Substorm onset latitude and the steadiness of magnetospheric convection

S. E. Milan1,2, M.-T. Walach3, J. A. Carter1, H. Sangha1, and B. J. Anderson4

Corresponding author: S. E. Milan, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK. (steve.milan@le.ac.uk)

1Department of Physics and Astronomy, University of Leicester, Leicester, UK.

2Birkeland Centre for Space Science, University of Bergen, Bergen, Norway.

3Physics Department, Lancaster University, Lancaster, UK.

4Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA.
Abstract.

We study the role of substorms and steady magnetospheric convection (SMC) in magnetic flux transport in the magnetosphere, using observations of field-aligned currents (FACs) by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). We identify two classes of substorm, with onsets above and below 65° magnetic latitude, which display different nightside FAC morphologies. We show that the low-latitude onsets develop a poleward-expanding auroral bulge, and identify these as substorms that manifest ionospheric convection-braking in the auroral bulge region [Grocott et al., 2009]. We show that the high-latitude substorms, which do not experience braking, can evolve into SMC events if the interplanetary magnetic field (IMF) remains southwards for a prolonged period following onset. We conclude that during periods of ongoing driving, the magnetosphere displays repeated substorm activity or SMC depending on the rate of driving and the open magnetic flux content of the magnetosphere prior to onset. We speculate that sawtooth events are an extreme case of repeated onsets, and that substorms triggered by northward-turnings of the IMF mark the cessation of periods of SMC. Our results provide a new explanation for the differing modes of response of the terrestrial system to solar wind-magnetosphere-ionosphere coupling by invoking friction between the ionosphere and atmosphere.
Key points

- AMPERE observations reveal two classes of substorm: high- and low-latitude onsets which are weak and intense, respectively
- Intense substorms experience convection-braking in the auroral bulge; weak onsets can develop into SMC
- These results suggest a framework within which different magnetospheric modes, including sawtooth events, can be understood

1. Introduction

The dynamics of the magnetosphere are driven primarily by the interaction of the solar wind and embedded interplanetary magnetic field (IMF) with the terrestrial field through the process of magnetic reconnection. During periods of southward-directed IMF this excites the Dungey cycle of circulation – or convection – of the field and plasma within the magnetosphere, in which reconnection at the subsolar magnetopause creates open magnetic flux and reconnection in the magnetotail closes flux again, with a general antisunwards transport of open flux and sunwards return flow of closed flux [Dungey, 1961]. This transport is communicated to the polar ionosphere by an electrical current system linking the magnetopause, ionosphere, and ring current [e.g., Iijima and Potemra, 1976; Cowley, 2000], resulting in an ionospheric twin-cell convection pattern [e.g., Heppner and Maynard, 1987, and references therein], which comprises antisunwards plasma drift in the footprint of open field lines (known as the polar cap) and sunwards plasma drift at lower latitudes.
The rate of magnetopause (or dayside) reconnection is controlled by conditions in the solar wind [e.g., Milan et al., 2012, and references therein], most importantly the orientation of the IMF. The factors controlling the occurrence and rate of magnetotail (or nightside) reconnection are less well understood, but are thought to be determined by the conditions in the plasmasheet and pressure exerted on the magnetotail by the solar wind [e.g., Boudouridis et al., 2003; Milan et al., 2004, 2007; Hubert et al., 2006b]. Dayside and nightside reconnection can occur independently of one another, leading to changes in the open magnetic flux content of the magnetosphere, with attendant changes in the size of the ionospheric polar caps; the flux transport and convection associated with these changes is described by the expanding/contracting polar cap (ECPC) model [e.g., Siscoe and Huang, 1985; Cowley and Lockwood, 1992; Hubert et al., 2006a; Milan, 2015].

Often, changes in open flux content can be linked with the substorm cycle [e.g., Lockwood and Cowley, 1992; Milan et al., 2003, 2007; Lockwood et al., 2009]. Substorm growth phase is the accumulation of open flux in the magnetotail lobes by dayside reconnection. The near-Earth neutral line (NENL) model of substorm onset [e.g., Hones, 1984; Baker et al., 1996] asserts that substorm expansion phase (often referred to as “substorm onset”) corresponds to the formation of a reconnection X-line within the closed flux of the plasma sheet, and that this closed flux must first be pinched off (forming a plasmoid) before reconnection proceeds to close the open flux of the tail lobes. Subsequently, the recovery phase marks the antisunwards motion of the NENL to form a distant neutral line (DNL). The tailward motion of the NENL is thought to be associated with the pile-up of newly closed flux in the near-Earth tail, but what provokes this is unclear. The present study addresses this question.
Milan et al. [2009a] and Grocott et al. [2009] studied the auroral intensity and the convection response of substorms with different onset latitudes, that is substorms that accumulated different amounts of open magnetic flux prior to onset. They found that high-latitude substorms (onset above 65° magnetic latitude) tend to have a weak auroral response but lead to enhanced convection in the nightside auroral zone. On the other hand, low-latitude substorms (onset below 65° magnetic latitude) have a more intense auroral response, but counterintuitively lead to a braking of the convection flow. It was suggested by Grocott et al. [2009] that this convection-braking was produced by enhanced conductance in the more intense auroral bulge, a mechanism earlier discussed by Morelli et al. [1995].

