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Abstract

The Fredholm determinants of integral operators with kernel of the form

A(x)B(y) − A(y)B(x)

x − y

arise in probabilistic calculations in Random Matrix Theory. These were ex-

tensively studied by Tracy and Widom, so we refer to them as Tracy–Widom

operators. We prove that the integral operator with Jacobi kernel converges

in trace norm to the integral operator with Bessel kernel under a hard edge

scaling, using limits derived from convergence of differential equation coef-

ficients. The eigenvectors of an operator with kernel of Tracy–Widom type

can sometimes be deduced via a commuting differential operator. We show

that no such operator exists for TW integral operators acting on L2(R).

There are analogous operators for discrete random matrix ensembles, and

we give sufficient conditions for these to be expressed as the square of a Han-

kel operator: writing an operator in this way aids calculation of Fredholm

determinants. We also give a new example of discrete TW operator which

can be expressed as the sum of a Hankel square and a Toeplitz operator.

Previously unsolvable equations are dealt with by threats of reprisals . . .

Woody Allen
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1 Introduction and background results

1.1 Introduction

Random matrix theory began in 1928, when the concept of a random matrix was

introduced in a paper by Wishart [49]. Wigner [48], who worked on the energy

levels in atomic nuclei, observed that such systems could be described well by the

eigenvalues of a random matrix, and calculated asymptotic eigenvalue distribu-

tions. In this thesis, we consider a special type of operator which is associated

with probabilistic calculations for eigenvalue distributions. The basic form of the

operator kernel we consider is

K(x, y) =
A(x)B(y) − A(y)B(x)

x− y
, (1)

where the functions A andB are varied depending on the context. The prototypical

example, as considered by Tracy and Widom in [44], and also Blower, in [6] is

when A and B are bounded functions on R, and K(x, y) is the kernel of an integral

operator on L2(R). Tracy and Widom observed in [44] that many of the important

examples in random matrix theory involve pairs of functions A and B in the kernel

K(x, y) which satisfy differential equations of the form

m(x)
d

dx




A(x)

B(x)



 =




α(x) β(x)

−γ(x) −α(x)








A(x)

B(x)



 , (2)

where m(x), α(x), β(x) and γ(x) are polynomials. We shall call these Tracy–

Widom systems. The Fredholm determinants det(I − K) of such operators can

be used to calculate for instance the probability that a given interval contains n

eigenvalues of a random matrix. The Airy kernel

Ai (x) Ai ′(y) − Ai (y) Ai ′(x)

x− y
, (3)
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and Bessel kernel

Jα(
√
x)
√
y J′

α(
√
y) − Jα(

√
y)
√
x J′

α(
√
x)

(x− y)
. (4)

are particular examples of kernels satisfying equations of the form (2).

In Chapter 2, we prove that the integral operator which describes the eigenvalues

at the edge of the spectrum of a random matrix from the Jacobi unitary ensemble

converges in trace class norm to the Bessel integral operator, with kernel (4). This

result is important because trace class convergence implies convergence of deter-

minants, and hence of probabilities. Others, including [5], [15], [31], [45] make

reference to this result in terms of convergence of kernels, but as far as we can

see, they do not make clear the mode of convergence of the operators. Central

to the proof are some limits of scaled Jacobi polynomials, which we establish us-

ing convergence of differential equation coefficients. Since many other orthogonal

polynomial systems satisfy simple differential equations, this approach could be

used in other cases. Thus, our methods provide a more elementary alternative to

the asymptotic expansions based on Riemann Hilbert theory used by other authors

to establish convergence theorems for Tracy–Widom kernels.

Several authors (including [27, pp.98-101] and [45, §III B]) calculate the eigen-

functions of a Tracy–Widom integral operator by finding a differential operator

which commutes with it. A particular example of this is the operator

− d

dx

(
x

d

dx

)
+ x2

which commutes with the integral operator with Airy kernel (3), operating on

L2[0,∞). In Chapter 3, we prove that no non-zero Tracy–Widom operator oper-

ating on L2(R) can commute with a self-adjoint differential operator. The proof

relies on the fact that the Hilbert transform commutes with differentiation on

8



L2(R).

By analogy with the continuous case, we consider operators whose matrix en-

tries are K(m,n), in which A and B are now functions Z+ → R which satisfy a

one-step difference equation of the form




A(n+ 1)

B(n+ 1)



 = T (n)




A(n)

B(n)



 ,

where T (x) is a 2 × 2 matrix of rational functions of x with detT (x) = 1. Such

operators arise in the theory of discrete random matrix ensembles, as in [4] and

[21], where they play the same role as in the continuous case. One-step difference

equations of this form are also important in the theory of discrete Schrödinger

operators, and are investigated in the context of Anderson localisation (see [8]).

Tracy and Widom, in [43] and [45] proved that the Airy and Bessel integral kernels

could be expressed as the squares of Hankel integral operators, enabling them to

calculate their eigenfunctions and eigenvalues. Seeing the utility of expressions

of this form (in particular, the fact that det(I − K) = det(I + Γ) det(I − Γ)),

Blower [7] gave sufficient conditions for a Tracy–Widom operator to be expressible

as Γ2 or Γ∗Γ, where Γ is a Hankel integral operator. In Chapter 5, we prove a

new result which gives sufficient conditions for the matrix K to be expressible as

Γ2, where Γ is a Hankel matrix. We also consider a weaker condition, in which

K = W + Γ2, where W is a Toeplitz operator. Although exact calculations of the

eigenvalues of K from those of Γ is not possible in the latter case, expressions of

this kind may still be useful, since the spectrum of Toeplitz operators can often

be calculated. In Proposition 5.7, we give what appears to be a new example of

this type of operator, which we present as an analogue to the Laguerre integral

operator. Theorem 5.1 and Proposition 5.7 appear in a paper by the author and

G. Blower in the Proceedings of the Edinburgh Mathematical Society [8].
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The final part of Chapter 5 considers briefly Tracy–Widom operators which are

compact perturbations of a Hankel square. We use Weyl’s theorem to deduce

the essential spectrum of a particular discrete Tracy–Widom operator, which we

show is a Hilbert–Schmidt perturbation of the square of the operator induced by

Hilbert’s Hankel matrix.

In Chapter 4, we consider the Tracy–Widom operators which describe the eigen-

value distributions for circular ensembles. We use standard results on Hankel and

Toeplitz operators to give sufficient conditions for these operators to be written

as Γ∗Γ, where Γ is a Hankel operator on H2(T). In the particular case where

the functions in the kernel are Blaschke products, we show that the range of the

operator can be calculated explicitly.

The remainder of this first chapter introduces most of the background in Ran-

dom Matrix Theory and operator theory needed for later chapters, and (in §1.9)

relevant special functions. In §1.8, we show how to define orthogonal polynomials,

and demonstrate (in §1.9 and §1.10) how they can be used to express the joint

probability density for the eigenvalues of a random matrix as a determinant of the

form

det [K(λj , λk)]j,k ,

where 0 ≤ K ≤ I, and K is trace class, as in Soshnikov’s theory of determinantal

point processes [40]. The material in this chapter is standard, but its presentation

has been adapted to fit our purposes, and to point out how it applies to the

problems we tackle later in the thesis.

1.2 Hardy spaces and the unilateral shift operator

Here we shall introduce notation and definitions for the important Hilbert spaces

which will be used throughout the thesis. To begin with, for ease of reference, we
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state the following well-known and basic theorem.

Theorem 1.1 (Riesz–Fischer) Let (ek) be an orthonormal basis for a Hilbert

space H. Then, for every x ∈ H we have

x =
∑

k

〈x, ek〉ek, (5)

and

‖x‖2 =
∑

k

|〈x, ek〉|2. (6)

Remark

Although we refer to this as the Riesz–Fischer theorem, it should be noted that

these authors were actually considering the specific case of trigonometric expan-

sions, as in Theorem 1.2 below.

Proof. Let y = x−
∑

k〈x, ek〉ek. Then, for any j

〈y, ej〉 = 〈x, ej〉 −
∑

k

〈x, ek〉〈ek, ej〉 = 0.

Since (ek) is an orthonormal basis, we know that the only vector orthogonal to all

the ej for all j is the zero vector, so we deduce that y = 0, which gives (5). The

second equation (6) then follows by Pythagoras theorem and the continuity of the

norm.

The general outline of our treatment of Hardy spaces follows Martinez-Rosenthal

[26, Chapter 1]. We write Z+ = {0, 1, 2, 3, . . .}, and for the Hilbert space of square-

summable sequences indexed by Z+, we write

ℓ2 = {(an)∞n=0 :

∞∑

n=0

|an |2 <∞},
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where the inner product of two vectors a, b ∈ ℓ2 is

〈a, b〉 =
∞∑

n=0

anb̄n.

As usual, the Kronecker delta function is defined as

δj,k =






1 if j = k,

0 if j 6= k.
(7)

Let the open unit disk be denoted by D = {z ∈ C : |z | < 1}, and the unit circle

by T = {z ∈ C : |z | = 1}. The Hardy Hilbert space H2(D) of analytic functions

whose power series representations have square-summable coefficients is

H2(D) =

{
f : f(z) =

∞∑

n=0

anz
n, with

∞∑

n=0

|an |2 <∞
}
,

and the inner product of two functions f, g ∈ H2(D) expressed as f(z) =
∑

n≥0 anz
n

and g(z) =
∑

n≥0 bnz
n is

〈f, g〉 =
∞∑

n=0

anbn.

We can show that any function in H2(D) is analytic on D as follows. Take f ∈

H2(D) with f(z) =
∑∞

n=0 anz
n. Then, by definition, (an) is in ℓ2, so there exists

M > 0 such that |an | < M for all n ≥ 0. Take z0 ∈ D. Then

∞∑

n=0

|anzn0 | ≤M
∞∑

n=0

|z0 |n ,

where the right-hand side is a convergent geometric series, so the series
∑∞

n=0 anz
n
0

is absolutely convergent. Thus f(z) is an analytic function on D. The spacesH2(D)

and ℓ2 may be identified by the natural isometric isomorphism (an) 7→
∑∞

n=0 anz
n.

Since ℓ2 is a Hilbert space, this shows that H2(D) is also a Hilbert space.

L2(T) is the Hilbert space of square integrable functions on the unit circle T,
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with inner product

〈f, g〉 =
1

2π

∫ 2π

0

f(eiθ)g(eiθ) dθ. (8)

It is a well-known result (see, for example [10, p.21]) that (einθ)∞n=−∞ forms an

orthonormal basis for L2(T), so that any function f ∈ L2(T) can be written as

f(eiθ) =
∑∞

n=−∞ f̂(n)einθ, where we define the nth Fourier coefficient to be

f̂(n) =
1

2π

∫ 2π

0

f(eiθ)e−inθ dθ.

Theorem 1.2 (Parseval) Let f ∈ L2(T), with Fourier coefficients f̂(n). Then

1

2π

∫ 2π

0

∣∣f(eiθ)
∣∣2 dθ =

∞∑

k=−∞
|f̂(k)|2.

Proof. This is simply a consequence of Theorem 1.1, applied to the orthonormal

basis (einθ)∞n=−∞.

For convenience, we shall usually write z = eiθ, so that the standard orthonormal

basis for L2(T) is (zn)∞n=−∞. We can define a subspace H2(T) of L2(T) by selecting

functions for which the negative Fourier coefficients are zero:

H2(T) = {f ∈ L2(T) : f̂(n) = 0 for n < 0}.

A typical H2(T) function has the form f(eiθ) =
∑∞

n=0 ane
inθ, so we see that this

space is naturally isomorphic to H2(D) via the correspondence
∑∞

n=0 ane
inθ 7→

∑∞
n=0 anz

n. We write P+ and P− for the Riesz projection operators of L2(T) onto

(respectively) H2(T) and onto its orthogonal complement, the space

H2
−(T) = {f ∈ L2(T) : f̂(n) = 0 for n ≥ 0}.
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To be more explicit, we state the effect on the standard orthonormal basis (zn)∞n=−∞

of the projections P+ and P−:

P+z
n =






zn if n ≥ 0

0 if n < 0
(9)

and

P−z
n =






zn if n < 0

0 if n ≥ 0.
(10)

A measurable function φ on T is said to be essentially bounded if there exists

a number M0 such that

m ({z ∈ T : |φ(z)| > M0}) = 0,

where m is the normal Lebesgue measure on the unit circle. L∞(T) is a Banach

space which is a subspace of L2(T), consisting of essentially bounded functions on

the unit circle, with norm

‖f ‖L∞ = inf{M : m{z ∈ T : |φ(z)| > M} = 0}.

The unilateral shift operator S is of fundamental importance in functional analysis.

For instance, its invariant subspaces have been closely studied, and later we shall

see that it provides a characterisation of Hankel operators. To define S, we take a

sequence (a0, a1, a2, . . .) ∈ ℓ2, and then S(a0, a1, a2, . . .) = (0, a0, a1, . . .). To calcu-

late the adjoint S∗, take a, b ∈ ℓ2 with a = (a0, a1, a2, . . .) and b = (b0, b1, b2, . . .),

and set c = S∗b. Then since 〈Sa, b〉 = 〈a, S∗b〉, we have

∞∑

n=1

an−1bn =
∞∑

n=0

ancn,
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so that cn = bn+1. Hence S∗b = (b1, b2, . . .). For this reason, S∗ is sometimes called

the backwards shift operator. Since ℓ2 is naturally isomorphic to H2(T), we can

also define the shift S on the latter space, via the correspondence (f̂(n)) 7→ f . We

have S(f̂(0), f̂(1), . . .) = (0, f̂(0), f̂(1), . . .), so it is clear that the operation of S

on H2(T) is multiplication by the independent variable z.

Throughout this thesis, whenever we refer to a subspace, it is assumed without

comment that it is a closed linear subspace. Also, all Hilbert spaces are assumed

to be complex and seperable. Let E be a subspace of a Hilbert space H , and let

A be an operator on H . If the set AE = {Ax : x ∈ E} is a subspace of E, we say

that E is an invariant subspace for A. If the inclusion AE ⊂ E is proper, E is said

to be simply invariant, while if in fact AE = E, then it is doubly invariant. We

now present the famous result of Beurling on the invariant subspaces in H2(T) of

the shift operator S, which we shall use later on in Chapter 4. The proof follows

[2, p.46], but is included here for completeness. Since the operation of the shift S

on H2(T) is multiplication by the independent variable z, a subspace E is doubly

invariant with respect to the shift if and only if zE = E, where zE = {ze : e ∈ E}.

Because zz̄ = 1 on T, this is equivalent to the two inclusions zE ⊂ E and z̄E ⊂ E,

a fact that will be useful in the proof.

Theorem 1.3 (Beurling’s Theorem) If E 6= {0} is a subspace of H2(T) such

that SE is a subspace of E, then there exists a measurable function Θ ∈ H2(T)

with |Θ| = 1 a.e. on T such that E = ΘH2(T).

Proof. First, we need to show that E is simply invariant, i.e. that SE 6= E. As

noted above, this is equivalent to showing that z̄E is not a subspace of E. Assume

the contrary, and take f ∈ E with f 6= 0. Then there exists n ∈ Z+ such that

f̂(n) 6= 0, so we have ĝ(−1) = f̂(n) 6= 0, where g(z) = z̄n+1f(z). But this implies

that z̄n+1f /∈ H2, so that z̄n+1f /∈ E, which by our assumption implies that f /∈ E.

This contradiction shows that SE is a proper subspace of E. Hence E ⊖ SE is
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non-trivial, so we can select Θ ∈ E⊖SE with ‖Θ‖ = 1. Note that, by invariance,

SnΘ ∈ E for all n > 0, and also that SnΘ ∈ SE. Hence

0 = 〈SnΘ,Θ〉 =
1

2π

∫ 2π

0

einθ
∣∣Θ(eiθ)

∣∣2 dθ for all n > 0.

If we take complex conjugates in the integral above, we get the same condition

for n < 0 as well, and hence |Θ| is constant almost everywhere. But ‖Θ‖ = 1, so

this gives |Θ| = 1 almost everywhere on T. We see therefore that the operation of

multiplication by Θ is isometric, and so, using ∨ to stand for “closed linear span”,

we have
∞∨

n=0

{SnΘ} = Θ

∞∨

n=0

{Sn1} = ΘH2.

This shows that ΘH2 ⊆ E. To prove equality, choose f ∈ E⊖ΘH2. By the above,

we have SnΘ ∈ ΘH2 for all n ≥ 0, so

〈f, SnΘ〉 = 0 for all n ≥ 0.

Also, it is clear that Snf ∈ SE and Snf ∈ E, so that

〈Θ, Snf〉 = 0 for all n > 0,

where we recall that Θ ∈ E⊖SE. Putting these two facts together, we get fΘ = 0

almost everywhere on T, so that f = 0 and hence E = ΘH2.

Remark

A function Θ ∈ H2(T) which satisfies |Θ| = 1 a.e. on T is called an inner function.

1.3 The spectrum and essential spectrum of an operator

The spectrum of an operator can be seen as the generalisation of its set of eigenval-

ues. It is perfectly possible to define the spectrum of an operator in Banach space,
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but for our purposes we shall only need to define it for operators on a Hilbert

space.

Definition 1.4 Let A : H → H be a bounded linear operator on a Hilbert space

H. Then the spectrum of A is the set

σ(A) = {λ ∈ C : A− λI is not invertible}.

We list a few well-known facts about the spectrum. First, note that σ(A) is a non-

empty set. To see why this is so, suppose for a contradiction that σ(A) is empty.

Then (as [50, p.80] notes) for all λ ∈ C we would have (A − λI)−1 bounded, and

the map

λ 7→ (A− λI)−1

from C into the space B(H) of bounded operators on H would be bounded and

entire, and hence constant, by an operator-valued version of Liouville’s theorem.

Since (A − λI)−1 cannot be constant, we conclude that σ(A) is non-empty. It

can also be shown that σ(A) is a compact subset of C (see e.g. [17, p. 226]).

The complement of σ(A) in C is called the resolvent set of A. If an operator

has eigenvalues, these are clearly contained in the spectrum: the subset of the

spectrum consisting of eigenvalues of the operator is called the point spectrum,

and written as σp(A). In particular, the spectrum of a compact operator consists

of 0 together with a sequence of eigenvalues of finite multiplicity. This sequence,

if infinite, converges to zero. The essential spectrum does not include such points,

and may be defined as the following subset of the spectrum:

σess(A) = {λ ∈ σ(A) : λ is not an isolated eigenvalue of finite multiplicity}.
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1.4 Hilbert–Schmidt and Trace class operators, and oper-

ator convergence

Throughout this section, H is a complex, infinite-dimensional and seperable Hilbert

space, and all operators we consider are assumed to be bounded. An operator A

on H is said to be positive if

〈Ax, x〉 ≥ 0 for all x ∈ H.

If A is positive and self-adjoint, then we can define a square root, that is, a positive

self-adjoint operator B that satisfies B2 = A (see [25, p.157] for a proof of this).

We write this B as A1/2. The theory of trace class and Hilbert–Schmidt operators

can be tackled from different directions: our approach here follows broadly [34].

Although all the results are well known, we include their proofs in the interest of

completeness. We begin with a proof of the result that every compact operator

has an expansion in terms of its generalised eigenvectors and eigenvalues.

Proposition 1.5 A linear operator A on H is compact if and only if there exists

a finite or countably infinite sequence of scalars σj(A) decreasing to zero, and

orthonormal sequences (vi) and (wi) in H, such that

Ax =

∞∑

j=0

σj(A)〈x, vj〉wj (11)

for all x ∈ H.

Proof. First, suppose that the expansion (11) holds, and let

Amx =
m∑

j=0

σj(A)〈x, vj〉wj.
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Then Am is a sequence of finite rank (at most m) operators, and

‖A− Am‖ = σm+1 → 0

as m → ∞. Hence A is compact, since it is the norm limit of a sequence of

finite rank operators. Conversely, suppose that A is compact. Note that A∗A is a

positive and self-adjoint operator, since

〈A∗Ax, x〉 = 〈Ax,Ax〉 ≥ 0,

and

〈A∗Ax, y〉 = 〈x, (A∗A)∗y〉 = 〈x,A∗Ay〉.

Hence if λj are the non-zero eigenvalues arranged in decreasing order of size, we

have λj ≥ 0 for all j, and we may define σj(A) :=
√
λj. Let vj be the corresponding

normalised eigenvectors, which form an orthonormal sequence. Also, let wj =

1
σj(A)

Avj . Then (wj) is an orthonormal sequence:

〈wj, wk〉 =
1

σj(A)σk(A)
〈Avj, Avk〉

=
1

σj(A)σk(A)
〈A∗Avj , vk〉

=
σj(A)2

σj(A)σk(A)
〈vj, vk〉

= δj,k.

By the spectral theorem for compact self-adjoint operators (as in [50, p.99]), we

now have the required expansion (11).

Definition 1.6 The real sequence (σj(A)) is called the sequence of singular num-

bers or generalised eigenvalues for the operator A. For 1 ≤ p < ∞, we say that

a compact operator A is in the Schatten–von Neumann class Cp if its singular
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numbers satisfy
∞∑

j=0

σj(A)p <∞. (12)

Recall that Cp is a Banach space with norm

‖A‖Cp
=

( ∞∑

j=0

σj(A)p

)1/p

.

The two classes of interest in this thesis (and indeed in many applications) are

C1, which we call the trace class operators, and C2, which are the Hilbert–Schmidt

operators. The norm of Hilbert–Schmidt operators is particularly easy to calculate,

as the next result shows.

