˆˆ ,          (11)

( )kkikki xgz /1,11, ˆ +++ −=ν ,          (12)

kkkikki QPP +=+ /,/1, ,          (13)

1
1,1,/1,1,

−
++++ = kikxkkiki SgPK

i
,          (14)

111111 ++++++ −= k,ik,ik,ik/k,ik/k,i KSKPP , (15)

11,1/1,1,1, ++++++ += kkxkkikxki RgPgS
ii

,     (16)

where kkix /,ˆ  is the filtered state estimate; 1/,ˆ −kkix  is

the one-step predicted state estimate; k/kP  is the state

estimation covariance; k,iν  is the innovation with

covariance k,iS ;

( ) kkikkikkx xxgg
i /1,/1,1, ˆ/ˆ +++ ∂∂=

is the measurement Jacobian

( )kki

kx
kx
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v
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+
+ =  . 

                                                          
1  Equation (9) is applied when 4/4/ πθπ ≤=≤− kkx  or

4/54/3 πθπ ≤=≤− kkx . Outside these intervals  it is not

well conditioned numerically, and it  is replaced by
( )kkykxk xcotvvxg ,,)( ==

Within the framework of the IMM approach [8], the
overall estimate (here the orientation angle estimate)
represents the probabili stically weighted sum of the
estimates from the filters working in parallel , i.e.

∑
=

=
fn

i
k,ik/k,ik/k x̂x̂

1

µ ,

where fn  is the number of filters and k,iµ  are the

IMM mode probabiliti es. The mode probabiliti es are an
indicator at each moment what model describes the
state the most adequately.

The contour curvature can also be evaluated as a
probabili stically weighted  sum of preset curvature
values from the uncertainty interval with the mode
probabiliti es ki ,µ

∑
=

=
fn

i
kiik

1
,

ˆ µkk .          (17)

The arc length estimate kŝ  is computed as follows

∑
=

+=
k

j
jk ŝsŝ

1
0 ∆ ,          (18)

where

( ) ( )2
1

2
1 kkkkk YYXXŝ −+−= ++∆ ,

and 0s  is the initial  arc length shift, characterizing the

initial position over the contour.

IV. EKF FOR LOCALIZATION OF THE ROBOT END-EFFEC-

TOR POSITION OVER A CONTOUR WITH KNOWN SHAPE

After the estimation of the curvature of the contour, its
shape is yet known. It is also important in some robotic
applications to localize the starting unknown end-
effector position 0s  over the contour. In this case the

estimated state represents the arc length shift, i.e.

0sx = . Theoretically x  remains constant.

The state equation is of the form

kk xx =+1 ,

i.e. no noise is present and hence the system covariance
0=Q .

The measurements are the noisy curvature values,
provided by (3). The measurement function

)ˆ(),( kkkk sxhz k== ζ ,

is derived from the estimated curvature profile (Fig.10).

kζ  is the measurement noise with a covariance ζR .

The analytical derivative shx ˆ∂∂= k/  on segments with



constant curvature can not be found and it is replaced
by the curvature computed with finite differences

( ) kkkkx sh ˆ/ˆˆ
11, ∆kk −= ++ .

The filter equations are

111 +++ += kkkk Kx̂x̂ ν ,        (19)

k/kk/k PP λ=+1 ,        (20)

1
11111

−
+++++ = kkk,xkk SPhPK ,        (21)

111111 ++++++ −= kkkk/kk/k KSKPP ,        (22)

1,1,1/11,1 ++++++ += kkxkkkxk RhPhS ζ ,      (23)

where λ  is the fudge factor improving the filter perfor-
mance, the innovation kν  represents the difference

between the measured noisy curvature (3) and the
curvature identified by (17)

111 +++ −= kkk k̂kν .        (24)

V. PERFORMANCE ANALYSIS

The following measures of performance are used: the
estimated curvature (representing a fusion between the
values from the grid weighted by the mode probabili -
ties), the normalized innovation squared (NIS) (charac-
terising the estimate consistency) [1], the mode proba-
biliti es, the averaged overall state estimate, compared to
the noise-corrupted (measured) angle kθ .

The normalized innovation squared k,νε  is computed

from the "averaged" innovation (as a probabili stically
weighted sum of the innovations from the EKFs) and its

covariance kS  as follows  kkkk, S ννεν
1−= .

The results presented are based on processing of real
experimental data for one tour around the contour. The
interval for the curvature values is: [ ]150040 .,.k −∈k

1−mm , determined from the preliminary available
information.