At other times the magnetosphere can achieve similar dayside and nightside reconnection rates, leading to steady magnetospheric convection (SMC) or balanced reconnection intervals (BRI) in which the open magnetic flux content remains uniform for an extended period [e.g., Sergeev et al., 1996; DeJong et al., 2008, 2018; McWilliams et al., 2008; Kissinger et al., 2012, and references therein]. Sergeev et al. [1996], DeJong et al. [2008], and Kissinger et al. [2012] noted that periods of SMC are often bracketed by substorm activity, so Walach and Milan [2015] and Walach et al. [2017] examined the relationship between substorms and SMC events (SMCs) in more detail. They concluded that some SMCs are substorms that have their expansion phase prolonged by continued southwards IMF, so-called “driven”-substorms, whereas “classic” or “isolated” substorms are those during which the IMF turns northwards shortly after onset. There is also debate as to whether northward-turnings of the IMF can trigger substorm onset (see discussion in Wild et al. [2009]). It is the purpose of the current study to reexamine the link between...
changes in the IMF, substorms and SMCs, and the onset latitude dependence of substorm intensity.

To monitor solar wind-magnetosphere coupling, convection, and substorms, we employ measurements of the magnetosphere-ionosphere coupling currents, also known as field-aligned currents (FACs) or Birkeland currents, made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) \cite{Anderson_2000, Anderson_2002, Waters_2001, Coxon_2018}. The magnitude of the FACs measured by AMPERE, of which the region 1 and region 2 (R1/R2) currents identified by \textit{Iijima and Potemra} \cite{Iijima_1976} are the main component, are a measure of convection strength and ionospheric conductance \cite{Coxon_2016, Milan_2017}, whereas the location of the R1/R2 currents is related to the open magnetic flux content of the magnetosphere \cite{Iijima_1978, Clausen_2012}. AMPERE measurements have been used to study the large-scale magnetospheric response to solar wind driving \cite[e.g.,][]{Coxon_2014a, Anderson_2014, Anderson_2018, Milan_2017} and substorms \cite[e.g.,][]{Clausen_2013a, Clausen_2013b, Coxon_2014b, Murphy_2013, Forsyth_2018].

\textit{Milan et al.} \cite{Milan_2015} applied principal component analysis (PCA) to AMPERE current maps to determine the dominant modes of response of FACs to solar wind driving. Subsequently, \textit{Milan et al.} \cite{Milan_2018} applied PCA separately to the dayside and nightside portions of the polar FAC pattern, allowing the temporal response of currents to magnetopause and magnetotail drivers to be examined. The same technique is employed in the current study.
2. Methodology

The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) \citep{Anderson2000, Anderson2002, Waters2001, Coxon2018} measures the FAC density in both northern and southern hemispheres, at geomagnetic latitudes above 40° with a latitudinal resolution of 1°, in 24 magnetic local time (MLT) sectors, at a cadence of 2 min. The data used in this study cover the period 2010 to 2016.

The application of principal component analysis to AMPERE observations has been described by Milan et al. \citep{Milan2015, Milan2017, Milan2018}. An automated algorithm fits a circle to the boundary between the region 1 and 2 current ovals and the current density maps are transformed to be the same size and centred on the geomagnetic pole. The radius of the fitted circle, Λ°, measured in degrees of colatitude, is later used as a proxy for the size of the polar cap. Each current map is then described by two vectors J^D and J^N, being the dayside and nightside portions respectively, each of $M = 440$ elements (40 colatitudinal bins and 11 MLT sectors centred on noon and midnight). PCA is then performed separately on the dayside and nightside currents, producing two sets of basis vectors D_i and N_i, $i = 1, 2, 3, ..., M$, which are the eigenvectors of the covariance matrices of J^D and J^N, respectively. These basis vectors, which we term eigenFACs, are those that most efficiently describe variations in the observations. There are as many dayside and nightside eigenFACs as there are elements in the original vectors, but only the first few are significant. The first dayside and the seven most important nightside eigenFACs are presented in Figure 1. For the time being, we note that D_1 and N_1 resemble the dayside and nightside portions of the R1 and R2 current systems.
Each of the original vectors \(J^D \) or \(J^N \) can be reconstructed as a linear combination of the eigenFACs:

\[
J^D = \sum_{i=1}^{m} \alpha_i D_i, \quad J^N = \sum_{i=1}^{m} \beta_i N_i,
\]

where \(\alpha_i \) and \(\beta_i \) are coefficients which can be determined by finding the projection of \(D_i \) and \(N_i \) on \(J^D \) and \(J^N \):

\[
\alpha_i = J^D \cdot D_i, \quad \beta_i = J^N \cdot N_i.
\]
Supporting data are provided by the 1-min OMNI dataset [King and Papitashvili, 2005], the SuperMAG geomagnetic index dataset, including SML, SMU, and SMR, equivalent to AL, AU, and SYM-H [Newell and Gjerloev, 2011, 2012; Gjerloev, 2012], and the substorm onset list derived from SuperMAG observations [Newell and Gjerloev, 2011].