Proposition 1.7 If A ∈ C2, then for any orthonormal basis (ej) of H, we have

‖A‖2
C2

=
∞∑

j=0

‖Aej‖2 =
∞∑

j=0

∞∑

k=0

|〈Aej, ek〉|2. (13)

Remark

If we represent an operator A by a matrix [Am,n]m,n≥0 with respect to some or-

thonormal basis, then the second sum in (13) is simply
∑

m,n≥0 |Am,n|2.

Proof. Choose any orthornormal bases (ej) and (fj) of H . Then

Aei =
∞∑

j=0

〈Aei, fj〉fj ,

so by the Riesz–Fischer theorem we have

∞∑

i=0

‖Aei‖2 =

∞∑

i=0

∞∑

j=0

|〈Aei, fj〉|2

=
∞∑

i=0

∞∑

j=0

|〈ei, A∗fj〉|2

=

∞∑

j=0

∞∑

i=0

|〈A∗fj , ei〉|2

20



=

∞∑

j=0

‖A∗fj‖2 ,

and we can interchange the rôles of A and A∗ to see that the value of the first sum

in (13) is independent of the basis chosen. For any x ∈ H , we have

Ax =

∞∑

j=0

σj(A)〈x, vj〉wj

where vj are the normalised eigenvectors corresponding to the eigenvalues σj(A)2

of (A∗A). We extend (vj) to an orthonormal basis of H , by including vectors from

the kernel of A, and then

∞∑

j=0

σj(A)2 =
∞∑

j=0

‖Avi‖2

as required. Now note that since (ej) is an orthonormal basis, we can write Aej =
∑∞

k=0〈Aej, ek〉ek, and hence by the Riesz-Fischer theorem we have

∞∑

j=0

‖Aej‖2 =

∞∑

j=0

∞∑

k=0

|〈Aej, ek〉|2.

Lemma 1.8 If C is trace class, then it can be written as AB for some Hilbert–

Schmidt operators A and B.

Remark

The converse of this result is also true, that is, AB is trace class whenever A and

B are Hilbert–Schmidt. See [34, p.11] for the proof.

Proof. If C is trace class, then, as before,

Cx =

∞∑

j=0

σj(C)〈x, vj〉wj for all x ∈ H
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where
∑∞

j=0 σj(C) <∞. We define

Ax =
∞∑

j=0

σj(C)1/2〈x, vj〉wj for all x ∈ H

and

Bx =
∞∑

j=0

σj(C)1/2〈x, vj〉vj for all x ∈ H,

where both series are convergent in the norm of H . Then it is clear that A and B

are Hilbert–Schmidt, since they have singular values (σj(C)1/2)∞j=0, which is clearly

a square-summable sequence because C is trace class. Also, for any x ∈ H , we

have

ABx = A

( ∞∑

j=0

σj(C)1/2〈x, vj〉vj
)

=

∞∑

i=0

σi(C)1/2

〈 ∞∑

j=0

σj(C)1/2〈x, vj〉vj, vi
〉

wi

=
∞∑

i=0

σi(C)1/2
∞∑

j=0

σj(C)1/2〈x, vj〉〈vj, vi〉wi

=

∞∑

j=0

σj(C)〈x, vj〉wj = Cx

Recall that the trace of a matrix is the sum of the entries along its main diagonal.

We wish to make a similar definition for operators. The obvious starting point

for a definition of trace(A) is to define it as the sum of the diagonal entries of

the matrix of A with respect to some orthonormal basis. There are two potential

problems with this: (i) we do not know whether our choice of orthonormal basis

will affect the value of this “trace”, and (ii) the sum will in general be infinite,

and there is no obvious guarantee of convergence. Fortunately, it turns out that

we can overcome these problems when A is trace class, as the next result shows.
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Proposition 1.9 Let A be a trace class operator. Then, for any orthonormal

basis (ej) of H, the sum
∞∑

j=0

〈Aej , ej〉

is convergent, and the value of the sum is independent of the choice of basis.

Proof. Pick an orthonormal basis (ej). Note that Lemma 1.8 allows us to write

A = BC, for some Hilbert–Schmidt operators B and C, and so

∞∑

j=0

〈Aej, ej〉 =

∞∑

j=0

〈BCej, ej〉 = 〈Cej, B∗ej〉. (14)

We need to show that this sum is convergent, and that its value is independent

of the basis chosen. To this end, we define an inner product on C2, the space of

Hilbert–Schmidt operators by

〈T1, T2〉C2
=

∞∑

j=0

〈T1ej , T2ej〉.

This sum is convergent (and so (14) is), since, by the Cauchy–Schwarz inequality

applied twice,

∞∑

j=0

|〈T1ej , T2ej〉| ≤
∞∑

j=0

‖T1ej‖ ‖T2ej‖

≤
( ∞∑

j=0

‖T1ej‖2

)1/2( ∞∑

j=0

‖T2ej‖2

)1/2

,

and Proposition 1.7 tells us that the sums on the last line are the Hilbert–Schmidt

norms of T1 and T2, which are by definition finite. Observe that 〈, 〉C2
inherits the

properties of the ordinary inner product in the sum, so that it is linear in the first

argument, conjugate linear in the second argument, and 〈T, T 〉C2
≥ 0 for all T ,

and hence is a genuine inner product. We still need to show, however, that the

value of 〈T1, T2〉C2
does not depend on the orthonormal basis chosen. We already
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know that

〈T, T 〉C2
=

∞∑

j=0

〈Tej, T ej〉 =
∞∑

j=0

‖Tej‖2

does not depend on the choice of basis (ej), so by the polarisation identity,

4〈x, y〉 = 〈x+ y, x+ y〉− 〈x− y, x− y〉+ i〈x+ iy, x+ iy〉− i〈x− iy, x− iy〉, (15)

valid for any inner product, we see that

〈C,B∗〉C2
= 〈Cej, B∗ej〉

does not depend on the choice of (ej) either.

We can now unambiguously make the following definition.

Definition 1.10 For a trace class operator A, and any orthonormal basis (ej),

the trace is defined by

trace (A) =

∞∑

j=0

〈Aej, ej〉.

Notice that this definition agrees with the “sum down the main diagonal” value

for finite rank operators (which correspond to finite-dimensional matrices). In

the matrix definition of trace, the diagonal sum coincides with the sum of the

eigenvalues. This is true for trace class operators as well: a proof of the following

famous theorem can be found in [24, p.334].

Theorem 1.11 (Lidskii) Let A be a trace class operator, and λj(A) be its eigen-

values, counted according to geometric multiplicity. Then

trace (A) =
∑

j

λj(A).
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Remark

If A is trace class, and in addition positive and self-adjoint, then σj(A) are just

the eigenvalues of A, counted according to geometric multiplicity and

‖A‖C1
= trace (A).

Let K be an operator on L2[a, b] which operates on a function f ∈ L2[a, b] as

follows:

Kf(x) =

∫ b

a

K(x, y)f(y) dy.

Then we say that K is an integral operator with kernel K(x, y). The adjoint

operator K∗ is also an integral operator, with kernel K(y, x) (see [50, p.77]) so

that K is self-adjoint if and only if K(x, y) = K(y, x). It can be shown that

integral operators with continuous kernel on [a, b]2 are compact. The corollary to

the following result, due to Mercer (see [24, p.343] for a proof), will allow us to

convert statements about convergence of integrals into trace convergence results

for integral operators.

Theorem 1.12 (Mercer) Let K(x, y) be a real-valued, symmetric, continuous

function of x and y, and suppose that the integral operator K : L2[0, 1] → L2[0, 1]

with kernel K(x, y) is non-negative:

〈Ku, u〉 ≥ 0 for all u ∈ L2[0, 1].

Then K(x, y) can be expanded in a uniformly convergent series

K(x, y) =

∞∑

j=0

λjφj(x)φj(y), (16)

where λj are the eigenvalues, and φj the normalized eigenfunctions of the operator

K.

Corollary 1.13 Suppose that K : L2[0, 1] → L2[0, 1] is an integral operator whose
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kernel K(x, y) satisfies the conditions of Mercer’s theorem. Then K is trace class,

and

traceK =

∫ 1

0

K(x, x) dx.

Proof. Set x = y in (16) and integrate. Since the sum is uniformly convergent,

we can exchange the order of summation and integration to get

∫ 1

0

K(x, x) dx =

∞∑

j=0

λj

∫ 1

0

φj(x)
2 dx

=
∞∑

j=0

λj

= trace (K),

by Lidskii’s theorem (Theorem 1.11).

At this point, we say some words about convergence for operators, which will

mostly be relevant in the context of Chapter 2. Let An be a sequence of bounded

operators on H . Then we identify three types of convergence:

An → A in norm if ‖An − A‖ → 0

An → A strongly if Anx→ Ax for all x ∈ H

An → A weakly if 〈Anx, y〉 → 〈Ax, y〉 for all x, y ∈ H

as n→ ∞.

The sequence of inequalities

|〈(A− An)x, y〉| ≤ ‖y‖ ‖Ax−Anx‖ ≤ ‖y‖ ‖x‖ ‖A−An‖

shows that there is the following hierarchy in these definitions: norm convergence

implies strong convergence, which implies weak convergence. Note that, because

of the polarisation identity (15), the definition of weak convergence above is equiv-
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alent to the condition

〈Anx, x〉 → 〈Ax, x〉 for all x ∈ H as n→ ∞.

The following result is a special case of one proved in [39] (see Theorem 2.20 there).

We shall use it to get the required trace norm convergence in Theorem 2.7. The

notation |A| means (A∗A)1/2, so that |A| = A if A is positive.

Theorem 1.14 Let An and A be trace class operators, and suppose that An → A,

|An| → |A|, and |A∗
n| → |A∗| all weakly, and that ‖An‖C1

→ ‖A‖C1
as n → ∞.

Then ‖An −A‖C1
→ 0 as n→ ∞.

1.5 Fredholm determinants

We shall make a definition of operator determinants which agrees with the usual

definition when we specialise to finite rank operators (or in other words, finite-

dimensional matrices). Our approach follows [39, pp.33-36], and we refer the

reader to this source for some of the proofs. To begin with, we need some new

notation. Let H1, . . .Hn be Hilbert spaces, and let hom (H1, . . . , Hn) be the space

of multilinear maps ℓ : H1 × . . .Hn → C. Let φi ∈ Hi. We introduce the notation

φ1 ⊗ . . .⊗ φn for the multilinear function

φ1 ⊗ . . .⊗ φn : (ψ1, . . . , ψn) 7→
n∏

i=1

〈φi, ψi〉.

Now write hom f (H1, . . . , Hn) for the algebraic span of the φ1 ⊗ . . . ⊗ φn in

hom (H1, . . . , Hn). We may define an inner product on hom f(H1, . . . , Hn) which

acts on basis elements as follows:

〈ℓ, φ1 ⊗ . . .⊗ φn〉 = ℓ(φ1, . . . , φn).
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Using this inner product, we can realise the completion of hom f(H1, . . . , Hn) as a

subset of hom (H1, . . . , Hn): we call this H1⊗ . . .⊗Hn. Given maps Ai : Hi → Hi,

there is a map of hom (H1, . . . , Hn) into itself defined by

((A1 ⊗ . . .⊗ An)(ℓ)) (ψ1, . . . , ψn) = ℓ(A∗
1ψ1, . . . , A

∗
nψn).

Note that this map also takes H1 ⊗ . . .⊗Hn into itself, and satisfies

(A1 ⊗ . . .⊗An)(φ1 ⊗ . . .⊗ φn)(ψ1, . . . , ψn)

= (ψ1 ⊗ ψn)(A
∗
1ψ1, . . . , A

∗
nψn)

=
n∏

i=1

〈ψi, Aiψi〉

=

n∏

i=1

〈Aiφi, ψi〉

= (A1φ1) ⊗ . . .⊗ (Anφn)(ψ1, . . . , ψn).

Given ψ1, . . . , ψn ∈ H , we define a new object

ψ1 ∧ . . . ∧ ψn =
1√
n!

∑

π∈σn

(−1)πψπ(1) ⊗ . . .⊗ ψπ(n),

where σn is the group of all permutations on {1, . . . , n}, and (−1)π is the sign

of the permutation π. We write ΛnH for the Hilbert-span of the ψ1 ∧ . . . ∧ ψn,

and introduce the notation Λk(A) for the operator A⊗ . . .⊗ A on ΛnH . We now

proceed to define a determinant on the space of trace class operators C1.

Lemma 1.15 Let A be a trace class operator on a Hilbert space H. Then Λk(A)

is also trace class on ΛkH with

∥∥Λk(A)
∥∥
C1

≤ 1

k!
‖A‖kC1

. (17)
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In particular, the series

det(I + zA) :=
∞∑

k=0

zk trace (Λk(A))

defines an entire function which satisfies the estimate

|det(I + zA)| ≤ exp
(
|z | ‖A‖C1

)
. (18)

Moreover, for any fixed ǫ > 0, we have that

|det(I + zA)| ≤ Cǫ exp(ǫ |z |). (19)

. Further, if A is a finite rank operator, then this definition of the determinant

agrees with that previously defined for matrices.

Proof. Let (µj(A))j≥0 be the singular values of A. Notice that
∣∣Λk(A)

∣∣ = Λk(|A|),

so that the singular values of Λk(A) are {µi1(A) . . . µik}i1<...<ik . Then

∥∥Λk(A)
∥∥
C1

=
∑

i1<...<ik

µi1(A) . . . µik(A).

Thus, the inequality (17) is clear. It is then easy to see that (18) is true, since

∣∣∣∣∣

∞∑

k=0

zk trace (Λk(A))

∣∣∣∣∣

≤
∞∑

k=0

|z |k
∥∥Λk(A)

∥∥
C1

≤
∞∑

k=0

|z |k
k!

‖A‖kC1

= exp
(
|z | ‖A‖C1

)
.
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The series
∑∞

n=0 µn(A) is convergent, so for fixed ǫ > 0, we can pick N so that

∞∑

n=N+1

µn(A) ≤ ǫ/2.

Also,

|det(I + zA)| ≤
∞∑

k=0

|z |k
∥∥Λk(A)

∥∥
C1

=
∞∑

k=0

|z |k
∑

i1<...<ik

µi1(A) . . . µik(A)

=

∞∏

k=1

(1 + |z |µk(A))

=
N∏

k=1

(1 + |z |µk(A))
∞∏

k=N+1

(1 + |z |µk(A))

≤
N∏

k=1

(1 + |z |µk(A))

∞∏

k=N+1

exp (|z |µk(A))

=
N∏

k=1

(1 + |z |µk(A)) exp(|z |
∞∑

k=N+1

µk(A))

=

N∏

k=1

(1 + |z |µk(A)) exp(|z | ǫ/2)

≤ Cǫ exp(ǫ |z |),

for some constant Cǫ. The final part of the theorem is discussed in [39, p.7].

Theorem 1.16 The mapping A 7→ det(I + A) is a continuous function on C1,

the set of trace class operators.

Lemma 1.17 If A is a trace class operator, then there exists a sequence of finite-

rank operators An such that ‖An − A‖C1
→ 0 as n→ ∞.

Theorem 1.18 Let A and B be trace class operators. Then:

(i) det(I + A+B + AB) = det(I + A) det(I +B)

(ii) det(I + A) 6= 0 if and only if I + A is invertible.
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(iii) If λ is an eigenvalue of A of multiplicity n, and z0 = −1/λ, then det(I + zA)

has a zero of order n at z0.

Proof. (i) By the continuity of the determinant proved in Theorem 1.16, and the

convergence result Lemma 1.17, we only need to prove this result for finite-rank

operators. But this result is clear for finite rank operators, as it follows from the

fact that det(CD) = det(C) det(D). For parts (ii) and (iii), we refer the reader

to [39, p.34], to avoid verbatim repitition.

The following result is due to Hadamard, and appears in Titchmarsh [42, p. 250,

§8.24].

Lemma 1.19 Let f(z) be an entire function with zeros at z1, z2, . . . (counting

multiplicity). Suppose that f(0) = 1,
∑∞

n=0 |zn |
−1 <∞, and that for any ǫ > 0

|f(z)| ≤ Cǫ exp(ǫ |z |).

Then

f(z) =

∞∏

n=1

(1 − z−1
n z).

The following result is a direct application of Hurwitz’s theorem to the determinant

function. It essentially asserts that zeros of both sides of (20) match up, and no

new zeros arise from the limiting process. For a proof of Hurwitz’s theorem, see

[42, p.119].

Lemma 1.20 Suppose that (An) is a sequence of finite-rank operators which con-

verge to a trace-class operator A in trace norm as n → ∞. Let Γ be a contour

such that no zero of det(I + zA) lies on Γ, and let χ(f ; Γ) be the number of zeros

of a function f which lie inside Γ. Then

χ(det(I + zAn); Γ) → χ(det(I + zA); Γ) as n→ ∞.
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Theorem 1.21 Let A be a trace class operator, with non-zero eigenvalues λk(A).

Then, for the determinant we defined in Lemma 1.15, we have

det(I + zA) =

∞∏

k=1

(I + zλk(A)). (20)

Proof. Let f(z) = det(I + zA), and let (λn(A)) be the non-zero eigenvalues of A

arranged in descending order. By Theorem 1.18, f has zeros at zn = −1/λn(A).

By the Lalesco inequality (see [23])

N∑

i=1

|λi(A)| ≤
∞∑

i=0

|µi(A)| ,

and hence
∑∞

n=0 |zn |
−1 < ∞. It is clear that f(0) = 1, and by (18), f(z) ≤

Cǫ exp(ǫ |z |). Thus we can use Lemma 1.19 to get the required expansion.

Finally in this section, we illustrate the Fredholm determinant of a integral oper-

ator, which will be important later on, when we consider random matrix theory.

We refer the reader to [39, p.36] for the proof

Theorem 1.22 Let K be a trace-class integral operator on L2(a, b) with kernel

K(x, y), and K continuous. Then

det(I −K) =

∞∑

n=0

(−1)n
αn
n!
,

where

αn =

∫ b

a

. . .

∫ b

a

det (K(xi, yj))1≤i,j≤n dx1 . . . dxn.

1.6 Hankel and Toeplitz operators

Hankel operators will be considered in several contexts in this thesis, mainly be-

cause they are an aid to spectral calculation for Tracy–Widom operators. To begin
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with, we think of them as matrices. If an operator Γ : ℓ2 → ℓ2 has matrix of the

form 



a0 a1 a2 · · ·

a1 a2 a3
. . .

a2 a3 a4
. . .

...
...

...
. . .





,

or in other words

[Γ]j,k = aj+k, j, k ≥ 0

for some sequence (an)
∞
n=0 ∈ ℓ2, then we say that Γ is a Hankel operator on ℓ2, and

refer to its matrix [Γ] as a Hankel matrix. Since the value of each entry depends

only on the sum of its indices, another way to state this is to say that [Γ] is constant

on the diagonals perpendicular to the main diagonal. Following on from this idea,

we can use the shift operator S defined in §1.2 to give a characterisation of Hankel

operators.

Proposition 1.23 Γ has a Hankel matrix in the standard basis of ℓ2 if and only

if

ΓS = S∗Γ. (21)

Proof. Let (en)
∞
n=0 be the standard basis for ℓ2, and suppose that Γ is an operator

on ℓ2. Then

〈ΓSem, en〉 = 〈Γem+1, en〉

while

〈S∗Γem, en〉 = 〈Γen, Sen〉 = 〈Γem, en+1〉.

Hence 〈ΓSem, en〉 = 〈S∗Γem, en〉 if and only if 〈Γem+1, en〉 = 〈Γem, en+1〉, or in

other words, Γ is a Hankel matrix.

The following special property of the kernel of a Hankel operator will be important

later on, when we consider operators on the circle in Chapter 4. It is a direct
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consequence of the shift characterisation we just proved. Recall that the kernel of

a linear operator on H is the set

KerA = {x ∈ H : Ax = 0}.

Corollary 1.24 The kernel Ker Γφ of a Hankel operator Γφ on H2(T) is shift-

invariant, i.e. SKer Γφ is a subspace of KerΓφ.

Proof. Take x ∈ SKer(Γ). Then by definition x = Sy, where Γy = 0, so by

Proposition 1.23,

Γx = ΓSy = S∗Γy = 0,

and hence x ∈ Ker(Γ) as required.

We would like to define an operator on H2(T) which has a Hankel matrix, since

these arise naturally in problems that we shall study in later parts of the thesis.

Furthermore, expressing a Hankel matrix in this way can make spectral calcula-

tion much easier, because of results like Theorem 1.28 below. Let (zn)∞n=−∞ be the

standard orthonormal basis for L2(T). Let Mφ denote the operator of multiplica-

tion by a function φ ∈ L2(T). Define a flip operator J on the basis of L2(T) by

Jzn = z−n. Now let Γφ : H2 → H2 be defined by Γφ = P+MφJ . Then the matrix

of Γφ with respect to (zn)∞n=−∞ has (m,n)th entry

〈P+MφJz
m, zn〉 = 〈P+

∞∑

k=−∞
φ̂(k)zk−m, zn〉

= 〈P+

∞∑

l=−∞
φ̂(m+ l)zl, zn〉

= 〈
∞∑

l=0

φ̂(m+ l)zl, zn〉

= φ̂(m+ n) (m,n ∈ Z+), (22)

which shows that Γφ has a Hankel matrix with respect to the standard basis.

We call φ a symbol of the Hankel operator Γφ. Notice that φ is not unique: Γφ
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determines only the positive Fourier coefficients (φ̂(n))∞n=0 of a symbol function.