The designed IMM filter is implemented with a set of
six values for the curvature, namely

{ } .,., ., ., , .,  -.- 150135005003000100406 =K  1−mm

chosen to cover well the uncertainty interval. The
measurement covariance R  is experimentally deter-
mined, from the information of the sensor errors and it

is ( )20010 s/mm.R = . The system noise covariance is
20050 rad.Q = .  It reflects the expected error from the

substitution of the continuously varying curvature by a
set of discrete values. The experimental data are re-
ceived with a sampling frequency 10=f [Hz] and the

tangential velocity is constant, known to be
20=tv [mm/s].

The IMM estimator is run with the following initial
transition probabilit y matrix and the mode probabilit y
vector



























=

940.0012.0012.0012.0012.0012.0

012.0940.0012.0012.0012.0012.0

012.0012.0940.0012.0012.0012.0

012.0012.0012.0940.0012.0012.0

012.0012.0012.0012.0940.0012.0

012.0012.0012.0012.0012.0940.0

0π
,

[ ] T6/16/16/16/16/16/10 =µ ,

the initial state estimates and covariances are 00 =,ix ,
5

0, 10=iP . The initial mode probabiliti es are chosen

equal, which corresponds to the lack of information
about the contour curvature.

The NIS test and the averaged innovation process
characterize the transitions from parts with different
curvature. The plots of the estimated and measured
curvature (Fig. 3), the estimated orientation angle (Fig.
4), the error between the estimated and measured angle
(Fig.5), the normalized innovation squared k,νε
(Fig.6), the IMM mode probabiliti es (Figs. 7-9), and the
estimated curvature with respect to the arc length (Fig.
10) are given. As a result of filtering the estimated
curvature is smoothed and at each moment the contour
is tracked. The mode probabiliti es provide information
about switching between the different curvature values.

The performance evaluation results of the EKF (19)-24)
for the starting point localization are given in Fig. 11
and Fig.12. The measurement noise covariance is

26.1 −= mmRζ  and the fudge factor 01.1=λ . The real

robot end-effector initial arc length shift is mms 200 = .

The estimation accuracy and the rate of convergence of
this EKF depend on the accuracy of the estimates for
the curvature and the arc length shift. The EKF (19)-24)

Fig. 3. Estimated kk̂  and measured  kk  curvature
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              Fig. 4. Estimated orientation angle kθ̂

Fig. 5. Error kkk
ˆe θθ −=  between the

measured and estimated orientation angle

  Fig. 6. Normalized Innovation Squared  k,νε

Fig. 7.  IMM mode probabiliti es 1µ  and 2µ

      Fig. 8.  IMM mode probabiliti es 3µ  and 4µ

Fig. 9.  IMM mode probabiliti es 5µ  and 6µ

Fig. 10. Estimated curvature kk̂  with respect

to the estimated arc length kŝ

is working with the curvature estimated by the IMM
algorithm. Because the provided by the IMM curvature
estimate is accurate, respectively the computed estimate
for the initial position over the contour is accurate. The
EKF consistency, characterized by the NIS test is also
better (Fig. 12) than the NIS test of the presented in [4]
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similar EKF. In [4] the identified curvature values are
taken from a CAD model of the undeformed contour
model, whereas here the results obtained by the IMM
algorithm are used. As obvious from Fig. 11, a quick
convergence toward the true value is observed.

Fig. 11 Estimated arc length shift with respect
to the arc length estimate

           Fig. 12 Normalized Innovation Squared k,νε

VI. CONCLUSIONS

In this work the problem of planar contour tracking in
the presence of pose and model errors has been
considered as a hybrid stochastic estimation problem.

An IMM filter has been implemented and its
performance evaluated. The inherent characteristic of
the IMM filter gives the possibili ty to estimate on-line
the contour curvature and the orientation angle on the
basis of a set of values for the curvature taken from a
preset interval. So, both contour shape identification
and tracking are performed. The IMM mode
probabiliti es provide information about the position of
the tool over different parts of the contour.

The multiple model approach can be extended to other
similar problems, such as tracking of curved surfaces, if
suitable mathematical models are provided.

The problem of localization of the tool over a planar
contour (estimation of the initial position) has also been
considered. A single EKF is synthesized. The perfor-
mance of the implemented algorithms is characterized
by the normalized innovation squared test and the
estimated variables. Results from experiments with real
data are presented.
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