3. Observations and Discussion

This paper focusses on three aspects of solar wind-magnetosphere coupling, substorms, and substorm-related FACs: how does the FAC response vary with substorm onset latitude?; what is the relationship between substorms and steady magnetospheric convection?; and what do the FAC systems tell us about magnetosphere-ionosphere coupling during substorms? We investigate these three themes in turn.

Figure 2 presents a superposed epoch analysis of substorms, from 2 hours before to 6 hours after substorm onset. Panels (a) to (c) show IMF B_Z, the electrojet indices SML and SMU, and the radius of the boundary between the R1/R2 current ovals, Λ°, a proxy for polar cap size. Panels (d) to (j) show the coefficients α_1 and β_1 to β_7, neglecting β_2. As described by Milan et al. [2018], β_2 quantifies IMF B_Y asymmetries in the nightside FACs and is not of interest to the present study. The substorms are categorised by the value of Λ at the time of onset, $\Lambda(t = 0)$ or Λ_0, and the corresponding traces colour-coded from $\Lambda_0 = 18^\circ$ (black) to $\Lambda_0 = 26^\circ$ (red) in steps of 1°. In total, 8896 substorms are included in the analysis. For clarity, the traces do not show the standard error on the mean, though these are in general low due to the relatively large number of substorms in each category.

On average, IMF B_Z is close to zero or negative throughout the period of analysis. This is because substorms tend to occur during periods of southwards IMF which lead
to magnetopause reconnection, and substorm growth phase. More negative values of B_Z are associated with lower-latitude (higher-Λ_0) onsets. That is, substorms tend to occur on an expanded auroral oval, corresponding to high polar cap flux, when B_Z is strongly southwards. B_Z becomes more negative as onset is approached, associated with substorm growth phase, and less negative afterwards, as there is no longer a requirement for continued creation of open flux after the substorm has commenced. The SMU and SML indices (the SuperMAG equivalents of the AU and AL electrojet indices) show substorm growth, expansion, and recovery phase signatures, as expected, though the magnitude of the variations are larger for high-Λ_0 onsets. In all categories except the lowest-Λ_0 substorms, Λ increases prior to onset, a signature of growth phase, and decreases thereafter. The beginning of the contraction of the polar cap can be delayed by almost an hour after onset for the low-Λ_0 substorms. Panels (d) and (e) show the strength of the dayside and nightside R1/R2 currents, as quantified by α_1 and β_1, which quantify the rate of convection on the dayside and nightside [e.g., Milan, 2013; Clausen et al., 2013a]. The magnitude of the R1/R2 FACs is well-ordered by Λ_0, indicating that magnetospheric convection is enhanced for low-latitude onsets. The dayside R1/R2 tends to grow during the growth phase, and then steps up following onset, before decaying after a few 10s of minutes. The nightside R1/R2 FACs remain roughly constant during the growth phase but again increase around the time of onset. These results are broadly consistent with previous studies of the latitude dependence of substorms [e.g., Milan et al., 2009a; Clausen et al., 2013b; Coxon et al., 2014b].

Panels (f) to (j) show the nightside response of the FACs as quantified by β_3 to β_7. We defer a discussion of what the eigenFACs N_3 to N_7 actually signify until later in
the paper. For the time-being we note that all five parameters show substorm-related
variations, i.e. their behaviour shows marked changes before, during, and after onset.
Their variations are also ordered by Λ_0; specifically, there appear to be two classes of
behaviour displayed by low- and high-Λ_0 substorms. For instance, for $\Lambda_0 < 21^\circ$ (black to
cyan traces) β_4 decreases from 0 in the 30 mins before onset and increases back to 0 in
the 30 mins after onset; for $\Lambda_0 > 21^\circ$ (green to red traces) β_4 shows little variation prior
to onset, but increases for an hour or so after onset. Similar, clear differences between
these two latitudinal classes can be seen in the variations of β_6 and β_7.

Grocott et al. [2009] also identified two classes of substorm: those that experience
convection-braking (onsets below 65° magnetic latitude) and those that don’t (onsets
above 65°). Our value of Λ_0 of 21° is consistent with 65° at midnight, as the auroral
oval is on average displaced antisunwards from the geomagnetic pole by 4°. Their inter-
pretation was that enhanced conductance, associated with enhanced auroral luminosity
for low-latitude onsets [Milan et al., 2009a], leads to frictional coupling between the iono-
sphere and atmosphere such that the convection is arrested. Following on from the results
of Grocott et al. [2009], in the remainder of this study we assume that our low-latitude
category of onsets experience convection-braking, whereas our high-latitude onsets do
not. We will go on to demonstrate that high-latitude onsets can evolve into periods of
SMC, but that low-latitude onsets cannot. (We note that DeJong et al. [2018] presented
a counter-example to this hypothesis, in which a case study of the conductance during an
isolated substorm and an SMC event indicated higher conductance during the latter.)