Nonetheless, there is in some sense a “best choice” of symbol, which appears in

the next result, where the bounded Hankel operators are characterised. The result

was first given by Nehari in 1957, and states that a Hankel operator Γ is bounded

if and only if it has a bounded symbol. There are many proofs in the literature,

see for example [32, p.26], [37, p.3], or for a gentler approach, [26, p.131]. It is

worth pointing out at this stage that there is an alternative way of defining a

Hankel operator, often found in the literature, in which matrix entries determine

instead the negative Fourier coefficients. There is no advantage of one approach

over another, but it is important to be aware of which definition is being used

when applying results from a particular source.

Theorem 1.25 (Nehari) A Hankel operator Γ with matrix [aj+k]j,k≥0 is bounded

if and only if there exists a function φ ∈ L∞(T) such that φ̂(n) = an for n ≥ 0.

Furthermore,

‖Γ‖ = inf{‖φ‖ : φ ∈ L∞(T) with φ̂(n) = an for n ≥ 0}.

We now list some more basic properties of Hankel operators. The adjoint of the

Hankel operator Γφ has matrix

[
φ̂(m+ n)

]

m,n≥0

,

and a symbol function for this matrix is

∞∑

j=−∞
φ̂(j)zj = φ(z̄),

so Γ∗
φ = Γφ∗ , where we define φ∗(z) = φ(z̄). Thus, a Hankel operator Γφ is self-

adjoint if and only if φ̂(n) ∈ R for all n ≥ 0.
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Proposition 1.26 A Hankel operator Γφ on H2 is Hilbert-Schmidt if and only if

∞∑

n=1

n|φ̂(n)|2 <∞.

Proof. Any Hankel operator has a matrix which is constant on diagonals per-

pendicular to the main diagonal, so the sum of its squared matrix entries is

∑∞
n=1 n|φ̂(n)|2. By Proposition 1.7, this sum is equal to ‖Γφ‖2.

There is a simple compactness criterion due to Hartman which we state without

proof (see [32, p.214]), and will use later on. We write C(T) for the space of

continuous functions on the unit circle.

Theorem 1.27 (Hartman) Let Γ be a Hankel operator on H2(T). Then Γ is

compact if and only there exists a function φ ∈ C(T) such that Γ = Γφ.

We mentioned earlier that if we define operators onH2 which have a Hankel matrix

with respect to the standard basis, then spectral results about these matrices can

be deduced. We now make this idea clear, by presenting a result due to Power [36]

on the essential spectrum of a Hankel operator with piecewise continuous symbol.

The latter term means that at each point of T, φ is right-continuous, and has left

and right limits there. We shall need some notation: if φ is piecewise-continuous,

and λ ∈ T is a point of discontinuity, then we define the jump (saltus) at λ as

sλ = φ(λ+) − φ(λ−),

where φ(λ+) = limθ→0+
φ(λeiθ) and φ(λ−) = limθ→0− φ(λeiθ).

Theorem 1.28 (Power) Let φ ∈ L∞(T) be piecewise-continuous. Then

σess(Γφ) =
i

2
[0, s1] ∪

i

2
[0, s−1]

⋃

λ∈T\{±1}

i

2

[
−(sλsλ̄)

1/2, (sλsλ̄)
1/2
]
.
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Thus the essential spectrum of a Hankel operator with piecewise-continuous sym-

bol is a union of intervals in the complex plane, which all pass through or start

from the origin. Although this makes calculation of the essential spectrum fairly

straightforward in this case, the full spectrum remains more elusive, since it could

contain isolated eigenvalues. As an illustration, and because the information will

be useful later, we show how Power’s result can be used to recover the following

famous result on the spectrum of the Hilbert matrix.

Proposition 1.29 Hilbert’s Hankel matrix Γ = [1/(m+n+1)]m,n≥0 has σess(Γ) =

[0, π].

Remark

In fact, more is true: a famous result of Magnus shows that the full spectrum of

Γ is [0, π] (see [32, p.287]).

Proof. We have first to find a symbol function φ for Γ. The positive Fourier

coefficients are already determined by the Hilbert matrix, so we must have φ̂(n) =

1/(n+ 1) for n ≥ 0, and we choose the negative coefficients to mirror these. Thus

we have

φ(eiθ) =
∞∑

n=0

einθ

n+ 1
−

∞∑

n=2

e−inθ

n− 1

= −e−iθ log(1 − eiθ) + e−iθ log(1 − e−iθ)

= e−iθ
(

log

∣∣∣∣
1 − e−iθ

1 − eiθ

∣∣∣∣ + i arg

(
1 − e−iθ

1 − eiθ

))

= ie−iθ arg

(
1 − e−iθ

1 − eiθ

)
,

in which we take the logarithm to be defined by the principal value of the argument.

An easy calculation shows that

1 − e−iθ

1 − eiθ
=

1 − 2 cos θ + cos 2θ

2(1 − cos θ)
+ i

2 sin θ − sin 2θ

2 − 2 cos θ
,

37



for θ ∈ [0, 2π), and so

arg

(
1 − e−iθ

1 − eiθ

)
= tan−1

(
2 sin θ − sin 2θ

1 − 2 cos θ + cos 2θ

)

= tan−1

(
2 sin θ (1 − cos θ)

2 cos θ(cos θ − 1)

)

= tan−1

(
− sin θ

cos θ

)

= π − θ.

Thus

φ(eiθ) = ie−iθ(π − θ) for θ ∈ [0, 2π).

Clearly, the only point of discontinuity of this function on the unit circle is at 1.

We have φ(1+) = iπ and φ(1−) = −iπ, so s1 = 2π. Hence, by Theorem 1.28

σess(Γ) =
i

2
[0, 2π] = [0, π].

Another class of operators having a special matrix form are the Toeplitz operators.

A Toeplitz matrix is characterised by being constant on the diagonals parallel to

the main diagonal 



a0 a−1 a−2 · · ·

a1 a0 a−1
. . .

a2 a1 a0
. . .

...
...

...
. . .





;

thus it has the form [aj−k]j,k≥0 for some sequence (an)n≥0. As with the Hankel

case, it is useful to define operators on H2(T) which have a Toeplitz matrix with

respect to the standard basis for H2(T). We set Tφ = P+Mφ, call φ the symbol

of the Toeplitz operator, and then the (m,n)th element of the matrix of Tφ with
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respect to the standard basis (zn)∞n=0 is

〈P+Mφz
m, zn〉 = 〈P+

∞∑

k=−∞
φ̂(k)zm+k, zn〉

= 〈P+

∞∑

l=−∞
φ̂(l −m)zl, zn〉

= 〈
∞∑

l=0

φ̂(l −m)zl, zn〉

= φ̂(n−m) (m,n ∈ Z+).

There is a result analogous to Nehari’s theorem, which states that the bounded

Toeplitz operators are those with bounded symbols (see [33, p.312, Theorem 26]).

The essential range of a function φ ∈ L∞(T) is defined to be the set

{λ : m
{
eiθ :

∣∣φ(eiθ) − λ
∣∣ < ǫ

}
> 0 for all ǫ > 0}.

When the symbol φ is real-valued, Hartman and Wintner (see [32, p.248]) proved

that

σ(Tφ) = σess(Tφ) = [ess inf φ, ess sup φ],

where ess inf φ and ess sup φ are, respectively, the greatest lower bound and least

upper bound of the essential range of φ. The resemblance between Hankel and

Toeplitz operators on H2 leads to the following useful identity, which can be found

in [32, p.253].

Proposition 1.30 Let φ, ψ ∈ L∞(T). Then

TφTψ − Tφψ = −ΓφΓJψ = −ΓφΓ
∗
ψ̄. (23)

Proof. Following the definition of Tφ as above, and using the fact that P++P− = I

and J2 = I, we have

TφTψ − Tφψ = P+MφP+Mψ − P+MφMψ
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= P+MφP+Mψ − P+Mφ(P+ + P−)Mψ

= −P+MφP−Mψ

= −(P+MφJ)(JP−Mψ).

Recall that P+MφJ = Γφ, and observe that

〈JP−Mψz
m, zn〉 = 〈JP−

∞∑

j=−∞
ψ̂(j)zm+j , zn〉

= 〈JP−

∞∑

l=∞
ψ̂(l −m)zl, zn〉

= 〈J
−1∑

l=−∞
ψ̂(l −m)zl, zn〉

= 〈J
∞∑

l=1

ψ̂(−l −m)z−l, zn〉

= 〈
∞∑

l=1

ψ̂(−l −m)zl, zn〉

= ψ̂(−n−m).

Now, since

Jψ(z) = ψ(z̄) =
∞∑

k=−∞
ψ̂(k)z−k =

∞∑

k=−∞
ψ̂(−k)zk

and also

ψ(z) =

∞∑

j=−∞
ψ̂(j)z−j =

∞∑

j=−∞
ψ̂(−j)zj ,

it is then clear that

JP−Mψ = ΓJψ = Γ∗
ψ̄

and hence we have the result.

1.7 Spectral multiplicity

The following version of the spectral theorem is proved in [13, p.47].
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Theorem 1.31 Let N be a normal operator on a seperable Hilbert space, with

spectrum X. Then N is unitarily equivalent to a multiplication operator Mf on

some L2(µ) space, where the measure µ is a positive Radon measure defined on the

space X∞ = X × N of countably many distinct copies of X.

The measure µ in the above theorem is called the scalar spectral measure.

Definition 1.32 The spectral multiplicity measure νW of a normal operator W

is given by νW (A) = µ(A × N) for all Borel subsets A of X. In particular, for

a compact and self-adjoint operator C, the spectrum consists of 0 together with a

sequence of real eigenvalues λ and νC({λ}) = dimEλ , where Eλ is the eigenspace

that corresponds to the eigenvalue λ.

As a further motivation for the results of Chapters 4 and 5, we see how expressing

an operator as a Hankel square can yield information about its spectral multiplicity

function. Megretskĭi, Peller and Treil [30] have proved the following important

result about the operators unitarily equivalent to a Hankel operator. We state it,

and then give some consequences in our context.

Theorem 1.33 Let Γ be a bounded and self-adjoint operator on a Hilbert space

H with a scalar spectral measure µ and spectral multiplicity function ν. Then Γ

is unitarily equivalent to a Hankel operator if and only if the following conditions

are satisfied:

(i) Either dim Ker Γ = 0 or dim Ker Γ = ∞;

(ii) Γ is non-invertible;

(iii) |ν(λ) − ν(−λ)| ≤ 2 µa-a.e. and |ν(λ) − ν(−λ)| ≤ 1 µs-a.e., where µs and

µa are the singular and absolutely continuous components of µ.

The following elementary fact about the kernel of an operator is trivial, but will

be useful in the proof below, and in one of the results of Chapter 4:
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Lemma 1.34 Let A be a bounded linear operator on H. Then

Ker (A∗A) = Ker (A).

Proof. It is immediate that KerA ⊂ Ker (A∗A), so suppose that x ∈ Ker(A∗A).

Then A∗Ax = 0, so

0 = 〈A∗Ax, x〉 = 〈Ax,Ax〉,

and hence Ax = 0, i.e. x ∈ KerA.

Proposition 1.35 Suppose that an operator K satisfies K = Γ2, where Γ is a

compact self-adjoint Hankel operator. Then

(i) νK(0) = 0 or νK(0) = ∞.

(ii) νK(λ) <∞ and νK(λ) = νΓ(
√
λ) + νΓ(−

√
λ) for all λ > 0.

(iii) If νK(λ) is even, then νΓ(
√
λ) = νΓ(−

√
λ).

(iv) If νK(λ) is odd, then
∣∣∣νΓ(

√
λ) − νΓ(−

√
λ)
∣∣∣ = 1

Proof. (i) Note that νK(0) is the dimension of KerK. Since Γ is self-adjoint, by

Lemma 1.34 we have

Ker(K) = Ker(Γ2) = Ker(Γ),

where Ker(Γ) = {0} or ΘH2(T), for some inner Θ, by Beurling’s theorem, since

the kernel of any Hankel operator is a shift-invariant subspace of H2(T) (Corollary

1.24).

(ii) K is compact because Γ is, so the spectrum of K consists of eigenvalues

of finite multiplicity, i.e. νK(λ) <∞ for all λ. Note that if λ > 0 is an eigenvalue

of K, then

Eλ(K) = Eλ(Γ
2) = {x ∈ H : Γx =

√
λx or Γx = −

√
λx},
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which gives the required statement on spectral multiplicity.

(iii) If νK(λ) is even, then by (ii), νΓ(
√
λ)+νΓ(−

√
λ) is even, and hence νΓ(

√
λ)−

νΓ(−
√
λ) is even. Since Theorem 1.33 tells us that |νΓ(

√
λ) − νΓ(−

√
λ)| ≤ 1 (Γ

is compact, so there is no absolutely continuous component to the spectrum), we

therefore have νΓ(
√
λ) = νΓ(−

√
λ).

(iv) This follows by a very similar argument to (iii).

1.8 Orthogonal polynomials

Let w be a non-negative function defined on a (possibly infinite) interval [a, b].

Assuming all the moments
∫ b
a
w(x)xn dx of w exist, we can construct, via the

Gram–Schmidt process applied to the set {1, x, x2, . . .}, a sequence of orthonormal

polynomials pn(x) such that

∫ b

a

pj(x)pk(x)w(x) dx = δj,k, (24)

where δj,k is the Kronecker delta function as defined in (7), and the leading coeffi-

cient of pn is positive. Note that the assumptions we have so far made about the

weight w do not imply that the polynomials (pn) form an orthonormal basis for

L2[a, b]. To get this, we need an extra condition. The following result is proved in

[29, p.333].

Proposition 1.36 Let w(x) be a non-negative weight function on a (possibly in-

finite) interval [a, b]. Suppose that

∫ b

a

er|x|w(x) dx <∞.

Then all the moments of w exist, and further the sequence (pn(x)) of polynomials

43



orthonormal on [a, b] with respect to w which arises from the Gram-Schmidt process

has the property that if any function f ∈ L2[a, b] is orthogonal to all the pn, then

f = 0 almost everywhere, i.e. (pn(x)) is complete in L2[a, b].

An important property of all orthogonal polynomial sequences is that they satisfy

a recurrence relation: we shall exploit this later to simplify expressions. This

property is well-known, but we include a proof for completeness.

Lemma 1.37 Let w(x) be a non-negative weight function on an interval [a, b]

such that all the moments
∫ b
a
xnw(x) dx exist, and let (pn(x)) be the sequence of

polynomials arising from the Gram–Schmidt process which are orthonormal with

respect to w on the interval [a, b]. Then there is a three-term recurrence relation

xpn−1(x) = Anpn−2(x) +Bnpn−1(x) + Cnpn(x) (n = 1, 2, 3, . . .), (25)

in which

An =

∫ b

a

xpn−1(x)pn−2(x)w(x) dx,

Bn =

∫ b

a

xpn−1(x)
2w(x) dx,

Cn =

∫ b

a

xpn(x)pn−1(x)w(x) dx,

and we define p−1 = 0.

Remark

Notice that Cn = An+1, simply from the definition of the integrals.

Proof. The polynomial xpn−1(x) has degree n, so that

xpn−1(x) =
n∑

k=0

ckpk(x),
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for some constants ck. We use the fact that (pk) is an orthonormal sequence to

show that

ck = 〈xpn−1(x), pk(x)〉 =

∫ b

a

xpn−1(x)pk(x)w(x) dx. (26)

In fact, since xpk(x) is a polynomial of degree k + 1, and pn−1 has degree n − 1,

ck = 0 for k = 0, . . . , n − 3, and so we have the required expression for xpn−1(x),

where the values of An, Bn and Cn follow from (26).

Remark

The three-term recurrence relation can also be stated in the following matrix form




pn(x)

pn+1(x)



 =




0 1

−An+1

Cn+1

x−Bn+1

Cn+1








pn−1(x)

pn(x)



 ,

in which the entries of the one step transition matrix are rational functions (in

fact, linear polynomials) in x. Clearly, if An+1 = Cn+1, then this matrix has de-

terminant 1, and we are in the territory of the operators considered in Chapter

5. Since the form of the matrix system is similar to the continuous Tracy–Widom

matrix systems considered in [44] and here in §1.11, writing the three-term recur-

rence relation in this way thus helps to unify the discrete and continuous cases.

The following formula is well-known in the theory of orthogonal polynomials (see,

for example [41, p.43]). We include the easy proof for completeness, and also add

in a simple consequence for an important operator which appears in the determi-

nantal expressions for random matrix eigenvalue distributions in §1.9 and §1.10.

Proposition 1.38 (Christoffel-Darboux formula) Let a weight w be as above,

and let (pn(x)) be the sequence of polynomials arising from the Gram–Schmidt pro-

cess which are orthonormal with respect to w on the interval [a, b]. Then we have

n−1∑

k=0

pk(x)pk(y) = Cn
pn(x)pn−1(y) − pn−1(x)pn(y)

x− y
, (27)
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where the value of Cn comes from the three-term recurrence relation (25). More-

over, the integral operator Kn on L2(w, [a, b]) with kernel

Kn(x, y) =

n−1∑

k=0

pk(x)pk(y)

satisfies K2
n = Kn and K∗

n = Kn.

Proof. We use the three-term recurrence relation (25) to rewrite the numerator

on the right hand side. We find

Cn (pn(x)pn−1(y) − pn−1(x)pn(y))

= pn−1(y) (xpn−1(x) − Anpn−2(x) − Bnpn−1(x))

−pn−1(x) (ypn−1(y) − Anpn−2(y) − Bnpn−1(y))

= (x− y)pn−1(x)pn−1(y) + An (pn−1(x)pn−2(y) − pn−1(y)pn−2(x))

= (x− y)pn−1(x)pn−1(y) + Cn−1 (pn−1(x)pn−2(y) − pn−1(y)pn−2(x)) ,

where the last line follows from the remark after Lemma 1.37, and then we repeat

the argument a further n − 3 times to get the required formula (and recall the

convention p−1(x) = 0). Now note that Kn is the projection onto the subspace

span {pk(x) : k = 0, . . . , n− 1}

so it satisfies K2
n = Kn and K∗

n = Kn as an operator on L2(w, [a, b]).

Corollary 1.39 For [c, d] ⊆ [a, b], the operator I[c,d]KI[c,d] that has kernel

CnI[c,d](x)
pn(x)pn−1(y) − pn−1(x)pn(y)

x− y
I[c,d](y)

satisfies

0 ≤ I[c,d]KI[c,d] ≤ I
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and is of trace class.

1.9 The Gaussian Unitary Ensemble

Let xj,k and yj,k for 1 ≤ j < k ≤ N be N(0, 1/2) random variables and xj,j for

1 ≤ j ≤ N be N(0, 1/4) random variables, where xj,j, xj,k and yj,k are all mutually

independent. Now define a space of N × N Hermitian (self-adjoint) matrices Z

with entries

Zj,k =






(xj,k + iyj,k) for j < k

xj,j for j = k

(xj,k − iyj,k) for k < j.

The p.d.f. for a N(0, σ2) distribution is

1√
2πσ2

exp
(
−x2/(2σ2)

)
,

and hence the joint p.d.f. of the matrix elements is

∏

1≤j<k≤N

(
1√
π/2

)2

exp
(
−2(x2

j,k + y2
j,k)
) N∏

j=1

1√
π

exp
(
−x2

j,j

)

=
2N(N−1)/2

πN2/2
exp

(
−2

∑

1≤j<k≤N
(x2

j,k + y2
j,k) −

∑

1≤j≤N
x2
j,j

)
.

It is easy to see that

trace (Z∗Z) =
∑

1≤j≤N
x2
j,j + 2

∑

1≤j<k≤N
(x2

j,k + y2
j,k),

so we define a probability measure ν at the level of matrices by

ν( dZ) =
2N(N−1)/2

πN2/2
exp(− trace (Z∗Z)) dZ,
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where

dZ =
∏

1≤j≤k≤N
dxj,k

∏

1≤j<k≤N
dyj,k.

This space of matrices, with the given probability measure, is known as the Gaus-

sian Unitary Ensemble (GUE). The probability measure is invariant under unitary

transformations Z 7→ UZU∗, where U is an N × N unitary matrix, in the sense

that, for any continuous and bounded function f ,

∫
f(UZU∗)ν( dZ) =

∫
f(Z)ν( dZ).

To define instead a probability measure on eigenvalues of Z, we need the Jacobian

which arises from the change of variables from the space of Hermitian matrices to

the simplex of ordered eigenvalues. This is derived in [27, p.62], and the result is

that the joint p.d.f. for the N eigenvalues λ1, λ2, . . . , λN is

pN (λ1, λ2, . . . , λN) =
1

ZN
exp

(

−
N∑

j=1

λ2
j

)
∏

1≤j<k≤N
(λk − λj)

2, (28)

in which ZN is a constant which ensures that the p.d.f. integrates to 1. Observe

that the exponential term arises from the general fact that trace (Z∗Z) =
∑N

j=1 λ
2
j .

To prove the next result, we need the following “integrating out” result. For a

proof, see [27, Theorem 5.2.1].

Lemma 1.40 Let x = (x1, x2, . . . , xn), where the xj all lie in a (possibly infinite)

interval [a, b], and let An(x) be an n× n matrix with entries An(x)i,j = K(xi, xj),

where K ∈ L2[a, b] × L2[a, b] is a real-valued, symmetric, and continuous function

which satisfies the “reproducing kernel” property

∫ b

a

K(x, y)K(y, z) dy = K(x, z),
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and is also non-negative:

∫ b

a

∫ b

a

K(x, y)f(y)f(x) dy dx ≥ 0 for all f ∈ L2[a, b].

Then

∫
det (An (x1, x2, . . . , xn)) dxn = (q − (n− 1)) det (An−1(x1, x2, . . . , xn−1)) ,

where

q =

∫ b

a

K(x, x) dx.