We next investigate the nature of convection associated with substorms during which
IMF B_Z remains southwards for different lengths of time following onset. In general
$B_Z < 0$ nT during the growth phase – it is generally accepted that ongoing loading of
open flux into the magnetosphere is a prerequisite for substorm onset, unless an external
perturbation such as a solar wind pressure pulse triggers onset [e.g., Boudouridis et al.,
2003; Milan et al., 2004; Hubert et al., 2006b] – but once onset has commenced, the IMF
orientation can change. Figure 3 presents a superposed epoch analysis of substorms in
the same format as Fig. 2 (though note that the vertical scales differ between the two
figures). In this analysis, substorms are categorised by the length of time that IMF B_Z
remains negative after onset. In each category, we require that $B_Z < -2$ nT for 90%
of data points from 20 mins before onset to 30, 60, 90, ..., 360 mins after onset, with
traces colour-coded from black to red. Substorms which do not match these criteria are
indicated by a dashed line.

The resulting B_Z traces show the expected variation, becoming increasingly negative
prior to onset, and then remaining negative for a different length of time post-onset before
turning positive. The corresponding SMU and SML traces show the expected substorm
growth, expansion, and recovery phases, except that the duration of the substorm bay
in SML is prolonged by the length of time that B_Z remains southwards. The radius of
the current ovals, Λ, increases during the growth phase prior to onset and begins to fall
about 20 mins after onset, but remains elevated for the duration of the B_Z-southwards
phase. Similar behaviours are seen for the dayside and nightside R1/R2 FAC magnitudes
as quantified by α_1 and β_1: increasing before onset and remaining elevated during the
period of southwards IMF before falling to pre-growth phase levels, that is, convection
strength increases during the growth phase and is maintained while the magnetosphere
continues to be driven. At this point, with regards to the variations of β_3 to β_7, we note that these are similar to each other for all categories of B_Z-southwards duration.

On the face of it, these results would seem to support the conclusions of Walach and Milan [2015], that continuing southwards IMF after substorm onset can lead to a period of steady magnetospheric convection, which only subsides once the IMF turns northwards. However, we have not considered the possibility that with continued southwards IMF a series of substorms could be triggered, and that averaging over many such substorms could lead to the results presented in Fig. 3. To investigate further, we repeat the superposed epoch analysis, but now limit the events to those substorms for which there is no subsequent substorm in the following 6 hours. This significantly reduces the number of events in the analysis, so we relax our B_Z criterion to be that $B_Z < -1$ nT (rather than $B_Z < -2$ nT) for 90% of data points from 20 mins before onset to 30, 60, 90, ..., 360 mins after onset. The results are presented in Figure 4.

The B_Z traces are similar to Fig. 3, though B_Z is not as negative as before. The SML traces for each category are similar to each other, indicating a substorm bay that lasts 90 mins in each case – a single expansion phase lasting approximately 1 hour irrespective of the duration of the B_Z-southwards phase. However, after the expansion and contraction of the polar cap associated with the onset, Λ remains elevated for the duration of the B_Z-southward phase. Similarly, the dayside and nightside R1/R2 current magnitudes are also elevated for the duration of the B_Z-southwards phase. These results do appear to confirm the conclusions of Walach and Milan [2015], that nightside reconnection can be maintained at the end of the expansion phase of a substorm, and steady convection can ensue, if the IMF remains southwards.
We now compare other differences between the substorms of Figs. 3 and 4. Firstly, Fig. 3 has an average value of $\Lambda_0 > 21^\circ$ while for Fig. 4, on average $\Lambda_0 < 21^\circ$. The difference in the two average values is marginal, but does place the two sets of substorms in the high- and low-Λ_0 categories discussed in relation to Fig. 2. Moreover, in Fig. 4 both β_4 and β_6 become negative at the time of onset and shortly afterwards, respectively, whereas this negative excursion is not so significant in Fig. 3. This reinforces the link between the high- and low-Λ_0 categories and Figs. 3 and 4, respectively, that is the dip in β_4 and β_6 distinguishes those substorms that do not experience convection-braking at onset from those that do.

Figure 5 presents a schematic of the two scenarios we envisage for substorms occurring during prolonged periods of solar wind-magnetosphere coupling, with high-latitude substorm onsets on the left, panels (a)-(c), and low-latitude onsets on the right. The figure has a format similar to Fig. 3 of Cowley and Lockwood [1992]. Panels (a) and (d) show substorm growth phase for the two cases, followed by the expansion phase in panels (b) and (e). We suggest that substorms that can transition to periods of SMC (panel (c)) are those that do not experience convection-braking, whereas substorms that do experience braking cannot lead to a laminar convection state, but must result in a sequence of onsets if the IMF remains southwards (panel (f)). An expected consequence of convection-braking is the formation of a pronounced substorm auroral bulge following onset, with a significant poleward motion of the nightside open/closed field line boundary (OCB), as magnetotail reconnection erodes the open flux of the polar cap (panel (e)). As the bulge begins to dim and the brake is released, the substorm enters a recovery phase in which the polar cap returns to a circular shape through the redistribution of open and closed.
flux in the ionosphere (panel (f)), before the cycle begins again (panel (d)). Conversely, we expect that substorms with no convection-braking can maintain a roughly circular polar cap through continuous redistribution of flux, such that the substorm appears as a brightening of the nightside auroral oval rather than a poleward-growing bulge (panel (b)). There is evidence in the wideband imaging camera (WIC) observations of Fig. 5 of Milan et al. [2009a] to support this suggestion that low-latitude onsets have a much more significant poleward progression of the substorm auroras than high-latitude onsets, and this is also consistent with the nightside auroral observations of an isolated substorm and an SMC event presented by DeJong et al. [2018].

Convection-braking is also expected to have ramifications for the dynamics in the magnetotail. The substorm onset marks the formation of a near-Earth neutral line (NENL) in the closed plasma sheet [e.g., Hones, 1984; Baker et al., 1996]. Once the NENL has pinched off the closed flux, open flux is closed and the polar cap contracts. If the redistribution of magnetic flux in the ionosphere required by the ECPC is unimpeded, then the NENL reconnection rate can adjust to match the dayside reconnection rate and a period of SMC, that is a balanced reconnection interval (BRI), can ensue. On the other hand, if convection-braking occurs, ongoing tail reconnection will lead to the formation of a poleward-progressing auroral bulge. This will be associated with flux pileup in the near-tail, as newly-closed flux cannot convect sunwards, and this pileup will push the NENL down-tail until reconnection ceases. Reconnection can only recommence by the formation of a new NENL within the region of newly-closed field lines, signalled by a new substorm AL bay. In this manner, a sequence of onsets is required if the IMF remains directed southwards. In both substorm and SMC cases, once the IMF turns northwards
dayside reconnection ceases but nightside reconnection continues until the tail reaches a relaxed configuration.

So far we have discussed statistical results. We now present some case examples. To aid with event selection, we developed an algorithm to identify potential periods of SMC from the SMU and SML indices, using criteria similar to McWilliams et al. [2008] and Kissinger et al. [2012]. We then discarded events during which the IMF was variable or the FAC ovals showed large changes in radius (see also Walach and Milan [2015]). Many events were found, of which some typical examples are shown in Figures 6 to 8. We first discuss the 18-hour period beginning 04 UT, 6 October 2010, presented in Fig. 6.

Panels (a) and (b) show AMPERE FAC densities along the dawn-dusk meridians of the northern and southern hemispheres, in which the upward/downward FAC pairs (the R1/R2 FACs) can be seen at dawn and dusk. The radii of the FAC ovals, Λ, are shown in panel (c), followed by IMF B_Y and B_Z and solar wind speed and density in panels (d) and (e). Panel (f) shows the dayside reconnection rate, Φ_D, estimated from the solar wind observations using eq. (15) of Milan et al. [2012], and the time integral of Φ_D. This integral shows the amount of open flux that would accumulate in the polar caps if no nightside reconnection took place. Typically the polar caps contain 0.5 GWb of open flux, rising to ~ 1 GWb during extreme conditions [Milan et al., 2007]. Below this are: panel (g) the SML and SMU indices, panel (h) the SMR ring current index, and panel (i) the PC index which measures convection strength in the polar regions. Vertical green lines indicate substorm onset identified by SuperMAG. Vertical red lines, labelled i, ii, etc., indicate times which will be discussed below; if a red line corresponds to a substorm onset, it has been displaced slightly for clarity.
Two events occurred during this time period. Between \(i \) and \(viii \), the IMF was predominantly directed southwards (panel (d)), the R1/R2 FACs were enhanced (panels (a) and (b)), and the PC index was elevated (panel (i)). Following the southwards turning at \(i \), dayside reconnection was elevated leading to expansions of the polar caps (panel (c)). At \(ii \), SuperMAG identified a substorm onset. Thereafter the IMF remained southwards until \(iv \), and between \(iii \) and \(iv \) SMC ensued, indicated by the horizontal orange bar, during which SMU and SML were approximately constant (panel (g)), the FAC radius remained uniform, and PC indicated steady convection. By \(v \) the IMF had turned southwards again, growth phase signatures were seen in SMU/SML and \(\Lambda \), followed by a substorm onset at \(vi \). Associated with the substorm bay, the polar caps initially contracted, but by \(vii \) they stabilised and varied only gradually during a second period of SMC, again accompanied by steady PC. At \(viii \) the IMF rotated so that it was no longer southward, and the SMC petered out. We consider both these periods of SMC to be examples of the driven-substorm SMC described by Walach and Milan [2015]. We note that \(\Lambda \) remained below 21° throughout almost the entire period.