Remark

The conditions that K(x, y) be real-valued, symmetric, continuous and positive

are as in Mercer’s theorem (see Theorem 1.12), and ensure that the number q

exists. The result below is due to Mehta and Gaudin [28], and is discussed by the

former in [27, p.91].

Proposition 1.41 The joint p.d.f. of the eigenvalues for the Gaussian Unitary

Ensemble is given by the determinantal formula

pN(λ1, λ2, . . . , λN) =
1

N !
det (KN (λj, λk))

N
j,k=1 , (29)

in which

KN(x, y) =

N−1∑

j=0

φj(x)φj(y) (30)

and φj(x) are the normalised Hermite polynomials φj(x) = π−1/4 exp(−x2/2)hn(x),

orthonormal on R, in the sense that

∫ ∞

−∞
φj(x)φk(x) dx =

1√
π

∫ ∞

−∞
hj(x)hk(x) exp(−x2) dx = δj,k.
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Further, the normalisation constant in (28) is

ZN =
πN/2

∏N
j=0 j!

2N(N−1)/2
.

Proof. First, note that the product term in (28) is the famous van der Monde

determinant

∏

1≤j<k≤N
(λk − λj) = det





1 . . . 1

λ1 . . . λN
...

...
...

λN−1
1 . . . λN−1

N





,

so we define the matrix

A :=

[
λj−1
k

e−λ
2
k
/2

π1/4

]N

j,k=1

,

which satisfies

detA = π−N/4 exp

(

−1/2

N∑

j=1

λ2
j

)
∏

1≤j<k≤N
(λk − λj). (31)

This can be seen by simply multiplying the columns k = 1, . . . , N of the van der

Monde determinant by exponential factors exp(−λ2
k/2). Now let

φj(x) =
1

π1/4
exp

(
−x2/2

)
hj(x),

where hj(x) = ajx
j + . . . is the Hermite polynomial of degree j, with coefficients

chosen so that (φj(x)) is an orthonormal sequence in L2(R), and define

B = [φj−1(λk)]
N
j,k=1 .

By linearly combining rows in (31), we have

a0 . . . aN−1 detA = detB,
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and hence

(detB)2 = (a0 . . . aN−1)
2(detA)2

= π−N/2(a0 . . . aN−1)
2 exp

(
−

N∑

j=1

λ2
j

)
∏

1≤j<k≤N
(λk − λj)

2.

Recall that (detX)2 = det(X t) det(X) = det(X tX) for any matrix X, so we can

write

(detB)2 = det(BtB)

= det

[
N∑

i=1

Bt
jiBik

]N

j,k=1

= det

[
N∑

i=1

φi−1(λj)φi−1(λk)

]N

j,k=1

= det [KN(λj, λk)]
N
j,k=1 ,

where KN (x, y) is as defined in (30). To summarise our findings so far:

det [KN(λj , λk)]
N
j,k=1 = π−N/2(a0 . . . aN−1)

2 exp

(
−

N∑

j=1

λ2
j

)
∏

1≤j<k≤N
(λk − λj)

2,

(32)

in which the right hand side is the joint p.d.f. for the eigenvalues in GUE as in

(28). The kernel KN(x, y) satisfies the conditions of Lemma 1.40, since

∫ ∞

−∞
KN(x, y)KN(y, z) dy =

∫ ∞

−∞

N−1∑

k=0

N−1∑

j=0

φk(x)φk(y)φj(y)φj(z) dy

=
N−1∑

k=0

N−1∑

j=0

φk(x)φj(z)

∫ ∞

−∞
φk(y)φj(y) dy

=

N−1∑

k=0

φk(x)φk(z)

= KN(x, z),
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and we can calculate

∫ ∞

−∞
KN(x, x) dx =

N−1∑

j=0

∫ ∞

−∞
φj(x)φj(x) dx = N.

Hence we can integrate the left hand side of (32) over the variable λ1 to get

∫ ∞

−∞
det [KN(λj , λk)]

N
j,k=1 dλ1 = (N − (N − 1)) det [KN(λj , λk)]

N−1
j,k=1

= det [KN (λj, λk)]
N−1
j,k=1 ,

and then again over λ2 to get

∫ ∞

−∞

∫ ∞

−∞
det [KN(λj, λk)]

N
j,k=1 λ1 dλ2 = (N − (N − 2)) det [KN(λj , λk)]

N−2
j,k=1 .

Continuing in this way, we can integrate over λ1, . . . , λN , and we obtain

∫ ∞

−∞
. . .

∫ ∞

−∞
det [KN (λj, λk)]

N
j,k=1 dλ1 . . . dλN = N !.

Thus, if we divide (32) by N !, we get an expression which integrates to 1, and so

we have the formula (29). We can now see that the normalisation constant in (28)

must satisfy

Z−1
N = π−N/2(N !)−1(a0a1 . . . aN−1)

2,

so our task is to find an, the coefficient of the highest power of x in the nth Hermite

polynomial hn(x) = anx
n + . . .. We have the Rodrigues’s formula (see [41, p.105])

hn(x) = cne
x2 dn

dxn

(
e−x

2
)
.

It is clear from this an = cn(−2)n. By the orthonormality condition on hn(x), and

integrating by parts n times, we have

1 =
1√
π

∫ ∞

−∞
hn(x)

2e−x
2

dx
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=
cn√
π

∫ ∞

−∞
hn(x)

dn

dxn

(
e−x

2
)

dx

=
cn√
π

(−1)n
∫ ∞

−∞
e−x

2 dn

dxn
(hn(x)) dx

=
cn√
π

(−1)n
∫ ∞

−∞
e−x

2

(n!an) dx

= (−1)ncnann!

=
(−1)na2

nn!

(−2)n

and hence

an =
2n/2√
n!
.

Thus

ZN =
πN/20!1! . . .N !

2021 . . . 2N−1

=
πN/2

∏N
j=0 j!

2N(N−1)/2
.

The n-point correlation function is given by the formula

Rn(λ1, λ2, . . . , λn) =
N !

(N − n)!

∫ ∞

−∞
. . .

∫ ∞

−∞
pN(λ1, λ2, . . . , λN) dλn+1 dλn+2 . . . dλN ,

in which the constant factor is the number of ways of arranging n items selected

from N . Ignoring the fact that it integrates to N !/(N − n)! rather than 1, and

so cannot be considered as a proper p.d.f., Rn(λ1, . . . , λn) can be seen as the

probability density that we find eigenvalues at λ1, . . . , λn, with the remaining N−n

eigenvalues unobserved. In particular, the mean eigenvalue density around the

point z is given by R1(z). It is a very convenient fact that Rn can, like pN , be

expressed in terms of the kernel KN(x, y). As in the proof of Proposition 1.41, we

can integrate the determinantal expression in (29) over the variables λn+1, . . . , λN
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to get ∫ ∞

−∞
. . .

∫ ∞

−∞
det [KN(λj, λk)]

N
j,k=1 dλn+1 . . . dλN = (N − n)!,

and hence

Rn(λ1, . . . , λn) =
N !

(N − n)!

∫ ∞

−∞
. . .

∫ ∞

−∞
pN(λ1, . . . , λN) dλn+1 dλn+2 . . . dλN

=
N !

(N − n)!

∫ ∞

−∞
. . .

∫ ∞

−∞

1

N !
det (KN(λj, λk)]

N
j,k=1 dλn+1 dλn+2 . . . dλN

=
1

(N − n)!

∫ ∞

−∞
. . .

∫ ∞

−∞
det [KN(λj, λk)]

N
j,k=1 dλn+1 . . . dλN

= det [KN(λj, λk)]
n
j,k=1 .

What happens to the eigenvalue distribution when we let N → ∞? The answer

is not as simple as it might appear, since it turns out that a scaling operation is

needed to keep all the quantities finite. This is described well by Tracy and Widom,

in [43]. Following these authors’ approach, we choose a point z in the spectrum,

make this the new origin, and scale the eigenvalues so that the eigenvalue density at

this point is equal to 1 in the limit. Scaling eigenvalues in this manner corresponds

to replacing the kernel KN (x, y) by

1

R1(z)
KN

(
z +

x

R1(z)
, z +

y

R1(z)

)
.

The asymptotic eigenvalue density can be found, since R1(z) = KN (z, z), and it

can be shown that

R1(z) = KN(z, z) ∼ 1

π

√
2N as N → ∞

If we choose the scaling

λj 7→ z +
πλj√
2N

,
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and consider the asymptotics of the Hermite polynomials under this scaling, it

turns out that the kernel KN(x, y) converges to what is known as the sine kernel:

lim
N→∞

π√
2N

KN

(
z +

πx√
2N

, z +
πy√
2N

)
=

sin(x− y)

π(x− y)
.

Thus the eigenvalues in the bulk of the spectrum can be described asymptotically

by the sine kernel. This situation is called “bulk” scaling, because it describes

the distribution of eigenvalues in the middle of the spectrum. The edge of the

spectrum is located at approximately
√

2N , and substituting into KN(x, x), it can

be shown that the eigenvalue density here is asymptotically
√

2N1/6. Using some

more asymptotic formulae for the Hermite polynomials, the “soft edge” limit

lim
N→∞

1√
2N1/6

KN

(√
2N +

x√
2N1/6

,
√

2N +
y√

2N1/6

)
=

Ai (x) Ai ′(y) − Ai (y) Ai ′(x)

x− y
,

can be obtained, and so the eigenvalue distribution at the soft edge of the spectrum

is described by the Airy kernel. The Airy function Ai (x) is defined in §1.11 below.

1.10 Random Matrix Theory

Random matrix theory is the study of eigenvalue distributions for matrices chosen

according to some probability measure on the matrix space in question. We refer

to the space of matrices with an associated probability measure as a Random Ma-

trix Ensemble, and the protoptypical example is the Gaussian Unitary Ensemble

discussed in the previous §1.9. A variety of ensembles are studied in the literature,

but in this thesis, we will be dealing with N ×N Hermitian or symmetric matri-

ces, with a probability measure which is invariant under a certain class of matrix

transformations. The main three types of invariance are orthogonal, unitary and

symplectic, named after the type of matrix performing the transformation. Once

we have defined the space of matrices, and the probability measure, it is possible

to find the probability distribution of the eigenvalues. The calculations are fairly
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involved, but the interested reader can consult the famous book by Mehta [27,

Chapter 3] for details of how to do this for Gaussian ensembles. Since the ma-

trices are Hermitian, the eigenvalues are all found in a (possibly infinite) interval

[a, b] of the real line. It turns out that the probability density for the eigenvalues

λ1, λ2, . . . , λN in a random matrix ensemble is

pN,β(λ1, λ2, . . . , λN) =
1

ZN,β

N∏

j=1

w(λj)
∏

1≤j<k≤N
|λj − λk |β dλ1 . . . λN , (33)

(this is covered briefly in [27, §19.3]) where w is a non-negative weight function,

integrable on [a, b], ZN,β is a normalisation constant which ensures that the right-

hand side integrates to 1, and β is a parameter which reflects the invariance prop-

erties of the underlying probability measure on matrices. The weight for the GUE

is w(x) = π−1/2 exp(−x2). The values β = 1, 2, and 4 correspond, respectively, to

orthogonal, unitary, and symplectic ensembles. Notice that the last product term

in (33) reflects the fact that the eigenvalues are not independent. In the case of

unitary ensembles (β = 2), with weight w(x), it is possible to give a determinantal

form for the eigenvalue probability distribution (33), which makes it possible to

calculate some statistics explicitly. The proof is almost identical to that of the

special case of Proposition 1.41, and can be obtained by replacing π−1/4 exp(−x2)

by w(x), and the real line by the interval [a, b].

Proposition 1.42 The joint p.d.f. of the eigenvalues for a unitary ensemble is

given by

pN(λ1, λ2, . . . , λN) =
1

N !
det (KN (λj, λk))

N
j,k=1 , (34)

in which

KN(x, y) = (w(x)w(y))1/2

N−1∑

j=0

πj(x)πj(y), (35)

and (πj(x)) is the sequence of polynomials arising from the Gram–Schmidt process

which are orthonormal with respect to w on the interval [a, b].
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KN is often referred to as a “kernel”. We can now see why Tracy–Widom opera-

tors are so fundamental to Random Matrix Theory, since the Christoffel-Darboux

formula (Lemma 1.38) allows us to write the kernel as

KN (x, y) = CN(w(x)w(y))1/2Pn(x)Pn−1(y) − Pn−1(x)Pn(y)

x− y
,

where the constant CN comes from the three-term recurrence relation for the or-

thogonal polynomials Pj(x). This is in the form of a Tracy–Widom kernel (1).

The n-point correlation function Rn(x1, x2, . . . , xn) (in the context of general en-

sembles) is given by the formula

Rn(λ1, λ2, . . . , λn) =
N !

(N − n)!

∫ b

a

. . .

∫ b

a

pN,β(λ1, λ2, . . . , λN) dλn+1 dλn+2 . . . dλN .

For unitary ensembles, as in the GUE case, we have the formula

Rn(λ1, λ2, . . . , λn) = det(KN(λj, λk))
n
j,k=1, (36)

which is obtained exactly as before.

Another quantity of interest in random matrix theory is the so-called “gap” or

“hole” probability A(L), which is defined as the probability that an interval

[−θ/2, θ/2] will contain no eigenvalues. The evaluation of quantities such as this is

one of the main reasons for studying integral operators with Tracy–Widom kernels.

A derivation of the well-known relation

A(θ) =

N∑

j=0

(−1)j

j!

∫ θ/2

−θ/2
· · ·
∫ θ/2

−θ/2
Rj(λ1, . . . , λj) dλ1 . . . dλj
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can be found in [16, p.44-45]. With the expression (36) for the correlation function

Rn given above, we see that this can also be written as

A(θ) =

N∑

j=0

(−1)j

j!

∫ θ/2

−θ/2
· · ·
∫ θ/2

−θ/2
det (KN(λi, λk))1≤i,k≤j dλ1 . . . dλj ,

which is the Fredholm determinant

det
(
I − I[− θ

2
, θ
2 ]
KNI[− θ

2
, θ
2 ]

)

of the integral operator KN with kernel KN(x, y) compressed to act on L2[−θ
2
, θ

2
].

Using the theory of Fredholm determinants (see §1.5), we see that the eigenval-

ues x0, . . . , xN−1 of the integral operator I[− θ
2
, θ
2
]KNI[− θ

2
, θ
2
] give the value of the

determinant: this is

det(I − I[− θ
2
, θ
2
]KNI[− θ

2
, θ
2
]) =

N−1∏

i=0

(1 − xi).

1.11 Special functions

Here we summarise the definitions and properties of the special functions we will

be using throughout this thesis, and state, where relevant, the associated Tracy–

Widom system.

The Airy function

The function

Ai (z) =
1

2π

∫ ∞

−∞
ei(zt+t

3/3) dt

satisfies the differential equation

u′′(z) − zu(z) = 0,

58



which we can write as the Tracy–Widom system

d

dx




u(x)

u′(x)



 =




0 1

x 0








u(x)

u′(x)



 , (37)

and the associated Tracy–Widom kernel is the Airy kernel

Ai (x) Ai ′(y) − Ai ′(x) Ai (y)

x− y
.

The Airy function has the following asymptotic formula (see [41, p.18]):

Ai (x) =
1

2x1/4
√
π

(
1 +O(x−3/2)

)
exp

(
−2

3
x3/2

)
,

so, in particular, Ai (x) → 0 as x→ ∞.

Bessel functions

We shall always deal with the Bessel function of the first kind, which is defined

for all values of α ∈ R by the series

Jα(z) =

∞∑

r=0

(−1)r(1
2
z)α+2r

r!Γ(α+ r + 1)
.

It is easily verified from this series expansion that Jα(z) satisfies the Bessel differ-

ential equation, that is

z2 J′′
α(z) + z J′

α(z) + (z2 − α2) Jα(z) = 0. (38)

If α + r + 1 ≤ 0, we replace (Γ(α + r + 1))−1 by zero. With this in mind, we also

have the relations

J−α(z) = (−1)α Jα(z),

and

Jα(z) + Jα+2(z) =
2(α+ 1)

z
Jα+1(z),
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for all α ∈ R, which can also be obtained from the series expansion (see [41, p.14]).

We have the Tracy–Widom system

x
d

dx




Jα(

√
x)

√
x J′

α(
√
x)



 =




0

√
x

−1/4 (α2 − x) 1/4








Jα(

√
x)

√
x J′

α(
√
x)



 , (39)

and the associated Bessel kernel

Jα(
√
x)
√
y J′

α(
√
y) − Jα(

√
y)
√
x J′

α(
√
x)

x− y
,

which will form part of the calculations in Chapter 2.

Laguerre functions

Let (L
(α)
n (x)) be the sequence of polynomials orthogonal with respect to the weight

w(x) = xα exp(−x/2) on the interval [0,∞), where we take α > −1 to ensure that

the weight is integrable. These are the Laguerre polynomials, and they satisfy the

differential equation (see [41, p.99])

x
d2

dx2
L(α)
n (x) + (α + 1 − x)

d

dx
L(α)
n (x) + nL(α)

n (x) = 0. (40)

Take u(x) = xe−x/2L
(1)
n (x). Then an easy calculation shows that

u′′(x) +

(
−1/4 +

n + 1

x

)
u(x) = 0 (x > 0),

which gives rise to the Tracy–Widom system

d

dx




u(x)

u′(x)



 =




0 1

1/4 − (n+ 1)/x 0








u(x)

u′(x)



 , (41)

and the associated kernel

u(x)u′(y) − u′(x)u(y)

x− y
.
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A generalisation of the function u above, the Laguerre functions may be defined

as

u(α)
n (x) = xαe−x/2L(α)

n (x), (42)

and when α = 0 they form the basis of L2[0,∞) under which Hankel integral

operators and Hankel operators on ℓ2 may be identified: see §1.12. The Laplace

transform of the Laguerre functions will be useful in some later applications in

the thesis, and it can be calculated as follows. We use the following alternative

formulation, often called the Rodrigues’s formula for the Laguerre polynomials

(see [41, p.100]):

L(α)
n (x) =

ex

n!xα
dn

dxn
(
xn+αe−x

)
, (43)

and so

u(α)
n (x) =

ex/2

n!

dn

dxn
(
xn+αe−x

)
.

We have, on integrating by parts,

n!L(u(α)
n (x);λ) =

∫ ∞

0

et/2
dn

dtn
(
tn+αe−t

)
e−λt dt

=

∫ ∞

0

e−t(λ−1/2) dn

dtn
(
tn+αe−t

)
dt

=

[
e−t(λ−1/2) dn−1

dtn−1

(
tn+αe−t

)]∞

0

+(λ− 1/2)

∫ ∞

0

e−t(λ−1/2) dn−1

dtn−1

(
tn+αe−t

)
dt.

The boundary terms are clearly zero, and if we repeat the above calculation a

further n − 1 times, the resulting boundary terms will always be zero. Thus we

have

n!L(u(α)
n (x);λ) = (λ− 1/2)n

∫ ∞

0

e−t(λ−1/2)tn+αe−t dt

= (λ− 1/2)n
∫ ∞

0

e−t(λ+1/2)tn+α dt

= (λ− 1/2)n
∫ ∞

0

(
x

λ+ 1/2

)n+α

e−x
dx

λ+ 1/2
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=
(λ− 1/2)n

(λ+ 1/2)n+α+1

∫ ∞

0

xn+αe−x dx

=
(λ− 1/2)n

(λ+ 1/2)n+α+1
Γ(n + α),

where the Gamma function is ([42, p.55])

Γ(z) =

∫ ∞

0

yz−1e−y dy.

Hence we have

L(u(α)
n (x);λ) =

Γ(n+ α)

n!

(λ− 1/2)n

(λ+ 1/2)n+α+1
,

and when α is a positive integer, this simplifies, via the relation Γ(n) = (n− 1)!,

to

L(u(α)
n (x);λ) = (n+ α)(n+ α− 1) . . . (n+ 1)

(λ− 1/2)n

(λ+ 1/2)n+α+1
.

1.12 Hankel operators on L2[0,∞)

There is a continuous analogue of the Hankel operators discussed in §1.6, namely,

integral operators on the half line [0,∞), with kernel of the form φ(x+ y):

Γφf(x) =

∫ ∞

0

φ(x+ y)f(y) dy.

These are called Hankel integral operators, and it is a remarkable fact that they are

unitarily equivalent to Hankel operators on ℓ2 (as defined in §1.6). The calculations

needed to show this are somewhat involved (they are detailed in [37, p.46-53]) but

we can give some indication of how this correspondence comes about as follows.

Define H2(C+) as the space of functions holomorphic on the right half plane and

such that there exists M <∞ with

∫ ∞

−∞
|f(x+ iy)|2 dy < M for all x > 0.
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We have already observed that the sequence space ℓ2 can be identified with H2(D)

by the obvious correspondence (an)
∞
n=0 7→

∑∞
n=0 anz

n. The Möbius transformation

λ 7→ λ− 1/2

λ+ 1/2

suggests the map
∞∑

n=0

anz
n 7→

∞∑

n=0

an
(λ− 1/2)n

(λ+ 1/2)n+1
,

which mapsH2(D) intoH2(C+), and we can show that this map is unitary. Finally,

the Laplace transform is, by the Paley-Wiener theorem (see [22, p.132]), a unitary

map from L2[0,∞) to H2(C+), and it maps the basis

{u(0)
n (4t)}n≥0

of the space L2[0,∞) to the basis of H2(C+) described above, where u0
n are the

Laguerre functions as defined in (42). Peller [37, p.46-53] shows that a Hankel

integral operator on L2[0,∞) has a Hankel matrix with respect to this basis of

Laguerre functions.