To summarize these two events, we identify the following intervals as: \((i - ii)\) growth phase, \((ii - iii)\) expansion phase, \((iii - iv)\) SMC, \((iv - v)\) recovery phase, \((v - vi)\) growth phase, \((vi - vii)\) expansion phase, \((vii - viii)\) SMC, \((viii -)\) recovery phase. In both of these cases, \(\int \Phi_D dt \sim 0.1 \) GWb of open flux accumulated during the growth phase of the substorm and \(\sim 0.1 \) GWb during the expansion phase. During the two periods of SMC, \(\sim 0.15 \) and \(\sim 0.5 \) GWb of open flux were open and closed, that is, transported through the system, in the latter case equivalent to refreshing a typical polar cap.
Fig. 7 presents the 28-hour period beginning 19 UT, 28 May 2010. At i the IMF turned southwards and remained so for almost 23 hours. Following i the polar caps expanded (Λ), before a substorm onset was detected at ii, which by iii developed into a period of SMC. IMF B_Z became increasingly negative such that the dayside reconnection rate increased and exceeded the nightside rate resulting in gradually expanding polar caps (Λ) and stronger convection (SML/SMU and PC). Around iv, Λ grew beyond 21° and thereafter multiple substorm onset or substorm intensification signatures were identified by SuperMAG. By v, the IMF was no longer so strongly southwards, the polar caps had contracted, and SMC resumed, until the IMF turned northwards at vi. A substorm occurred at this time and the polar caps rapidly contracted. This event shows that SMC can occur when the polar caps are contracted, but if the radii grow too large, repeated substorm activity results. We also note that this period of elevated polar cap size is associated with an enhanced ring current (SMR, similar to SYM-H), as suggested by Milan et al. [2009b]. $\int \Phi_D dt \sim 0.2$ GWb during both the growth and expansion phases of the initial substorm, and ~ 0.8 and ~ 0.4 GWb during the two phases of SMC. Between iv and v, $\int \Phi_D dt \sim 4.5$ GWb, or approximately 0.2 GWb for each intensification. It is debatable if each substorm onset identified by SuperMAG in the interval iv to v is a true substorm or rather a substorm intensification; however, this clearly is not a period of SMC, and SML indicates intense fluctuations in nightside precipitation which would be expected to give rise to convection-braking.

Finally, Fig. 8 presents two similar events: the 9-hour period after 10 UT, 4 September 2011, and the 13-hour period after 00:30 UT, 21 January 2012. In both examples, during ongoing southward IMF growth phase signatures were observed between i and ii, followed
by substorm onset at \(ii \), transitioning into SMC at \(iii \), and then ending as the IMF turned northwards at \(iv \). In both cases a substorm onset was observed at \(iv \), which lead to rapid contractions of the polar caps. Several studies have indicated that periods of SMC often end with a substorm \([e.g., \textit{Sergeev et al., 1996}]\), and these examples (and arguably that in Fig. 7) conform to this. In none of these cases is there a clear solar wind cause for the triggering of a substorm, except a reduction in the dayside reconnection rate. We suggest that if the tail is in a stressed state at the end of a period of SMC, a substorm can be triggered to return it to a relaxed state. In all three cases the solar wind density is relatively high, exceeding 10 cm\(^{-3}\), which may exacerbate this stressed state. Interestingly, such cases may inform the debate regarding the existence of substorms triggered by northward turnings of the IMF \([e.g., \textit{Wild et al., 2009, and references therein}]\). In both these cases, \(\int \Phi_D dt \sim 0.1 \text{ GWb} \) during the growth and expansion phases of the initial substorms (that is, \(\sim 0.2 \text{ GWb} \) associated with each substorm), and \(\sim 0.3 \) and \(\sim 0.7 \text{ GWb} \) during the two phases of SMC.

We now turn to our final question, regarding the nature of the FAC patterns associated with substorm onset, and especially the difference between the high- and low-\(\Lambda_0 \) onsets. Remembering that a general FAC pattern can be reproduced as a linear combination of the eigenFACs, we briefly describe the FAC morphology associated with \(N_i, i = 1, \ldots, 7 \), and their contribution to the summation in eq. (1).

\(\beta_1 N_1 \): The nightside portion of the large-scale R1/R2 current system. \(\beta_1 \) is always found to be positive, as this corresponds to the expected polarity of the R1/R2 FACs. This eigenFAC is roughly symmetric about the midnight meridian, but we note that
the upward FACs link up across midnight, the average configuration associated with the Harang discontinuity [e.g., Iijima and Potemra, 1978].

$\beta_2 N_2$: As discussed by Milan et al. [2018], this eigenFAC controls the local time at which the polarities of the R1/R2 currents reverse, which we can identify with the location of the nightside convection throat. For $\beta_2 > 0$ and $\beta_2 < 0$ the convection throat moves pre- and post-midnight, respectively. Milan et al. [2018] showed that the value of β_2 is related to the B_Y component of the IMF.