1.13 Hankel operator squares in discrete and continuous

contexts

We wish to find operators K such that 0 ≤ K ≤ I and K is trace class. The

kernels of operators of this kind lead to determinantal point processes as described

by Soshnikov [40], which are processes whose probability density functions have

the form

det[K(xi, xj)]i,j.

Particular examples of this are the eigenvalue systems described in §1.9 and §1.10.

If K = Γ∗Γ, where Γ is a Hilbert–Schmidt Hankel operator satisfying ‖Γ‖ ≤ 1,

then clearly 0 ≤ K ≤ I and K is trace class. If further we can write K = Γ2, then
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we have a way to calculate the Fredholm determinant, since

det(I −K) = det(I − Γ) det(I + Γ).

Fredholm determinants are involved in the calculation of probabilistic quantities

for Random Matrix Ensembles (see the end of §1.8), so writing a Tracy–Widom

operator as Γ∗Γ or Γ2 is a useful aim. In the continuous case, Tracy and Widom

have observed that many important systems arising in random matrix theory can

be analysed by kernels arising from differential equations of the form

d

dx
a(x) =




α(x) β(x)

−γ(x) −α(x)



 a(x),

where the matrix entries α, β and γ are rational functions, and a(x) is a 2 × 1

vector of functions. Blower [7] gives sufficient conditions for such kernels to be

expressible as the square of a Hankel operator, and we quote and prove this result

in a simplified form. We define the involution matrix, which will be used at several

points here and in Chapter 5:

J =




0 −1

1 0



 .

It is obvious that this matrix satisfies J t = −J and J2 = −I.

Theorem 1.43 Let a(x) be a 2 × 1 vector of differentiable L2(0,∞) functions

satisfying the differential equation

d

dx
a(x) = Ω(x)a(x),

for some 2×2 matrix Ω(x) of rational functions. Suppose that a(x) → 0 as x→ ∞,

and also that

JΩ(x) + Ω(y)tJ

x− y
= C
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where C is a constant and rank one matrix with non-zero eigenvector λ < 0 and

corresponding eigenvector vλ. Then

K(x, y) :=
〈Ja(x), a(y)〉

x− y
=

∫ ∞

0

φ(x+ t)φ(y + t) dt (44)

where

φ(z) = |λ|1/2 〈vλ, a(z)〉.

Remark

Note that Γ will in general be different from the positive square root K1/2 of K.

Proof. The trick is to consider the effect of a special differential operator, namely

∂
∂x

+ ∂
∂y

, on both sides of the equation (44). This introduces two “un-differentiated”

terms which cancel, and we get

(
∂

∂x
+

∂

∂y

)
K(x, y) =

1

x− y

(
〈J d

dx
a(x), a(y)〉 + 〈Ja(x), d

dy
a(y)〉

)

=
1

x− y
(〈JΩ(x)a(x), a(y)〉 + 〈Ja(x),Ω(y)a(y)〉)

=
1

x− y
〈
(
JΩ(x) + Ω(y)tJ

)
a(x), a(y)〉

= 〈Ca(x), a(y)〉

= −φ(x)φ(y).

The other side of the equation yields

(
∂

∂x
+

∂

∂y

)∫ R

0

φ(x+ t)φ(y + t) dt

=

∫ R

0

(φ′(x+ t)φ(y + t) + φ(x+ t)φ′(y + t)) dt

=

(
[φ(x+ t)φ(y + t)]R0 −

∫ R

0

φ(x+ t)φ′(y + t) dt

)

+

∫ R

0

φ(x+ t)φ′(y + t) dt

→ −φ(x)φ(y) as R → ∞,
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since φ(x) → 0 as x→ ∞, by the vanishing condition on a(x). Hence

K(x, y) −
∫ ∞

0

φ(x+ t)φ(y + t) dt = g(x− y) for all x, y ∈ R

for some function g. It is clear that K(x, y) → 0 as x or y → ∞, and the same is

true of the integral expression:

∣∣∣∣

∫ ∞

0

φ(x+ t)φ(y + t) dt

∣∣∣∣ ≤
(∫ ∞

0

φ(x+ t)2 dt

)1/2(∫ ∞

0

φ(y + t)2 dt

)1/2

→ 0 as x or y → ∞,

since φ ∈ L2(0,∞). We deduce that g(x − y) → 0 as x or y → ∞, which implies

that g is in fact identically zero for all x and y, and we have the required identity

(44).

Example 1.44

We consider the Airy kernel, which arises when we scale the eigenvalues

at the soft spectral edge of the Gaussian Unitary Ensemble (see [43], or

§1.9 above). The differential equation satisfied by the Airy function can be

written as

d

dx




Ai (x)

Ai ′(x)



 =




0 1

x 0








Ai (x)

Ai ′(x)



 .

If we write the 2 × 2 matrix of coefficients as Ω(x), observe that

JΩ(x) + Ω(y)tJ

x− y
= diag (−1, 0)

and also that the Airy function vanishes at infinity, so the Airy Kernel can

be written as the square of a Hankel integral operator

Ai (x) Ai ′(y) − Ai ′(x) Ai (y)

x− y
=

∫ ∞

0

Ai (x+ z) Ai (y + z) dz.
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Discrete analogues

The new results in Chapter 5 of this thesis are about how to express discrete

operators as Hankel squares, i.e. to find sufficient conditions on K such that there

exists a Hankel operator Γ such that Γ = Γ∗ and K = Γ2. This amounts to finding

a function φ : Z+ → R such that the matrix entries satisfy

K(m,n) =
∞∑

k=0

φ(m+ k)φ(n+ k) for m 6= n,

and the diagonal entries (which are in general unspecified) are then defined by the

Hankel operator itself. The uninitiated reader might think that that the results al-

ready obtained for continuous operators would transfer across to the discrete case,

particularly given the unitary equivalence between Hankel operators on L2[0,∞)

and on ℓ2 which we discussed in §1.12. We have found that this is not the case,

and that the conditions are fundamentally different. Nonetheless, it is interesting

to draw parallels, and notice the formal similarity between the two cases, which

we do in the table on the following page.

67



Discrete operators Continuous operators

Matrix entries: Kernel:

K(m,n) =
〈Ja(m), a(n)〉

m− n
, Kf(x) =

∫ ∞

0

K(x, y)f(y) dy,

for a real sequence (a(n)) of 2 × 1

vectors.

where

K(x, y) =
〈Ja(x), a(y)〉

x− y

Recurrence relation: Differential equation:

a(j + 1) = T (j)a(j)

for some 2 × 2 matrix T (j) satisfying

det(T (j)) = 1

d

dx
a(x) = Ω(x)a(x),

for some 2 × 2 matrix of rational

functions satisfying det(Ω(x)) = 0

Discrete Lyapunov condition: Continuous Lyapunov condition:

J − T (n)tJT (m)

m− n
= B(n)tCB(m),

JΩ(x) + Ω(y)tJ

x− y
= C,

where C is a rank 1 real symmetric

matrix with non-zero eigenvalue λ < 0

and corresponding eigenvector vλ and

B(n) is another 2 × 2 matrix.

where C is a rank one real symmetric

matrix with non-zero eigenvalue λ < 0

and corresponding eigenvector vλ.

Square of Hankel matrix Square of Hankel integral operator

K(m,n) =

∞∑

k=0

φ(m+ k)φ(n+ k),

where φ(j) = 〈vλ, B(j)a(j)〉

K(x, y) =

∫ ∞

0

φ(x+ t)φ(y + t) dt,

where φ(z) = 〈vλ, a(z)〉.
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2 Eigenvalue scalings and the Jacobi Kernel

2.1 Introduction

The limiting eigenvalue distribution of a random matrix ensemble as the matrix

dimension N tends to infinity is of interest both in random matrix theory, and in

its applications to nuclear physics (see [27, §1.1] for some discussion of this). Since

an N × N matrix will typically have a largest eigenvalue which grows with N ,

we can never simply let N tend to infinity and hope to get a sensible asymptotic

distribution without some sort of scaling operation. We can carry out scaling in

different parts of the spectrum, resulting in different kernels which describe the

asymptotic eigenvalue distribution. The scaling and limit taking operation can be

carried out on the kernel KN(x, y): here we shall do this for the Jacobi kernel, and

we use a “hard edge” scaling, which describes the eigenvalue distribution at the

right-hand end of the interval [−1, 1]. The terminology “hard” refers to the fact

that no eigenvalues can be found outside this interval, in contrast to “soft edge”

scaling in, for example, the Laguerre ensemble (see [15, §2]), where the eigenvalues

lie in the interval [0,∞). The first step of the argument involves taking limits of

the coefficients of the scaled Jacobi differential equation to prove convergence of

the scaled Jacobi polynomials. We then apply this convergence result to show that

the scaled Jacobi kernel converges to another Tracy-Widom kernel, which we call

the Bessel kernel. A result from operator theory can then be applied to show that

we have trace class convergence of the integral operator arising from the Jacobi

kernel to that of the Bessel kernel. The eigenvalues of the Jacobi integral operator

can be used to calculate the gap probability for the Jacobi ensemble, and so this

trace class convergence is important, since it implies convergence of determinants.

The result was suggested by Forrester [15], then proved by Borodin [5] in a special

case. Others, including Nagao and Wadati [31] have obtained the general case,

but we use different techniques, and also make clear that the operators converge
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in trace class norm. The Bessel kernel, and the system of partial differential

equations satisfied by its Fredholm determinant, are considered in [45], but again

these authors do note make clear the mode of convergence of the Jacobi integral

operator to the Bessel operator. The technique of finding limits via convergence

of differential equation coefficients would be easily applicable to other orthogonal

polynomial systems (and their associated random matrix ensembles), since the

polynomials will often satisfy a simple second order differential equation.

2.2 The Jacobi ensemble and electrostatic systems

We introduce the Jacobi weight

wα,β(x) = 2−(α+β+1)(1 − x)α(1 + x)β, x ∈ [−1, 1], (α > −1, β > −1)

in which the constraints on α and β are to ensure integrability in the interval

[−1, 1]. Following Szegö [41, p.68], we define the Jacobi polynomials P α,β
n (x) to be

the sequence of orthogonal polynomials arising from the Gram–Schmidt process

for which Pn has degree n and positive leading coefficient and

∫ 1

−1

Pj(x)Pk(x)w(x) dx = 0

for j 6= k, while

∫ 1

−1

Pn(x)
2w(x) dx =

1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α + β + 1)
.

The Jacobi unitary ensemble of order N has joint eigenvalue probability density

function

pα,βN (λ1, . . . , λN) =
1

ZN

N∏

j=1

wα,β(λj)
∏

1<j<k≤N
(λj − λk)

2, (45)

for a normalisation constant ZN , where the eigenvalues are constrained to lie in

the interval [−1, 1]. Following the theory outlined in §1.10, the joint p.d.f can be
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written as

pα,βN (λ1, . . . , λN) =
1

N !
det(KN(λi, λj))i,j=1,...N ,

in which

KN(x, y) =
N−1∑

j=0

πj(x)πj(y)(w(x)w(y))1/2 (46)

and πj(x) are the polynomials which are orthonormal with respect to the weight

w(x) on [−1, 1]. Thus

πj(x) = QjP
α,β
j (x),

where

Qj =

(
(2j + α + β + 1)

Γ(j + 1)Γ(j + α + β + 1)

Γ(j + α+ 1)Γ(j + β + 1)

)1/2

.

We wish to write this in the form of a Tracy–Widom kernel, using the Christoffel-

Darboux formula. For this we need the constant Cn from the three-term recurrence

relation for the πj

xπn−1(x) = Anπn−2(x) +Bnπn−1(x) + Cnπn(x).

The three-term recurrence relation for the Jacobi polynomials Pj(x) (see [41, p.71])

can be written as

xPn−1(x) =
2(n+ α− 1)(n+ β − 1)

(2n+ α+ β − 1)(2n+ α+ β − 2)
Pn−2(x)

+
(α2 − β2)

(2n+ α+ β)(2n+ α + β − 2)
Pn−1(x)

+
2n(n+ α + β)

(2n+ α+ β − 1)(2n+ α + β)
Pn(x),

and hence, using Lemma 1.37,

Cn =

∫ 1

−1

xπn−1(x)πn(x)w(x) dx

=

∫ 1

−1

xQn−1Pn−1(x)QnPn(x)w(x) dx
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= Qn−1Qn

∫ 1

−1

2n(n+ α + β)

(2n+ α + β − 1)(2n+ α + β)
Pn(x)

2w(x) dx

= Qn−1Qn
2n(n+ α + β)

(2n+ α + β − 1)(2n+ α + β)
Q−2
n

=
Qn−1

Qn

2n(n + α + β)

(2n+ α + β − 1)(2n+ α + β)
.

We can now use Proposition 1.38 to write

N−1∑

j=0

πj(x)πj(y)

=
QN−1

QN

2N(N + α+ β)

(2N + α + β − 1)(2N + α + β)

πN (x)πN−1(y) − πN−1(x)πN (y)

x− y

= Q2
N−1

2N(N + α + β)

(2N + α + β − 1)(2N + α + β)

PN(x)PN−1(y) − PN−1(x)PN (y)

x− y

=
2N(N + α + β)Γ(N)Γ(N + α + β)

(2N + α + β)Γ(N + α)Γ(N + β + 1)

PN(x)PN−1(y) − PN−1(x)PN (y)

x− y
.

Later we shall let N → ∞, so to save notational messiness, observe that the

constant term in the latter expression is like (N + α + β) as N → ∞, and define

KN(x, y) = (N + α + β)
PN(x)PN−1(y) − PN−1(x)PN(y)

x− y
(w(x)w(y))1/2. (47)

The zeros of the Jacobi orthogonal polynomials correspond to a certain minimi-

sation problem in electrostatics. Suppose that we place fixed positively charged

particles of charge p and q respectively at the endpoints of the interval [−1, 1],

and n negatively charged particles xn on the interior of the interval. The negative

charges repel each other, and are attracted towards the positively charged parti-

cles at either end. We look for the arrangement of charges which minimises the

expression

− log

(
n∏

i=1

(1 − xi)
p(1 + xi)

q
∏

1≤i<j≤n
|xi − xj |

)

,

which is the potential energy of the system. Szegö [41, p.140] shows that the

minimising set for this system is precisely the zeros of the Jacobi polynomial P α,β
n ,

where α = 2p−1 and β = 2q−1. Note that the expression inside the logarithm is
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the joint p.d.f (without normalisation constant) of the eigenvalues from the Jacobi

Orthogonal ensemble, since the power on the van der Monde determinant term

is one. Similar results hold for other orthogonal polynomials, and the optimal

distribution of particles in each case is the modal eigenvalue distribution for the

corresponding random matrix ensemble.

2.3 Scaling in the Jacobi Ensemble

Let the eigenvalues of a matrix from the Jacobi ensemble be the sequence (λj)j≤n.

We shall show that at the right-hand edge of the interval [−1, 1], the asymptotic

distribution of eigenvalues can be described, under the scaling

λn 7→ cos

(√
λn
n

)
,

by the Bessel kernel

K(x, y) =
Jα(

√
x)
√
y J′

α(
√
y) − Jα(

√
y)
√
x J′

α(
√
x)

(x− y)
. (48)

on the space L2[0, 1]. Specifically, we consider the subinterval in which there are

O(1) eigenvalues. Nagao and Wadati [31] show that the level density in the Jacobi

ensemble is like

n

π
√

1 − x2
,

so that the interval [1 − an/n
2, 1], with

an =
∞∑

k=1

(−1)k−1

(2k)!n2k−2
= n2

(
1 − cos

(
1

n

))
,

contains the required O(1) eigenvalues. The scaled eigenvalues are equal to

n2
(
cos−1 λj

)2
,
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so the endpoint 1 of the subinterval [1 − an/n
2, 1] is mapped to 0, and 1 − an/n

2

is mapped to

n2 cos−1

(

1 −
∞∑

k=1

(−1)k−1

(2k)!n2k

)2

= n2 cos−1

(
cos

(
1

n

))2

= 1.

Having established that the rescaled eigenvalues lie in the interval [0, 1], we define

an integral operator on L2[0, 1] with kernel

K̃n(x, y) =
2−α

n2
Kn

(
cos

√
x

n
, cos

√
y

n

)
, (49)

which describes the distribution of the rescaled eigenvalues at the edge of the

interval in the Jacobi ensemble of order n.

2.4 Asymptotic formulae for the Jacobi polynomials

We now prove the two asymptotic limits of the Jacobi polynomials which are

needed to establish the convergence of the scaled Jacobi kernel to the Bessel kernel.

These limits were known to Mehler and Heine for the special case of the Legendre

polynomials (α = β = 0), and Szegö describes how to derive them from other

asymptotic formulae (see [41, p.190]), but the proofs here depend on elementary

results about differential equations in the complex domain. We state the following

result, which is known as Grönwall’s inequality (see [18, p.15] for discussion and a

proof).

Lemma 2.1 Let K be a continuous, non-negative and integrable function on an

interval [a, b], and let f and g be continuous non-negative functions on [a, b]. Sup-

pose that for all t in [a, b]

f(t) ≤ g(t) +

∫ t

a

K(s)f(s) ds. (50)
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Then

f(t) ≤ g(t) +

∫ t

a

K(s) exp

(∫ t

s

K(u) du

)
g(s) ds. (51)

We now use Grönwall’s inequality in a special case to prove a convergence result

for differential equations, which we will ultimately use to deduce limits for the

Jacobi polynomials.

Lemma 2.2 Suppose (gn(z)) is a sequence of k× 1 vectors of functions satisfying

the differential equation

d

dz
gn(z) = Ωn(z)gn(z), (52)

where Ωn(z) is a k × k matrix of analytic functions which converges uniformly on

compact subsets of C to a limiting matrix Ω(z) as n → ∞. Let g(z) be a k × 1

solution vector of

d

dz
g(z) = Ω(z)g(z),

and suppose that

gn(0) → g(0) as n→ ∞.

Then the sequence of vectors (gn(z)) converges to g(z) as n → ∞, uniformly on

compact subsets of C.

Proof. Integrating the differential equation satisfied by gn gives

gn(z) − gn(0) =

∫

[0,z]

Ωn(ζ)gn(ζ) dζ,

and similarly

g(z) − g(0) =

∫

[0,z]

Ω(ζ)g(ζ) dζ.

Subtracting these two equations, and rewriting, we obtain

g(z)−gn(z) = g(0)−gn(0)+

∫

[0,z]

Ωn(ζ) (g(ζ)− gn(ζ)) dζ+

∫

[0,z]

(Ω(ζ) − Ωn(ζ)) g(ζ) dζ.
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Now let t be the real parameter for the interval [0, z], and let an(t) := ‖g(z) − gn(z)‖,

ωn(t) := ‖Ωn(z)‖, bn(t) := ‖Ω(z) − Ωn(z)‖, and c(t) := ‖g(z)‖. Then, by the tri-

angle inequality,

an(t) ≤ an(0) +

∫ t

0

ωn(s)an(s) ds+

∫ t

0

bn(s)c(s) ds.

Since the convergence of Ωn to Ω is uniform on [0, z], we have a bound ωn(s) ≤

W (s), say, for all n, so that

an(t) ≤ an(0) +

∫ t

0

W (s)an(s) ds+

∫ t

0

bn(s)c(s) ds. (53)

By definition, an, bn, c and W are all positive and continuous on [0, z], so we can

apply Grönwall’s inequality (Lemma 2.1) to (53), and we get

an(t) ≤ an(0) +

∫ t

0

bn(s)c(s) ds

+

∫ t

0

W (s) exp

(∫ t

s

W (u) du

)(
an(0) +

∫ s

0

bn(x)c(x) dx

)
ds.

It is clear that an(0) → 0 as n → ∞ and that bn(t) → 0 as n → ∞, uniformly on

[0, z], so the right hand side tends to zero as n→ ∞, and we get the result.

Lemma 2.3 Let fn(z) = Pn

(
cos

√
z
n

)
. Then fn(z) is entire, and

z
d

dz



 fn(z)

f ′
n(z)



 = Ωn



 fn(z)

f ′
n(z)



 , (54)

where

Ωn =



 0 z

− 1
4n

(n+ α + β + 1)
√
z

2n

(
(β − α) cosec

√
z
n

− (α + β + 1) cot
√
z
n

)
− 1

2



 .
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Further, as n→ ∞,

Ωn(z) →



 0 z

−1/4 −(α + 1)





uniformly on compact subsets of C \ (−∞, 0).