$\beta_3 N_3$: This eigenFAC controls how the pre- and post-midnight portions of the R1/R2 FACs link up across midnight. If $\beta_3 < 0$ then the strength of the upwards current in the Harang discontinuity region is enhanced. If $\beta_3 > 0$ then upwards current is diminished or downwards current intrudes into this region. We observe that β_3 tends to be positive for high-Λ_0 substorms, which is consistent with Fig. 15 of Iijima and Potemra [1978].

$\beta_4 N_4$: When $\beta_4 > 0$ this eigenFAC leads to a strengthening and poleward motion of the R1/R2 FACs, especially at midnight and in the post-midnight sector; $\beta_4 < 0$ leads to a thinning of these currents. That $\beta_4 > 0$ and $\beta_4 < 0$ for high- and low-Λ_0 substorms (e.g., Fig. 2) is consistent with our assertion that the auroral bulge is enhanced and protrudes polewards during high-Λ_0 substorms.

$\beta_5 N_5$: In the midnight sector this eigenFAC is morphologically similar to N_3 (though of opposite polarity), so we expect it to play a role in modulating the Harang discontinuity currents.

$\beta_6 N_6$: When $\beta_6 > 0$ this eigenFAC contributes upwards FAC at high latitudes, especially in the midnight and post-midnight regions, and in this respect is similar to N_4.
When $\beta_7 > 0$ this eigenFAC contributes upwards FAC at high latitudes, across both pre- and post-midnight regions.

In summary, those eigenFACs which tend to be enhanced during high-Λ_0 substorms contribute FAC at high latitudes in the pre-, post-, and midnight regions, consistent with our expectations that these substorms have an enhanced auroral bulge that will lead to convection-braking; indeed, the polewards-growth of the bulge is a consequence of this convection-braking, requiring a poleward motion of the ionospheric projection of the nightside reconnection X-line as open magnetic flux is eroded.

4. Conclusions

We have examined the field-aligned current strength and morphology during substorms, using observations from AMPERE, focussing on two main questions: what influence does onset latitude have on the FAC response?; and what is the relationship between substorm onset, prolonged IMF B_Z-southward conditions, and steady magnetospheric convection?

Milan et al. [2009a] demonstrated that substorms occurring at low latitudes (high-Λ_0 substorms in the terminology of this paper) are more intense than high-latitude substorms, and Grocott et al. [2009] demonstrated that these experience convection-braking, possibly associated with the high conductance of the bright auroral bulge [e.g., Morelli et al., 1995]. Walach and Milan [2015] showed that a significant number of steady magnetospheric convection events are initially substorms, but substorms for which the IMF remains southwards for a prolonged period after onset. Our results support both of these conclusions, but we go further to suggest that those substorms which can evolve into SMC are those that occur at high latitudes and do not experience convection-braking, as illustrated in Fig. 5(a)-(c). In this case, once a substorm commences, associated with the
onset of magnetic reconnection in the tail at a near-Earth neutral line (NENL), that re-
connection can persist if new open flux continues to be supplied by dayside reconnection.

Typical substorm signatures, such as the SML bay and substorm-associated FAC mor-
phologies, last 60 to 90 mins after onset, but these die away even if NENL reconnection
continues thereafter. We suggest that substorms which experience braking and associated
flux pile-up in the near-tail pushing the NENL down-tail, cannot segue into a laminar
convection state, and instead a staccato sequence of substorm onsets results, each with
a recovery phase that represents the release of the brake, as illustrated in Fig. 5(d)-(f).

Substorms that experience braking will be those that develop poleward-growing auroral
bulges, whereas high-latitude, non-braking substorms will have less-pronounced bulges,
maintaining a circular polar cap through frictionless redistribution of magnetic flux.

In the examples presented, between 0.2 and 0.4 GWb of open flux transport were
associated with the growth and expansion phases of each precursor substorm, with between
0.15 and 0.8 GWb during the following period of SMC. This latter value depends on how
long the IMF remains southwards following the initial onset, that is, the duration of
the SMC. When the polar caps grew sufficiently large that a sequence of substorms or
intensifications was triggered, each effected 0.2 GWb of flux transport. We note that
periods of SMC can lead to a complete refreshment of the open flux of the polar caps,
that is straight through-put of open flux from the dayside to the nightside X-lines and
convection from the dayside OCB to the nightside OCB.

In the example presented in Fig. 7, repeating substorms occurred with a repetition
rate of \(\sim 30 \) min. Indeed, these may not be true substorms, but substorm intensifications
caused by convection-braking. We speculate that sawtooth events, \(\sim 3 \) hr quasi-periodic
intense substorms [Belian et al., 1995], may be an extreme case of braking substorms occurring during strongly-driven intervals associated with geomagnetic storms [Walach and Milan, 2015; Walach et al., 2017]. In this case, we would place SMCs, repeating substorms, and sawtooth events as a spectrum of responses to periods of prolonged low to high solar wind-magnetosphere coupling; we note that this spectrum of behaviour agrees with the ordering of Hubert et al. [2017]. On the other hand, isolated substorms are associated with periods when the IMF is sporadically turning northwards and southwards.

We have not addressed the question of why some substorms commence at high latitudes and others at low latitudes, though Milan et al. [2009b] suggested that this was associated with the magnetic perturbation produced by the ring current dipolarizing the near-Earth tail. This will be investigated further in a subsequent study.

Acknowledgments. SEM and JAC were supported by the Science and Technology Facilities Council (STFC), UK, grant no. ST/N000749/1; HS was supported by an STFC studentship. MTW was supported by the Natural Environment Research Council (NERC), UK, grant no. NE/P001556/1. The work at the Birkeland Centre for Space Centre, University of Bergen, Norway, was supported by the Research Council of Norway/CoE under contract 223252/F50. We thank the AMPERE team and the AMPERE Science Center for providing the Iridium-derived data products; AMPERE products are available at http://ampere.jhuapl.edu. The OMNI data, including solar wind parameters and geomagnetic indices, were obtained from the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov. The SuperMAG indices and substorm list was downloaded from http://supermagnet.jhuapl.edu. For the ground magnetometer data from which these were derived, we gratefully acknowledge: Intermagnet; USGS, Jeffrey J. Love; CARISMA,
References

Figure 1. The first dayside (D_1) and first seven nightside (N_i, $i = 1, ..., 7$) eigenFACs derived from AMPERE field-aligned current distributions. Each panel is presented in a magnetic local time and magnetic latitude frame, where magnetic latitudes are scaled such that the boundary between R1 and R2 FACs occurs at 70° (green semicircle). Blue and red colours correspond to positive and negative values.
Figure 2. Superposed epoch analysis of substorms from 2 hours prior to 6 hours after onset. (a) IMF B_Z, (b) SMU and SML electrojet indices, (c) radius of the AMPERE current pattern, Λ, and (d) to (j) coefficients associated with the eigenFACs presented in Fig. 1 (except N_2). The substorms are categorised by the value of Λ at onset ($t = 0$) or Λ_0, in 1° steps from 18° (black trace) to 26° (red trace); the number of substorms in each category is 976, 510, 1282, 1681, 1527, 1108, 789, 501, and 522, respectively.
Figure 3. Superposed epoch analysis of substorms in the same format as Fig. 2. Substorms are categorised by the length of time that the IMF remains southwards after onset: over 30, 60, 90, ..., 360 mins (blue to red traces). The number of substorms in each category is 699, 495, 472, 344, 337, 290, 253, 229, 234, 184, 222, 151, 189, and 2786, respectively. Substorms which do not fit the selection criteria (2409) are shown as a dashed line.
Figure 4. Superposed epoch analysis of substorms in the same format as Fig. 2, and selected in the same way, though restricted to those substorms which are not followed by a subsequent substorm for at least 6 hours. The number of substorms in each category is 59, 180, 128, 85, 97, 58, 48, 65, 37, 35, 27, 26, 31, 306, respectively. Substorms which do not fit the selection criteria (847) are shown as a dashed line.
Figure 5. A schematic of the development of high- and low-latitude substorms, panels (a) to (c) and (d) to (f), respectively, in response to prolonged solar wind-magnetosphere coupling. Each panel has noon at the top. Black arrowed lines show convection streamlines, the purple circle is the open/closed field line boundary enclosing the polar cap. Red dashed lines show portions of the OCB mapping to active reconnection X-lines at the magnetopause or in the magnetotail. Blue regions indicate the location of the auroral bulge and whether it is of high (dark blue) or low (light blue) ionospheric conductance; along these portions of the OCB the ionospheric flow crosses the boundary, along other portions the flow is adiabatic. Green arrows indicate expansion or contraction of the auroral zone and polar cap, or motions of the OCB.
Figure 6. Solar wind and magnetospheric dynamics for the period 04 to 22 UT, 6 October 2010. (a) and (b) Field-aligned current density along the dawn-dusk meridian in the northern and southern hemispheres, with red and blue indicating upwards and downwards FAC, with the colour scale saturating at 0.5 μA m$^{-2}$. (c) Radius, Λ, of the northern and southern FAC ovals, with the southern hemisphere being displaced by 5° for clarity; the horizontal dashed lines indicate $\Lambda = 21^\circ$. (d) IMF B_Y and B_Z. (e) Solar wind speed and density. (f) Dayside reconnection rate, Φ_D, and the time integral of Φ_D. (g) The electrojet indices SML and SMU, with periods of steady magnetospheric convection indicated by orange bars. (h) The ring current index SMR. (i) The PC index. Vertical green lines show SuperMAG substorm onsets, and vertical red lines are discussed in the text.
Figure 7. Solar wind and magnetospheric dynamics for the period 19 UT, 28 May 2010, to 23 UT on the following day, in the same format as Fig. 6.
Figure 8. Solar wind and magnetospheric dynamics or the period 10 to 19 UT, 4 September 2011, and 00:30 to 13:30 UT, 21 January 2012, in the same format as Fig. 6.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 8.