Proof. The Jacobi polynomials satisfy the following differential equation (see [41,

p.60])

(1 − t2)P ′′
n (t) + (β − α− (α + β + 2)t)P ′

n(t) + n(n + α + β + 1)Pn(t) = 0. (55)

We make the substitution t = cos
√
z
n

, and write fn(z) = Pn

(
cos

√
z
n

)
. We then

have

f ′
n(z) = −sin(

√
z
n

)

2n
√
z
P ′
n

(
cos

√
z

n

)
, (56)

and

f ′′
n(z) =

sin2
(√

z
n

)

4n2z
P ′′
n

(
cos

√
z

n

)
−
(

cos
√
z
n

4n2z
− sin

√
z
n

4nz3/2

)
P ′
n

(
cos

√
z

n

)
, (57)

so that

P ′
n

(
cos

√
z

n

)
= −2n

√
z cosec

(√
z

n

)
f ′
n(z) (58)

and

P ′′
n

(
cos

√
z

n

)
= 4n2z cosec 2

(√
z

n

)(
f ′′
n(z) +

(
cos

√
z
n

4n2z
− sin

√
z
n

4nz3/2

)
P ′
n

(
cos

√
z

n

))

= 4n2z cosec 2

(√
z

n

)(
f ′′
n(z) − cot

√
z
n

2n
√
z
f ′
n(z) +

1

2z
f ′
n(z)

)
. (59)

Hence the fn satisfy

4n2z

(
f ′′
n(z) − cot

√
z
n

2n
√
z
f ′
n(z) +

1

2z
f ′
n(z)

)

− 2n(β − α)
√
z cosec

(√
z

n

)
f ′
n(z) + 2n(α + β + 2)

√
z cot

(√
z

n

)
f ′
n(x)

+ n(n + α + β + 1)fn(z) = 0, (60)
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or

4n2zf ′′
n(z) − 2n

√
z cot

(√
z

n

)
f ′
n(z) + 2n2f ′

n(z)

− 2n(β − α)
√
z cosec

(√
z

n

)
f ′
n(z) + 2n

√
z(α + β + 2) cot

(√
z

n

)
f ′
n(z)

+ n(n + α + β + 1)fn(z) = 0. (61)

Dividing by n2, this becomes

4zf ′′
n(z) +

(
2 − 2

n
(β − α)

√
z cosec

√
z

n

+
2

n
(α + β + 1)

√
z cot

√
z

n

)
f ′
n(z)

+
1

n
(n+ α + β + 1)fn(z) = 0, (62)

and hence the differential equation satisfied by the rescaled polynomials is

z
d

dz



 fn(z)

f ′
n(z)



 = Ωn



 fn(z)

f ′
n(z)



 ,

where

Ωn =



 0 z

− 1
4n

(n+ α + β + 1)
√
z

2n

(
(β − α) cosec

√
z
n

− (α + β + 1) cot
√
z
n

)
− 1

2



 .

We note the limits

1

n
cosec

√
z

n
=

1

n
(√

z
n

+O
(

1
n3

)) → 1√
z

as n→ ∞

and

1

n
cot

√
z

n
=

1 +O
(

1
n2

)

n
(√

z
n

+O
(

1
n3

)) → 1√
z

as n→ ∞,

and deduce that

Ωn(z) →



 0 z

−1/4 −(α + 1)




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as n→ ∞, uniformly on compact subsets of C \ (−∞, 0].

Lemma 2.4 Let J be any solution of Bessel’s equation

z2 J′′(z) + z J′(z) + (z2 − α2) J(z) = 0. (63)

Then

f(z) = z−α/2 J
(√

z
)
,

where we define

z−α/2 = exp

(−α
2

log z

)
,

satisfies

z
d

dz



 f(z)

f ′(z)



 =



 0 z

−1
4

−(α + 1)







 f(z)

f ′(z)



 , (64)

for z ∈ C \ (−∞, 0].

Proof. We substitute
√
z for z in equation (63), to get

z J′′(
√
z) +

√
z J′(

√
z) + (z − α2) J(

√
z) = 0, (65)

and show that equation (64) can be obtained by making the substitution f(z) =

z−α/2 J(
√
z) in this modified Bessel equation. We have

f ′(z) = −α
2
z−α/2−1 J(

√
z) +

1

2
z−α/2−1/2 J′(

√
z)

and

f ′′(z) =
α

2

(α
2

+ 1
)
z−α/2−2 J(

√
z) − 1

2
αz−α/2−3/2 J′(

√
z)

+
1

4
z−α/2−1

(
J′′(

√
z) − z−1/2 J′(

√
z)
)
, (66)

so

J(
√
z) = zα/2f(z),
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J′(
√
z) = 2zα/2+1/2(f ′(z) +

α

2
z−α/2−1 J(

√
z))

= 2zα/2+1/2

(
f ′(z) +

1

2
αz−1f(z)

)
, (67)

and

J′′(
√
z) = 4zα/2+1

(
f ′′(z) − α

2

(α
2

+ 1
)
z−α/2−2 J(

√
z) +

1

2

(
α +

1

2

)
z−α/2−3/2 J′(

√
z)

)

= 4zα/2+1

(
f ′′(z) − α

2

(α
2

+ 1
)
z−2f(z) +

(
α +

1

2

)
z−1

(
f ′(z) +

1

2
αz−1f(z)

))

= 4zα/2+1

(
f ′′(z) +

1

4
α(α− 1)z−2f(z) +

(
α +

1

2

)
z−1f(z)

)
(68)

Hence f(z) satisfies (substituting into (65), and dividing throughout by zα/2)

4z2

(
y′′ +

1

4
α(α− 1)z−2y +

(
α +

1

2

)
z−1y

)
+2z

(
y′ +

1

2
αz−1y

)
+(z−α2)y = 0.

(69)

Cancellation, and a further division by z2 gives

4zf ′′(z) + 4(α + 1)f ′(z) + f(z) = 0

which is equivalent to the system (64).

Remark (on uniqueness of solutions)

Note that, for α > −1,

ψ(z) = 2αz−α/2 Jα
(√

z
)

=

∞∑

j=0

(−1)j
(

1
4
z
)α+2j

j! Γ(j + α + 1)
(70)

is an entire function, and that y = ψ satisfies the differential equation

4zy′′ + 4(α + 1)y′ + y = 0. (71)
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Further, when α is not an integer there is another independent solution

φ(z) = 2−αz−α/2 J−α(
√
z)

= z−α
∞∑

j=0

(−1)j(1
4
z)j

j! Γ(j − α + 1)
. (72)

Hence for 0 < α < 1, ψ(z) gives the unique solution of (71) such that y(0) =

ψ(0) = 1/Γ(α + 1), since φ(z) is singular at z = 0. Further, when α = 0, J0(z)

gives the unique solution of (71) such that y(0) = 1 since the Bessel function of

the second kind Y0 has a logarithmic singularity at z = 0 (see [19, p.171])

Proposition 2.5 For the Jacobi polynomials Pn = P α,β
n , we have the limits

(i) n−αPn

(
cos

√
z

n

)
→ 2α

zα/2
Jα
(√

z
)

(73)

and

(ii)
sin

√
z
n

2n
√
z
n−αP ′

n

(
cos

√
z

n

)
→ 2α−1z−α/2

(
αz−1 Jα(

√
z) − z−1/2 J′

α(
√
z)
)
, (74)

as n→ ∞, which are uniform for z in compact subsets of C \ (−∞, 0].

Proof. Note that (ii) follows from (i) by uniform convergence: we simply differ-

entiate the expressions on both sides of the limit. Let

fn(z) = n−αPn

(
cos

√
z

n

)
.

Then fn satisfies the differential equation (54). Lemma 2.3 tells us that

f(z) = 2αz−α/2 Jα(
√
z) =

∞∑

m=0

(−1)m(1
2
)2mzm

m!Γ(m+ α + 1)

81



is a solution of the system

z
d

dz



 f(z)

f ′(z)



 = Ω(z)



 f(z)

f ′(z)



 ,

where

Ω(z) =



 0 z

−1/4 −(α + 1)



 .

We use the following fact about the normalisation of the Jacobi polynomials (see

[41, p.58])

P α,β
n (1) =

Γ(n+ α + 1)

Γ(n + 1)Γ(α+ 1)
,

to get

fn(0) = n−αP α,β
n (1) = n−α Γ(n+ α + 1)

Γ(n + 1)Γ(α+ 1)
.

By considering the series expansion of f(z), we get

f(0) =
2α

zα/2
J
(√

z
) ∣∣∣∣

z=0

=
1

Γ(α + 1)
.

By a result in [42, p.58], we have

Γ(n+ α)

Γ(n)
∼ nα as n→ ∞, (75)

so

fn(0) → 1

Γ(α+ 1)
= f(0) as n→ ∞.

By differentiating the series expansion of f(z), we get

f ′(0) =
−1

4Γ(α+ 1)
.

The following formula is a special case of one in [14, p.170]

d

dx
P α,β
n (x) =

1

2
(n+ α + β + 1)P α+1,β+1

n−1 (x),
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and we use it, and the limit (75), to get

f ′
n(0) = −n

−α

2n2
P ′
n(1)

= n−α
(−1

2n2

)
1

2
(n + α+ β + 1)

Γ(n+ α + 1)

Γ(n)Γ(α + 2)

∼ −1

4
n−(α+1) Γ(n+ α + 1)

Γ(n)Γ(α+ 2)

→ −1

4Γ(α+ 2)
= f ′(0).

We now have fn(z) → f(z) as n → ∞, on compact subsets of C \ (−∞, 0], by

Lemma 2.2.

2.5 Convergence of the Jacobi operator

For brevity, we shall write xn = cos
(√

x
n

)
.

Proposition 2.6 The scaled operator K̃n : L2[0, 1] → L2[0, 1] converges to the

Bessel operator K : L2[0, 1] → L2[0, 1] weakly as n→ ∞, that is

〈K̃nf, f〉 → 〈Kf, f〉 as n→ ∞, for all f ∈ L2[0, 1]

Proof. We use the relation (from [41, p.72])

2(n+α)(n+β)Pn−1(z) = (2n+α+β)(1−z2)P ′
n(z)+n ((2n+ α + β)z + β − α)Pn(z)

(76)

to get

Pn(x)Pn−1(y) − Pn−1(x)Pn(y)

=
Pn(x)

2(n+ α)(n+ β)

(
(2n+ α + β)(1 − y2)P ′

n(y) + n ((2n+ α+ β)y + β − α)Pn(y)
)

− Pn(y)

2(n+ α)(n+ β)

(
(2n+ α + β)(1 − x2)P ′

n(x) + n ((2n+ α + β)x+ β − α)Pn(x)
)

=
2n+ α+ β

2(n+ α)(n+ β)

(
(1 − y2)Pn(x)P

′
n(y) − (1 − x2)Pn(y)P

′
n(x) − nPn(x)Pn(y)

)
, (77)
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and hence we have

Pn (xn)Pn−1 (yn) − Pn (yn)Pn−1 (xn)

xn − yn

=

(
2n+ α + β

2(n+ α)(n+ β)

) sin2
(√

y

n

)
Pn (xn)P

′
n (yn) − sin2

(√
y

n

)
Pn (yn)P

′
n (xn)

xn − yn

− n(2n+ α + β)

2(n + α)(n+ β)
Pn (xn)Pn (yn) . (78)

Expanding some of the terms as Taylor series, and writing the constant terms as

they appear in the limit, (78) becomes

n

(√
y

n
+O

(
1
n3

))
sin
(√

y

n

)
P ′
n(yn)Pn(xn) −

(√
x
n

+O
(

1
n3

))
sin
(√

x
n

)
P ′
n(xn)Pn(yn)

1
2
(y − x) +O

(
1
n4

)

−Pn (xn)Pn (yn) .

We do the same for the weight function:

w (xn) = 2−(α+β+1)

(
1 − cos

√
x

n

)α(
1 + cos

√
x

n

)β

=

(
x

n2
+O

(
1

n4

))α(
2 − x

n2
+O

(
1

n4

))β
2−(α+β+1).

Using this information, and Proposition 2.5, we now have the following limit on

the off-diagonal (x 6= y) for the rescaled kernel defined in (49)

K̃n(x, y)

→ 1

y − x

(
y1−α/2x−α/2

(
αy−1 Jα(

√
y) − y−1/2 J′

α(
√
y)
)

Jα(
√
x)

−x1−α/2y−α/2
(
αx−1 Jα(

√
x) − x−1/2 J′

α(
√
x)
)

Jα(
√
y)

)
(xy)α/2

=
Jα(

√
x)
√
y J′

α(
√
y) − Jα(

√
y)
√
x J′

α(
√
x)

(x− y)

as n → ∞, uniformly on [0, 1]2 \ {(x, y) ∈ [0, 1]2 : x = y}. Notice that the

contribution from the last term in (78) tends to zero under the n−2 scaling. For

the diagonal (x = y), note that if A and B are once differentiable functions, and

84



TA,B(x, y) = 1
x−y (A(x)B(y) − A(y)B(x)), then, by L’Hôpital’s rule, TA,B(x, x) =

A′(x)B(x) − A(x)B′(x). Hence

Kn(x, x) = (n+ α + β)
(
P ′
n(x)Pn−1(x) − Pn(x)P

′
n−1(x)

)
w(x). (79)

We differentiate (76) to get an expression for P ′
n−1 in terms of Pn and its derivatives:

P ′
n−1(x) =

1

2(n+ α)(n+ β)

(
(2n+ α + β)

(
(1 − x2)P ′′

n (x) − 2xP ′
n(x)

)

+n((2n+ α + β)x+ β − α)P ′
n(x) + n(2n + α+ β)Pn(x)

)
.

Substituting this into (79), also using (76), and neglecting constants which will

not appear in the limit, we have

Kn(x, x) = w(x)
(
(1 − x2)P ′

n(x)
2 − (1 − x2)Pn(x)P

′′
n (x) + 2xPn(x)P

′
n(x) − nPn(x)

2
)

= w(x)
(
(1 − x2)P ′

n(x)
2 + (β(1 − x) − α(1 + x))Pn(x)P

′
n(x)

+n(n+ α + β)Pn(x)
2
)
.

The second equality follows by (55), the differential equation satisfied by the Jacobi

polynomials. Thus the diagonal of the rescaled kernel is given by

K̃n(x, x) =
2−α

n2
(f1(x;n) + f2(x;n, α, β) + f3(x;n, α, β))w (xn) (80)

where

f1(x;n) = sin2

(√
x

n

)
P ′
n (xn)

2 ,

f2(x;n, α, β) = (β (1 − xn) − α (1 + xn))Pn (xn)P
′
n (xn) ,

f3(x;n, α, β) = n(n + α+ β)Pn (xn)
2 .

As before, the scaled weight w(xn) contributes n−2α, which effects the convergence

of all the terms, and also xα and the constant factor 2−α−1. We use Proposition
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2.5 (i) to get

1

n2
f3(x;n, α, β)w(xn) → 2α−1 Jα(

√
x)2,

and Proposition 2.5 (ii) gives

1

n2
f1(x;n)w(xn) → 2α−1x−1

(
αx−1 Jα(

√
x) − x−1/2 J′

α(
√
x)
)2

= 2α−1
(
α2x−1 Jα(

√
x)2 − 2αx−1/2 Jα(

√
x) J′

α(
√
x) + J′

α(
√
x)2
)
.

For f2, note first that

sin
√
x
n

n
√
x
n−αP ′

n

(
cos

√
x

n

)
=

sin
√
x
n√
x
n

1

n2
n−αP ′

n

(
cos

√
x

n

)
,

where the left-hand side is known to converge by Proposition 2.5 (ii), and the first

factor on the right-hand side tends to 1 as n→ ∞. Since

f2(x;n, α, β) =

(
β

(
x

n2
+O

(
1

n4

))
− α

(
2 − x

n2
+O

(
1

n4

)))

×Pn
(

cos

√
x

n

)
P ′
n

(
cos

√
x

n

)
,

we have

1

n2
f2(x;n, α, β)w(xn) → −2α2α−1

(
αx−1 Jα(

√
x)2 − x−1/2 Jα(

√
x) J′

α(
√
x)
)

as n→ ∞,

and adding the above limits together we get

K̃n(x, x) →
1

2

((
1 − α2

x

)
Jα(

√
x)2 + J′

α(
√
x)2

)
,

uniformly for x ∈ [0, 1]. Applying L’Hôpital’s rule again to the Bessel kernel, we

find

K(x, x) =
1

2

(
J′
α(
√
x)2 − Jα(

√
x)

(
J′′
α(
√
x) +

1√
x

J′
α(
√
x)

))

=
1

2

((
1 − α2

x

)
Jα(

√
x)2 + J′

α(
√
x)2

)
,
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where we use equation (65) to write the second derivative of Jα(
√
x) as a sum of

lower order terms. Hence we have shown that K̃n(x, x) → K(x, x), uniformly for

x ∈ [0, 1]. It is now clear that

〈K̃nf, f〉 =

∫ 1

0

∫ 1

0

K̃n(x, y)f(x)f(y) dy dx →
∫ 1

0

∫ 1

0

K(x, y)f(x)f(y) dy dx

= 〈Kf, f〉.

Theorem 2.7 The scaled operator K̃n : L2[0, 1] → L2[0, 1] converges to the Bessel

operator K : L2[0, 1] → L2[0, 1] in trace class norm as n→ ∞.

Proof. We have already shown that K̃n(x, x) → K(x, x), uniformly for x ∈ [0, 1],

and hence ∫ 1

0

Kn(x, x) dx→
∫ 1

0

K(x, x) dx as n→ ∞.

We must show that this limit implies convergence of traces. K̃n is clearly non-

negative, since it is the orthogonal projection onto the subspace

span

{
Pk

(
cos

√
x

n

)
, k = 0, . . . , n

}
,

of L2[0, 1], and by weak convergence (Proposition 2.6), K is also non-negative.

Further, both kernels K̃n and K are real symmetric and continuous, and hence

Mercer’s theorem (Theorem 1.12) gives

trace K̃n =

∫ 1

0

K̃n(x, x) dx

and

traceK =

∫ 1

0

K(x, x) dx,
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and so trace K̃n → traceK as n → ∞. Since K̃n and K are positive and self-

adjoint, this is equivalent to

‖K̃n‖C1
→ ‖K‖C1

and hence, together with the weak convergence proved in Proposition 2.6, Theorem

1.14 gives the required trace norm convergence.

The previous result is useful when proving convergence for level spacing distribu-

tions in the Jacobi kernel. Determinants carry the probabilistic information about

eigenvalue distributions of random matrices. We use the following result to deduce

convergence of determinants from trace norm convergence. For a proof, see [24,

p.342].

Lemma 2.8 Let T be a trace class operator, and TN a sequence of operators con-

verging to T in trace class norm as N → ∞. Then det(I − TN ) → det(I − T ) as

N → ∞.

Corollary 2.9 For the operators K̃n and K above, we have

det(I − I(a,b)K̃nI(a,b)) → det(I − I(a,b)KI(a,b)) as n→ ∞

Proof. Since multiplication by I(a,b) is bounded, we have, by Theorem 2.7

I(a,b)K̃nI(a,b) → I(a,b)KI(a,b)

in trace norm, as n→ ∞, and we use Lemma 2.8 to deduce the result.
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3 Tracy–Widom operators not commuting with

a differential operator

3.1 Introduction

In several important examples (see, e.g. [27, pp.98-101] and [45, §III B]), the eigen-

vectors of a Tracy–Widom integral operator K can be found by using the fact (a

proof of which is given below) that a differential operator L satisfying KL = LK

has the same eigenvectors as K. In this section, we consider the possibility of

finding a self-adjoint differential operator which commutes with a Tracy–Widom

integral operator K (with kernel K(x, y)) on L2(R). We observe that a TW inte-

gral operator can be written using commutators, via the multiplication and Hilbert

transform operators, and show that the Hilbert transform commutes with differen-

tiation by expressing both these operators in their Fourier transform state. Using

these facts, and some commutator formulae, we expand the commutator of K and

a typical self-adjoint differential operator, and find that for this to be zero, K

must also be zero. We conclude that a commuting self-adjoint differential opera-

tor cannot be found for any non-zero TW integral operator acting on the whole

real line.

3.2 Self-adjointness for differential operators

Differential operators are unbounded, so we need to be careful when discussing

what is meant by self-adjointness, so that spectral theory results can be applied

(see [12, p.7,§1.2]). To begin with though, we need to define clearly what we mean

by an operator in the unbounded context. A densely defined linear operator on a

Hilbert space H is a pair comprising a dense linear subspace, which we call Dom(A)

(the domain) and a linear map A : Dom(A) → H . If E is a linear subspace of

H which contains Dom(A) and Ã is a map E :→ H which satisfies Ãf = Af for
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all f ∈Dom(A), then we say that Ã is an extension of A. The adjoint A∗ of an

operator A satisfies the condition

〈Ax, y〉 = 〈x,A∗y〉

for all x ∈Dom(A) and y ∈ Dom(A∗), where we define Dom(A∗) to be the set of

all y ∈ H for which there exists z ∈ H with

〈Ax, y〉 = 〈x, z〉

for all x ∈Dom(A). Thus, A is self-adjoint if and only if it is symmetric and

Dom(A) = Dom(A∗).

In practice, we usually define a differential operator on some dense subspace of the

Hilbert space H on which it acts, and use a result known as Friedrich’s theorem

to show that there is a self-adjoint extension. We state this in the form in which

we need it (for a proof, see [24, p.402-404], which also shows how to construct the

extension).

Theorem 3.1 (Friedrich’s theorem) Let L be an operator defined on a dense

subspace D of a Hilbert space H. If the following conditions are satisfied:

(i) L(D) ⊆ D

(ii) 〈Lu, v〉 = 〈u, Lv〉 for all u, v ∈ D

(iii) 〈Lu, u〉 ≥ 0 for all u ∈ D,

then L has a self-adjoint extension.
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3.3 Definitions and motivation

Let I be a (possibly infinite) interval of the real line. We consider integral operators

KA,B with kernel KA,B(x, y) of Tracy-Widom type

KA,B(x, y) =
A(x)B(y) − A(y)B(x)

x− y
,

which act on a function f ∈ L2(I) in the usual way:

KA,Bf(x) =

∫

I

KA,B(x, y)f(y) dy.

When the dependence on the functions A and B is clear, we shall omit the sub-

scripts. In several important examples (e.g. for the Bessel kernel [45, §III B],

the sine kernel [27, pp.96-101] and the Airy kernel [43, §IV]) the eigenvectors and

eigenvalues of an operator of this form can be found via a commuting self-adjoint

differential operator. By this, we mean a differential operator L on some suitable

space of functions which satisfies the condition

Lx

∫

I

K(x, y)f(y) dy =

∫

I

K(x, y)Lyf(y) dy,

for all x, in which Lx means that L acts on the x variable and so on. The following

general theorem on commuting operators means that if we can find such a dif-

ferential operator, its eigenvectors will be the same as those of the Tracy–Widom

operator K.

Proposition 3.2 Let A and B be compact self-adjoint operators on a Hilbert space

H, and suppose that AB = BA. Then there exists an orthonormal basis (φj) of H

such that Aφj = λjφj and Bφj = µjφj, for some scalars λj and µj.

Proof. Take 0 6= λ ∈ σp(A), let Eλ = {x ∈ H : Ax = λx}, so that Eλ is finite-

dimensional, and let Pλ be the projection from H onto Eλ. By Cauchy’s theorem,
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we have

Pλ =
1

2πi

∫

C(λ,δ)

dz

z −A
.

Note that, since A is compact, and hence bounded, we have, for |z | > ‖A‖

B(z − A)−1 =
B

z

∞∑

n=0

(
A

z

)

=
1

z

∞∑

n=0

(
A

z

)n
B

= (z − A)−1B

where we also use the fact that AB = BA, so that B commutes with An. This

identity can be extended to hold for all z in the complement of σ(A) (its resolvent

set) by analytic continuation. It is now clear that

BPλ =
1

2πi

∫

C(λ,δ)

B
dz

z − A
=

1

2πi

∫

C(λ,δ)

dz

z −A
B = PλB.

Hence BPλ is self-adjoint, since (BPλ)
∗ = PλB = BPλ. Let (φj) be an orthonor-

mal basis for Eλ consisting of eigenvectors of BPλ. Then clearly the φj are also

eigenvectors of A. We can repeat the argument with A taking the place of B, and

thus we see that A and B have a common basis of eigenvectors.

Example 3.3

The Airy kernel arises when we scale the eigenvalues of a random matrix

at the soft edge of the spectrum in the Gaussian Unitary Ensemble (see

[43], or §1.9 in this thesis). It can be written as the square of the Hankel

operator with kernel Ai (x+ y):

Ai (x) Ai ′(y) − Ai ′(x) Ai (y)

x− y
=

∫ ∞

0

Ai (x+ t) Ai (y + t) dt, (81)

Let L be a differential operator defined on the space D = C∞
c (R+) of smooth
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functions on R+ with compact support by

L = − d

dx

(
x

d

dx

)
+ x2

Note that L is symmetric. To see this, take f, g ∈ D. Then integration by

parts, and the fact that f(x), g(x) → 0 as x→ ∞ together give

〈Lf, g〉 =

∫ ∞

0

(
−(xf ′(x))′ + x2f(x)

)
g(x) dx

= [−xf ′(x)g(x)]∞0 +

∫ ∞

0

xf ′(x)g′(x) dx+

∫ ∞

0

x2f(x)g(x) dx

=

∫ ∞

0

xf ′(x)g′(x) dx+

∫ ∞

0

x2f(x)g(x) dx,

while

〈f, Lg〉 =

∫ ∞

0

f(x)
(
−(xg′(x))′ + x2g(x)

)
dx

= [−xf(x)g′(x)]∞0 +

∫ ∞

0

xf ′(x)g′(x) dx+

∫ ∞

0

x2f(x)g(x) dx

=

∫ ∞

0

xf ′(x)g′(x) dx+

∫ ∞

0

x2f(x)g(x) dx

= 〈Lf, g〉.

A similar argument shows that L is a positive operator, and hence L has a

self-adjoint extension, by Friedrich’s theorem (Theorem 3.1) Also, L com-

mutes with the Hankel integral operator Γ with kernel Ai (x + y). Recall

that Ai ′′(x) = xAi (x), and then

LΓf(x) = L

∫ ∞

0

Ai (x+ y)f(y) dy

=

∫ ∞

0

(
− (xAi ′(x+ y))

′
+ x2 Ai (x+ y)

)
f(y) dy

=

∫ ∞

0

(
−x(x + y) Ai (x+ y) − Ai ′(x+ y) + x2 Ai (x+ y)

)
f(y) dy

=

∫ ∞

0

(−xyAi (x+ y) − Ai ′(x+ y)) f(y) dy,
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while integration by parts gives

ΓLf(x) =

∫ ∞

0

Ai (x+ y)
(
−(yf ′(y))′ + y2f(y)

)
dy

= [Ai (x+ y)yf ′(y)]
∞
0 +

∫ ∞

0

Ai ′(x+ y)yf ′(y) dy

+

∫ ∞

0

Ai (x+ y)y2f(x) dy

=

∫ ∞

0

Ai ′(x+ y)yf ′(y) dy +

∫ ∞

0

Ai (x+ y)y2f(y) dy

= [Ai ′(x+ y)yf(y)]
∞
0 −

∫ ∞

0

( Ai ′(x+ y) + yAi ′′(x+ y)) f(y) dy

+

∫ ∞

0

Ai (x+ y)y2f(y) dy

= −
∫ ∞

0

Ai ′(x+ y)f(y) dy−
∫ ∞

0

y(x+ y) Ai (x+ y)f(y) dy

+

∫ ∞

0

y2 Ai (x+ y)f(y) dy

= LΓf(x)

where we used the fact that Ai (x) → 0 as x→ ∞ to show that the bound-

ary terms are zero. In the light of (81), it is then clear that L commutes

with the Airy Tracy–Widom operator on the half line

In contrast to the above example, the main result in this chapter tells us that

there are no non-zero Tracy–Widom operators which commute with a self-adjoint

differential operator on the whole real line. The first step is to express the TW op-

erator as the sum of two terms involving commutators with the Hilbert transform.

We show that the Hilbert transform commutes with differentiation on L2(R), and

then, using a number of commutator identities, expand the commutator of the

TW operator and differential operator.
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3.4 Results on commutators

Definition 3.4 Let R and S be operators, at least one of which is bounded. The

commutator of R and S is

[R, S] = RS − SR.

Clearly, the commutator of two operators is zero if and only if they commute.

We shall need the well-known identities in the next result to calculate the commu-

tator of KA,B with a differential operator.

Lemma 3.5 For operators R, S and T , of which at least two are bounded, the

following identities hold:

[R, [S, T ]] + [S, [T,R]] + [T, [R, S]] = 0 (Jacobi’s identity) (82)

[RS, T ] = [R, T ]S +R [S, T ] (83)

[R, ST ] = [R, S]T + S [R, T ] . (84)

Proof. Clear on calculation of the commutators in question.

Remark

The Jacobi identity is important in some branches of algebra, particularly in the

theory of Lie groups. See, for example [38, p.10].

We shall sometimes consider integrals in which the integrand diverges at one point.

In such cases, we invoke the Cauchy Principal Value (PV) (see [3, p.238]). Sup-

pose that the integrand f(x) diverges at x = x0. Then we interpret the integral

as follows:

PV

∫ b

a

f(x) dx = lim
ǫ→0

(∫ x0−ǫ

a

+

∫ b

x0+ǫ

f(x) dx

)
.
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Definition 3.6 The Hilbert transform is the integral operator on L2(R) with ker-

nel 1/(x− y). Thus

Hf(x) = PV

∫ ∞

−∞

f(y)

x− y
dy (f ∈ L2(R)).

Note that, for later convenience, this definition lacks the usual factor of 1/π. The

calculations in the following result are standard (see, for instance [42, p.103]), but

we include them here for completeness. We define the Fourier Transform on the

real line to be

F(f ; ξ) =
1√
2π

∫ ∞

−∞
f(x)e−ixξ dx.

Lemma 3.7 For the Hilbert Transform H, and Fourier transform F, we have

H = F
∗MφF,

where φ(ξ) = −iπ sgn (ξ). Moreover, H is a bounded operator, and it commutes

with differentiation on the space C∞
c (R) of smooth functions with compact support

in R.

Remark

Note that the Hilbert transform does not commute with differentiation on the half

line [0,∞), since it can be shown that H does not map C∞
c ([0,∞)) to itself.

Proof. Note that Hf(x) is the convolution of the functions 1
x

and f(x), so that

F(Hf ; ξ) =
√

2π F

(
1

x
; ξ

)
F(f ; ξ)

= F(f ; ξ)PV

∫ ∞

−∞

e−ixξ

x
dx.

We calculate the principal value integral by contour integration as follows. Assume

to begin with that ξ > 0. Let Γ be the contour in the lower half-plane, shown in

the diagram below and taken once in the negative sense.
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Since e−ixξ/x is holomorphic inside and on this contour, we have

0 =

∫

Γ

e−ixξ

x
dx

=

∫ −ǫ

−R
+

∫ R

ǫ

e−ixξ

x
dx+

∫

Sǫ

e−ixξ

x
dx+

∫ π

0

exp (−iξ(R cos θ − iR sin θ)) i dθ.

The integral of e−ixξ/x around a small circle centred at 0 is 2πi, so the integral

around the semicircle Sǫ is πi. For the last integral, note that

|exp (−iξ(R cos θ − iR sin θ) + iθ) i| = exp (−ξR sin θ)

and, by symmetry ∫ π

0

e−ξR sin θ dθ = 2

∫ π
2

0

e−ξR sin θ dθ.

We use the bound sin θ ≥ 2
π
θ (0 ≤ θ ≤ π

2
) to get

∣∣∣∣
∫

SR

eiξx

x
dx

∣∣∣∣ ≤ 2

∫ π
2

0

e−ξR
2

π
θ dθ

=
2

ξ π
2
R

(1 − e−ξR) → 0 as R → ∞.

97



We are therefore left with

∫ −ǫ

−∞
+

∫ ∞

ǫ

e−ixξ

x
dx = −iπ (for ξ > 0).

The case of ξ < 0 can be dealt with by considering the reflection of the contour Γ

in the upper half-plane. This leads to

∫ −ǫ

−∞
+

∫ ∞

ǫ

e−ixξ

x
dx = iπ (for ξ < 0).

We can combine these two statements together to write

F(Hf ; ξ) = −iπ sgn (ξ)F(f ; ξ),

or in other words,

H = F
∗MφF,

where φ(x) = −iπ sgn (ξ), since the Fourier transform is a unitary operator. This

shows that H is bounded. Take f ∈ C∞
c (R). We observe that

∫ ∞

−∞
f ′(x)e−ixξ dx =

[
f(x)e−ixξ

]∞
−∞ + iξ

∫ ∞

−∞
f(x)e−ixξ dx

= iξF(f(ξ)),

so that

d

dx
= F

∗MψF,

where ψ(ξ) = iξ. We have shown that the two operators H and d
dx

are unitar-

ily equivalent to multiplication operators on the space C∞
c (R), so they commute

there.

Lemma 3.8 Let A and B be bounded and measurable functions R → C. The
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Tracy-Widom integral operator KA,B on L2(R) is bounded, and satisfies

KA,B = MA [H,MB] +MB [MA, H ] .

Proof. MA,MB andH are all bounded, so for a function f ∈ L2(R), the expression

(MA [H,MB] +MB [MA, H ]) f(x)

makes sense. Also, we may write

[H,MB]f(x) =

∫ ∞

−∞

B(y) −B(x)

x− y
f(y) dy

=

∫ ∞

−∞

B(y)

x− y
f(y) dy − B(x)

∫ ∞

−∞

1

x− y
f(y) dy.

Note that

(MA [H,MB] +MB [MA, H ]) f(x) = A(x)

∫ ∞

−∞

B(y) − B(x)

x− y
f(y) dy

+B(x)

∫ ∞

−∞

A(x) − A(y)

x− y
f(y) dy.

=

∫ ∞

−∞

A(x)B(y) − A(y)B(x)

x− y
f(y) dy

Lemma 3.9 For a differentiable function φ, we have

[
d

dx
,Mφ

]
= Mφ′ . (85)

Proof. Observe that, by Leibniz’s rule,

(
d

dx
Mφ −Mφ

d

dx

)
f(x) =

d

dx
φ(x)f(x) − φ(x)f ′(x)

= φ′(x)f(x) + φ(x)f ′(x) − φ(x)f ′(x)

= φ′(x)f(x).

99



3.5 Tracy–Widom operators do not commute with self-

adjoint differential operators on the real line

Theorem 3.10 Suppose that α is a strictly increasing and differentiable real func-

tion, v is a continuous real function, and that A and B are continuously differen-

tiable functions that are bounded R → C. Then KA,B is bounded, and is self-adjoint

when A and B are real-valued. Further, if the operator

L = −α d2

dx2
− α′ d

dx
+ v

commutes with KA,B on C∞
c (R), then A and B are proportional, and hence KA,B =

0.

Proof. Throughout this proof, we define all operators on the space C∞
c (R). Sup-

pose A and B are real-valued. Then it is clear that K(x, y) = K(y, x) so that K

is self-adjoint in this case. By Lemma 3.8,

KA,B = MA [H,MB] +MB [MA, H ] ,

where all the operators are bounded. To prove the last part of the result, we calcu-

late part of the commutator of L and KA,B. In fact, it turns out that considering

only the second order terms will be sufficient. Using Lemma 3.8, we find:

[
−Mα

d

dx

d

dx
,KA,B

]
=

[
−Mα

d

dx

d

dx
,MA [H,MB]

]
−
[
Mα

d

dx

d

dx
,MB [MA, H ]

]

We examine both the terms on the right-hand side in turn:

[
−Mα

d

dx

d

dx
,MA [H,MB]

]
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=

[(
Mα

d

dx

)
d

dx
,MA [MB, H ]

]

=

[
Mα

d

dx
,MA [MB, H ]

]
d

dx
+Mα

d

dx

[
d

dx
,MA [MB, H ]

]

=

(
[Mα,MA [MB, H ]]

d

dx
+Mα

[
d

dx
,MA [MB, H ]

])
d

dx

+Mα
d

dx

[
d

dx
,MA [MB, H ]

]
,

where the third and fourth lines follow from Lemma 3.5, formula (83). We find

[
d

dx
,MA [MB, H ]

]

=

[
d

dx
,MA

]
[MB, H ] +MA

[
d

dx
, [MB, H ]

]
(by (84))

= MA′ [MB, H ] +MA

([
MB,

[
d

dx
,H

]]
+ [MB′ , H ]

)
(by (82) and Lemma 3.9)

= MA′ [MB, H ] +MA [MB′ , H ] (86)

in which we have used the fact that H and d/dx commute (Lemma 3.7). We now

have

[
−Mα

d

dx

d

dx
,MA [H,MB]

]

=

(
[Mα,MA [MB, H ]]

d

dx
+Mα (MA′ [MB, H ] +MA [MB′ , H ])

)
d

dx

+Mα
d

dx
(MA′ [MB, H ] +MA [MB′ , H ]) .

Similarly,

[
−Mα

d

dx

d

dx
,MB [MA, H ]

]

= −
(

[Mα,MB [MA, H ]]
d

dx
+Mα (MB′ [MA, H ] +MB [MA′, H ])

)
d

dx

−Mα
d

dx
(MB′ [MA, H ] +MB [MA′, H ]) .
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Second order terms in the commutator result only from the action of second order

terms in L, so we see that the second order terms in [L,KA,B] must be

[Mα,MA [MB, H ]] − [Mα,MB [MA, H ]]

= [Mα,MA] [MB, H ] +MA [Mα, [MB, H ]]

− [Mα,MB] [MA, H ] −MB [Mα, [MA, H ]] (by (84) )

= MA [Mα, [MB, H ]] −MB [Mα, [MA, H ]] .

Hence, if L and KA,B commute, then

MA [Mα, [MB, H ]] −MB [Mα, [MA, H ]] = 0,

which is true if and only if the kernels of the above operators satisfy

A(x)

(
α(x)

B(x) − B(y)

x− y
− B(x) − B(y)

x− y
α(y)

)

= B(x)

(
α(x)

A(x) − A(y)

x− y
− A(x) − A(y)

x− y
α(y)

)
.

We rearrange this equation to get

(α(x) − α(y)) (A(y)B(x) −A(x)B(y)) = 0,

and since α is strictly increasing, the first factor is never zero, so we have the

statement

A(y)B(x) − A(x)B(y) = 0 ∀x, y ∈ R;

that is, A and B are proportional, and hence KA,B(x, y) = 0 for all x, y ∈ R.

Remark

We point out to the reader that this result does not contradict the Airy example

we discussed in §3.3. If we were to try to run this argument on the half line, then

equation (86) would not hold, by the remark after Lemma 3.7, the commutator
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would not have the simple form given here, and we would not be able to conclude

that KA,B is zero.
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4 Tracy–Widom operators on the circle

4.1 Introduction

Circular random matrix ensembles were introduced by Dyson to remove the as-

sumption of statistical independence of matrix elements, which is somewhat artifi-

cial in physical applications (see [27, p.52 and p.181]). In this chapter, we consider

the corresponding Tracy–Widom operators on the circle. A known identity linking

Toeplitz and Hankel operators leads to a simple formula for the projection onto

H2(T) of a TW operator on L2(T). The expression we obtain is a difference of the

form Γ∗
φΓφ−Γ∗

ψΓψ. If we then select one of the functions in (1) to be anti-analytic,

we have automatically expressed the TW operator as Γ∗
φΓφ. In the particular case

where the functions A and B in (1) are a Blaschke product and its complex conju-

gate, we find a formula for the range of the projection onto H2(T) of the integral

operator on L2(T). We consider Tracy–Widom kernels on the unit circle, of the

form

K(θ, φ) =
f(eiθ)g(eiφ) − g(eiθ)f(eiφ)

1 − ei(θ−φ)
, (87)

in which f and g are functions in L∞(T). To see how these relate to the kernels

studied elsewhere in the thesis, consider first the kernel

K(z, w) =
f(z)g(w) − f(w)g(z)

z − w

which acts on a function h ∈ L2(T) in the usual way:

Kh(z) =
1

2πi

∫

T

f(z)g(w) − f(w)g(z)

z − w
h(w) dw.

Now we make the change of variables z = eiθ and w = eiφ, and we find

Kh(eiθ) =
1

2πi

∫ 2π

0

f(eiθ)g(eiφ) − f(eiφ)g(eiθ)

eiθ − eiφ
ieiφh(eiφ) dφ
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=
1

2π

∫ 2π

0

f(eiθ)g(eiφ) − f(eiφ)g(eiθ)

ei(θ−φ) − 1
h(eiφ) dφ.

In fact, for later convenience in calculations, we shall consider a related kernel

(multiplied by −1)

K(θ, φ) =
f(eiθ)g(eiφ) − f(eiφ)g(eiθ)

1 − ei(θ−φ)
.

The operation of K on a function h ∈ L2(T) is then

Kh(eiθ) =
1

2π

∫ 2π

0

K(θ, φ)h(eiφ) dφ.

4.2 Sufficient conditions for Hankel factorisation

Lemma 4.1 Suppose that f, g ∈ L∞ have f̄ = g. Then K defines a bounded and

self-adjoint operator on L2(T). Further, the projection of K onto H2(T) satisfies

P+K = Γ∗
gΓg − Γ∗

fΓf . (88)

Moreover, when f is continuous, P+K is compact.

Proof. The condition f̄ = g gives immediately K(eiθ, eiφ) = K(eiφ, eiθ), and so K

is self-adjoint. We shall write the Riesz projection P+ as an integral operator on

L2(T). Let f ∈ L2(T), choose 0 < r < 1, and note that

P+f(reiθ) =

∞∑

n=0

f̂(n)rneinθ

=

∞∑

n=0

(
1

2π

∫ 2π

0

f(eiφ)e−inφ dφ

)
rneinθ

=
1

2π

∞∑

n=0

∫ 2π

0

rnein(θ−φ)f(eiφ) dφ

=
1

2π

∫ 2π

0

∞∑

n=0

rnein(θ−φ)f(eiφ) dφ
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=
1

2π

∫ 2π

0

f(eiφ)

1 − rei(θ−φ)
dφ,

where reversing the order of integration and summation is justified by the uniform

convergence of the series, by a simple application of the M−test:

∣∣∣∣∣

∞∑

n=0

rnein(θ−φ)

∣∣∣∣∣ ≤
∞∑

n=0

rn.

Now note that

lim
r→1−

∥∥P+f(eiθ) − P+f(reiθ)
∥∥
L2

= 0

(a simple proof of this is in [26, p.6]) and so we have

P+f(eiθ) =
1

2π
PV

∫ 2π

0

f(eiφ)

1 − ei(θ−φ)
dφ.

We can decompose the operator K as follows

Kh(eiθ) = g(eiθ)
1

2π

∫ 2π

0

f(eiθ) − f(eiφ)

1 − ei(θ−φ)
h(eiφ) dφ−f(eiθ)

1

2π

∫ 2π

0

g(eiθ) − g(eiφ)

1 − ei(θ−φ)
h(eiφ)) dφ

which can, using the expression for P+ obtained above, be written in commutator

notation as

K = Mg [Mf , P+] −Mf [Mg, P+] , (89)

where all the operators are bounded because f and g are in L∞(T). To show that

(88) holds, we expand the commutators and use Proposition 1.30, as follows:

P+K = P+ (Mg[Mf , P+] −Mf [Mg, P+])

= P+ (Mg (MfP+ − P+Mf ) −Mf (MgP+ − P+Mg))

= P+(Mgf −MgP+Mf −MfgP+ +MfP+Mg)

= (Tgf − TgTf) − (Tfg − TfTg)

= ΓgΓ
∗
f̄ − ΓfΓ

∗
ḡ

= ΓgΓ
∗
g − ΓfΓ

∗
f .
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The last statement of the result follows by Hartman’s theorem (Theorem 1.27):

the Hankel operators on the right-hand side of (88) are compact when f is contin-

uous.

Of course, we are looking for expressions of the form Γ∗Γ. We can arrange for this

to happen by choosing the function to have all its nonnegative Fourier coefficients

zero, i.e. f ∈ H2
−(T).

Proposition 4.2 Suppose w ∈ D, and define the function

kw,l(z) =
l! zl

(1 − w̄z)l+1
(l ∈ Z+).

Then kw,l(z) ∈ H2(D), and, for any f ∈ H2(D), we have

〈f, kw,l〉H2 = f (l)(w).

Remark The function kw,l is called the reproducing kernel for the lth derivative.

Proof. Note that the change of variables z = eiθ transforms the inner product

integral as follows. Take f and g in H2(D). Then

〈f, g〉 =
1

2π

∫ 2π

0

f(eiθ)g(eiθ) dθ

=
1

2πi

∫

T

f(z)g(z)
dz

z
,

and hence, by Cauchy’s formula for derivatives (see [42, p.82]),

〈f, kw,l〉 =
1

2πi

∫

T

f(z)
l!z−l

(1 − wz̄)l+1

dz

z

=
l!

2πi

∫

T

f(z)

(z − w)l+1
dz

= f (l)(w).
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Definition 4.3 For (αj) a sequence of distinct points in D with multiplicities

m(αj) such that
∑

(1 − |αj |)m(αj) < ∞, the Blashke product, with zeros at each

αj having multiplicity m(αj) and at 0 with multiplicity m(0) is

b(z) = zm(0)

∞∏

j=0

( |αj |
αj

z − αj
1 − αjz

)m(αj)

.

For convenience in the next result, we use one of the alternative definitions of

Hankel operator, namely, Γφ = JP−Mφ. Using calculations which are very similar

to those in 1.30, we can adapt the identity of Proposition 4.1 to fit this new

definition. It now reads

P+K = Γ∗
fΓf − Γ∗

gΓg

where now Γφ = 0 when φ ∈ H2(T) instead of when φ ∈ H2
−(T). The result is

essentially contained in a remark in [37, p.22], but we include it here to show how

it fits in with our work linking Hankel and Tracy–Widom operators.

Proposition 4.4 Let f = b̄ and g = b. Then P+K = Γ∗
b̄
Γb̄ and

Range(P+K) = span{kαj ,l : l = 0, . . . , m(αj) − 1, j = 0, 1, . . .}.

In particular, if b is a finite Blashke product, then P+K has finite rank.

Proof. Applying Lemma 4.1 gives P+K = Γ∗
b̄
Γb̄, so that we can find the closure

of the range of P+K by calculating (Ker Γ∗
b̄
Γb̄)

⊥, which by Lemma 1.34 is equal

to (Ker Γb̄)
⊥. The kernel of any Hankel operator is shift-invariant (Proposition

1.24), so by Beurling’s theorem (Corollary 1.3) we have Ker Γb̄ = uH2, for an inner

function u which is unique up to a unimodular constant. Clearly b ∈ Ker Γb̄, so

we have b = uv, where v is inner. But the function v is constant, since

0 = Γb̄u(z) = Γb̄b(z)v̄(z) = z̄(v̄(z̄) − v̄(0))
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for all z, and so we have

Ker Γb̄ = bH2.

Thus

Range(K+W ) = (bH2)⊥.

Now suppose h ∈ bH2, or equivalently h/b ∈ H2. This can only happen if each

zero αj of b is also a zero of h, with the same multiplicity. This, in turn, is true if

and only if
〈
h, kαj ,l

〉
= 0 for l = 0, . . . , m(αj) − 1 and all j. We have shown that

Range(K+W ) = (bH2)⊥ = span{kαj ,l : l = 0, . . . , m(αj) − 1, j = 0, 1, . . .}.
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5 Discrete Tracy–Widom Operators expressible

as Hankel Squares

5.1 Introduction

Blower [6] has found sufficient conditions for a Tracy–Widom integral operator

to be expressible as the square of a Hankel integral operator. Here we find an

analogous set of sufficient conditions for the discrete case, that is, operators on

ℓ2(Z+) whose matrices with respect to the standard basis have entries

K(m,n) =
〈Ja(m), a(n)〉

m− n
(m 6= n;m,n ∈ Z+), (90)

where (a(j))∞j=0 is a sequence of 2 × 1 vectors, and

J =



 0 −1

1 0



 .

These are discrete analogues of the continuous operators considered in Chapter

2 and 3. The comparison is not simply one of formal similarity: the discrete

operators have genuine applications to discrete random matrix ensembles. For

instance, Johannson [21] and Borodin et al [4] use the discrete Bessel kernel to

describe the distribution of points at the edge of a growing Young diagram. We

look for conditions under which we can construct a function φ : Z+ → R with

(φ(j)) ∈ ℓ2 such that

K(m,n) =

∞∑

k=0

φ(m+ k)φ(n+ k), (m 6= n;m,n ∈ Z+) (91)

that is, the Tracy–Widom operator K equals the square of the Hankel matrix

with entries φ(m + n). We recover a result of Johansson [21] and also Borodin

et al [4], that the discrete Bessel kernel can be expressed in the form (91). In
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the continuous case, some examples fall ‘just short’ of being exact Hankel squares,

in that they they are of the form Γ∗Γ or ΓφΓψ + ΓψΓφ, where Γ,Γφ and Γψ are

Hankel operators (for example, see [1]). In the discrete context, we add another

case, in which the Tracy–Widom operator can be written as the sum of a Hankel

square and Toeplitz operator. The spectrum of Toeplitz operators can in particular

cases be determined, as we noted in §1.6, so this expression may also be useful in

calculating the spectrum of the operator K. We give what appears to be a new

example, which we view as the discrete analogue of the Laguerre kernel, and is

expressible as the sum of a Hankel square and Toeplitz operator. We warn the

reader about a change in notation in this chapter. Throughout, a Hankel matrix

Γφ will have matrix entries given by the function φ : Z+ → R in the following way:

Γφ(m,n) = φ(m+ n) m,n ∈ Z+.

This differs from the definition we gave in §1.6, in that φ is no longer an L∞(T)

function whose Fourier coefficients give the entries of the Hankel matrix, so it

cannot be described as a symbol function. We make this change to avoid having

to use hat notation when dealing with the entries of Γφ, and we hope that it will

not cause confusion. Note also that

Γ2
φ(m,n) =

∞∑

k=0

φ(m+ k)φ(n+ k).

Following the pattern of the continuous case, we analyse operators arising from

recurrence relations of the form

a(j + 1) = T (j)a(j)

where T (x) is a 2 × 2 matrix whose entries are rational functions of x, and show

that an analogous set of conditions gives Hankel factorisation.
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5.2 Sufficient conditions for Hankel factorisation in the dis-

crete case

The first result considers the more general problem of expressing K as the sum of

a Hankel and Toeplitz operator. It then turns out to be an easy matter to narrow

the conditions to make K an exact Hankel square; this is the content of Corollary

5.2. We make use again of the involution matrix

J =



 0 −1

1 0



 ,

which satisfies J2 = −I and J t = −J .

Theorem 5.1 Let T (j) and B(j) be 2 × 2 real matrices and (a(j)) a sequence of

real 2 × 1 vectors such that

a(j + 1) = T (j)a(j) (j ∈ Z+) (92)
∞∑

j=1

‖B(j)a(j)‖2 <∞. (93)

Suppose further that there exists a matrix C with eigenvalues λ > 0 and 0, with

(respectively) eigenvectors vλ and v0 and for which

J − T (n)tJT (m)

m− n
= B(n)tCB(m) (m 6= n;m,n ∈ Z+). (94)

Let

φ(j) = λ1/2〈vλ, B(j)a(j)〉

Then

Γ2
φ = K −W, (95)

where K has entries as in (90), and W is a Toeplitz matrix with W (0) = 0, and
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entries

W (m− n) = lim
k→∞

〈Ja(m+ k), a(n + k)〉
m− n

(m 6= n;m,n ∈ Z+). (96)

Remark

Notice that we let the (previously undefined) diagonal entries of K be defined by

the Hankel operator Γφ in (95).

Proof. Let K have entries as in (90), and let U be the orthogonal matrix with

vλ in the first column, and the eigenvalue corresponding to the eigenvalue 0 in the

second column. If m 6= n, then we have

K(m+ k, n+ k) −K(m+ k + 1, n+ k + 1)

=
1

m− n
(〈Ja(m+ k), a(n+ k)〉 − 〈JT (m+ k)a(m+ k), T (n+ k)a(n + k)〉)

=
1

m− n
〈
(
J − T (n+ k)tJT (m+ k)

)
a(m+ k), a(n+ k)〉

= 〈B(n+ k)tCB(m+ k)a(m+ k), a(n+ k)〉

= 〈B(n+ k)tU diag (λ, 0)U tB(m+ k)a(m+ k), a(n + k)〉

= λ〈 diag (1, 0)U tB(m+ k)a(m+ k), U tB(n + k)a(n+ k)〉

= λ〈 diag (1, 0)U tB(m+ k)a(m+ k), diag (1, 0)U tB(n+ k)a(n + k)〉

= φ(m+ k)φ(n+ k),

Summing over k = 0, 1, 2, . . . , N , we get

K(m,n) −K(m+N + 1, n+N + 1) =
N∑

k=0

φ(m+ k)φ(n + k). (97)

By the Cauchy-Schwarz inequality

∣∣∣∣∣

N∑

k=0

φ(m+ k)φ(n+ k)

∣∣∣∣∣ ≤
(

N∑

k=0

|φ(m+ k)|2
)1/2( N∑

k=0

|φ(n+ k)|2
)1/2

, (98)
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and (φ(j)) is an ℓ2 sequence, so we can let N → ∞ in (97), to get

K(m,n) =
∞∑

k=0

φ(m+ k)φ(n+ k) +W (m− n) (m 6= n;m,n ∈ Z+). (99)

The first term on the right-hand side of (99) is the (m,n)th (m 6= n) entry of the

square of the Hankel operator Γφ. Since K previously had no definition for m = n,

we now let K(m,m) =
∑∞

k=0 φ(m+ k)2, the diagonal (m = n) entries of Γ2
φ.

The case of most interest, and which gives the most spectral information, is when

the operator factors exactly as a product of Hankels: this is a special case of the

result above, in which the Toeplitz operator W is zero.

Corollary 5.2 Let T (j), B(j) and (a(j)) are as in Theorem 5.1, and suppose

further that

a(j) → 0 as j → ∞. (100)

Then

Γ2
φ = K (101)

where K has entries as in (90). Further, K is compact.

Proof. By Theorem 5.1, we have, for m 6= n,

K(m,n) = Γ2
φ(m,n) +W (m− n),

where by hypothesis

W (m− n) = lim
k→∞

〈Ja(m+ k), a(n+ k)〉
m− n

= 0 (m 6= n;m,n ∈ Z+).

Note that K can be viewed as the composition of the discrete Hilbert transform

an 7→
∑

m,n;m6=n

1

m− n
an
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which is bounded, by Theorem 294 of [20], with the compact operators ℓ2(Z+,C) →

ℓ2(Z+,C
2), given by (xn) 7→ (Ja(n)xn) and the adjoint of (x(n)) 7→ (a(n)xn); so K

is compact. Since the sequence a(n) is bounded, it is clear that the two compact

operators introduced above are also bounded, so K is also bounded.

Proposition 5.3 Let a(j), T (j) and B(j) satisfy conditions (92), (94), (100),

and also
∞∑

j=0

j ‖B(j)‖2 <∞. (102)

Now let K = Γ2
φ as in Corollary 5.2. Then K is a trace-class operator.

Proof. We show that Γφ is Hilbert–Schmidt, by considering the sum of squares

of its matrix entries, as in Proposition 1.7. Since the matrix of Γφ is constant on

diagonals perpendicular to the main diagonal, we have

‖Γφ‖C2
=

∞∑

k=1

k |φ(k)|2

=
∞∑

k=1

k
∣∣λ1/2〈vλ, B(k)a(k)〉

∣∣2

≤ M0

∞∑

k=1

k |a(k)|2 ‖B(k)‖2 <∞,

where we used the condition (102), the Cauchy–Schwarz inequality, and the fact

that the sequence (a(j)) is by hypothesis bounded.

5.3 Lyapunov equations

There is an alternative way of viewing the results in the previous sections, using

the concept of Lyapunov equations. These arise in linear system theory (see [9,

p.135]), where they can be used to determine whether or not a linear system is

stable.
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Theorem 5.4 Suppose that K is bounded, K = K∗ and K − S∗KS ≥ 0, so that

K − S∗KS = MM∗, (103)

for some bounded operator M . Suppose also that

∞∑

k=0

S∗kMM∗Sk (104)

converges in the weak operator topology. Then

W = lim
k→∞

S∗kKSk

exists in the weak operator topology, and satisfies

K = W +

∞∑

k=0

S∗kMM∗Sk.

Remark The sum (104) is the controllability operator as used by Peller et al in

[30, p.281] (see also [37, p.457]).

Proof. We have the sequence of equalities

(S∗)kKSk − (S∗)k+1KSk+1 = (S∗)kMM∗Sk for k ∈ Z+, (105)

and adding these for k = 0, . . . , n gives

K − (S∗)n+1KSn+1 =

n∑

k=0

(S∗)kMM∗Sk.

The sum on the right is convergent in the weak operator topology as n → ∞, so

we get

K = W +
∞∑

k=0

(S∗)kMM∗Sk, (106)

where W = limn→∞(S∗)nKSn.
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The following corollary shows how the above Theorem relates to the results of

§5.2.

Corollary 5.5 Suppose further that in Theorem 5.4, K − S∗KS ≥ 0 has rank

one, so that the matrix of MM∗ is [φ(j)φ(k)]j,k≥0, for some φ : Z+ → C. Then

K = W + ΓΓ∗ where Γ is the Hankel operator that has matrix [φ(j + k)]j,k≥0.

Proof. We have

K = W +
∞∑

k=0

(S∗)kMM∗Sk,

where

MM∗ = [φ(j)φ(k)]j,k≥0.

Let (em) be the standard basis for ℓ2. Then the (m,n)th entry of the matrix of

∑∞
k=0(S

∗)kMM∗Sk)

〈
(

∞∑

k=0

(S∗)kMM∗Sk)em, en

〉

=

∞∑

k=0

〈(S∗)kMM∗Skem, en〉

=

∞∑

k=0

〈MM∗Skem, S
ken〉

=

∞∑

k=0

〈MM∗em+k, en+k〉

=
∞∑

k=0

φ(m+ k)φ(n+ k),

which shows that this sum has the same matrix as ΓΓ∗.

5.4 The discrete Bessel kernel

We show how Corollary 5.2 can be applied to the discrete Bessel kernel to recover

a result which appears in [4] and [21], without their use of asymptotic formulae
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for the Bessel functions. The definition of the Bessel function, and two of the

identities we use here, appear elsewhere in the thesis (§1.11).

Proposition 5.6 Let Jn(z) be the Bessel function of the first kind of order n, let

Jn = Jn(2
√
θ), where θ > 0; let φ(n) = Jn+1 and a(n) = [

√
θ Jn, Jn+1]

t. Then the

Hankel operator Γφ is Hilbert–Schmidt, and B = Γ2
φ has entries

B(m,n) =
〈Ja(m), a(n)〉

m− n
(m 6= n;m,n ∈ Z+)

Proof. It is clear that (2.1) holds, since we have the recurrence relation

Jn+2(2z) =
n + 1

z
Jn+1(2z) − Jn(2z),

giving a(n+ 1) = T (n)a(n), where

T (n) =



 0
√
θ

−1√
θ

n+1√
θ



 .

Note that

T (n)tJT (m) − J

m− n
= C,

where C = diag(0,−1), which is clearly of rank one. The non-zero eigenvalue of

C is λ = −1, and a corresponding unit eigenvector is vλ = [0, 1]t, so

|λ|1/2 〈vλ, a(n)〉 = Jn+1 = φ(n).

We now verify condition (102), and thus (100). Note that

1

θ

∞∑

n=1

n J2
n+1 <

1

θ

∞∑

n=1

(n+ 1)2 J2
n+1 =

∞∑

n=1

( Jn+2 + Jn)
2 ≤ 4

∞∑

n=1

J2
n. (107)

We have, by a standard formula given in [46, p.379]

ei2
√
θ sinψ = J0(2

√
θ)+ 2

∞∑

m=1

J2m(2
√
θ) cos 2mψ+2i

∞∑

m=1

J2m−1(2
√
θ) sin(2m− 1)ψ,
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and since Jk(z) = (−1)k Jk(z), we can write this as

ei2
√
θ sinψ = J0 +

∞∑

k=1

( Jk + J−k) cos kψ + i
∞∑

k=1

( Jk − J−k) sin kψ

= J0(2
√
θ) +

∞∑

k=1

Jk (cos kψ + i sin kψ) + J−k (cos kψ − i sin kψ)

=

∞∑

k=−∞
Jke

ikψ.

By Parseval’s identity (Theorem 1.2) we get

∞∑

k=−∞
| Jk |2 =

1

2π

∫ 2π

0

∣∣∣ei2
√
θ sinψ

∣∣∣
2

dψ = 1,

and hence J0(2
√
θ)2 +2

∑∞
m=1 Jm(2

√
θ)2 = 1 for all θ > 0, so that the sum on the

right hand side of (107) is finite.

5.5 A discrete analogue of the Laguerre kernel

The Laguerre kernel, as considered in [7], arises from the solutions of the differential

equation,

u′′(x) + (−1/4 + (n+ 1)/x)u(x) = 0,

which we can write as

d

dx



 u(x)

u′(x)



 =



 0 1

1/4 − (n+ 1)/x 0







 u(x)

u′(x)



 .

We pick the solution u(x) = u(x) = xe−x/2L
(1)
n (x), as in §1.11, and then Blower’s

result (Theorem 1.43 in this thesis) can then be applied directly to show that

u(x)u′(y) − u(y)u′(y)

x− y
=

〈Ja(x), a(y)〉
x− y

= (n+ 1)

∫ ∞

0

u(x+ t)u(y + t)

(x+ t)(y + t)
dt. (108)
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We consider an analogous recurrence relation (see Proposition 5.8 below) and the

Hankel operator we obtain has a similar shape. Furthermore we shall see that the

generating function of the discrete analogue of u is similar in form to the Laplace

transform of u. Unlike the continuous case, however, we do not obtain K as an

exact Hankel square: an extra Toeplitz operator is involved, as in Theorem 5.1.

The following easy result will be used in the course of the proof of Proposition 5.8.

Lemma 5.7 Suppose ak is a sequence of complex numbers such that

|ak+1 − ak | = O

(
1

k2

)
.

for all sufficiently large k. Then there exists a ∈ C such that ak → a as k → ∞.

Proof. We have

|an+1 − a1 | =

∣∣∣∣∣

n∑

k=1

(ak+1 − ak)

∣∣∣∣∣ ≤
n∑

k=1

|ak+1 − ak | ≤
n∑

k=1

M

n2

for some M > 0. The sum on the right is convergent as n → ∞, so the sequence

(a(n)) has a limit as required.

Proposition 5.8 For θ ∈ R, let (a(j)) satisfy the recurrence relation a(j + 1) =

T (j)a(j), where

T (j) =



 θ/(j + 1) −1

1 0





and a(1) = [θ, 1]t. Then there exist polynomials pj(θ) of degree j, with real coeffi-

cients, such that:

(i) a(j) = [pj(θ), pj−1(θ)]
t;

(ii)The self adjoint Hankel matrix Γφ = [φ(j + k − 1)]j,k≥1 with entries

φ(j) =

√
θpj(θ)

j + 1
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is a bounded linear operator such that Γ2 = K −W , where K has entries as in

(90), and W is the bounded Toeplitz operator with matrix

W (m− n) =
〈Jm̄−n̄+1T∞a(1), T∞a(1)〉

m− n
(m 6= n;m,n ∈ Z+)

for some constant 2 × 2 matrix T∞, where m̄ is the conjugacy class of m mod 4.

Proof. Firstly, note that

J − T (n)tJT (m)

m− n
=



 θ/(m+ 1)(n+ 1) 0

0 0



 = B(n)tCB(m),

where B(j) = diag (1/j, 0) and C = diag (θ, 0). We show that (a(j)) is bounded,

and deduce that condition (93) of Theorem 5.1 holds. Clearly a(n) = T (n) . . . T (1)a(1),

and the matrix T (n) is like J (which has J4 = I) for large n, so we consider the

product of T -matrices in bunches of 4. Note that

Φ(j) := T (4j)T (4j − 1)T (4j − 2)T (4j − 3)

= I +O

(
1

j2

)
− θ

2




0 −1

(1− 1

4j
)(j+ 1

4
)

(1+ 1

4j
)

j− 1

2

0





= I +O

(
1

j2

)
− θ

2j
J

for j ∈ Z+. We deduce that

‖Φ(j)‖2 = ‖Φ(j)∗Φ(j)‖

=

∥∥∥∥

(
I +O

(
1

j2

)
+

θ

2j
J

)(
I +O

(
1

j2

)
− θ

2j
J

)∥∥∥∥

=

∥∥∥∥I +
θ2

4j2
I

∥∥∥∥

= 1 +O

(
1

j2

)
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and similarly for Φ(j)−1. Hence there exists C(θ), independent of n, with

‖T (n)T (n− 1) . . . T (1)‖ ≤ C(θ)

and likewise
∥∥T (1)−1T (2)−1 . . . T (n)−1

∥∥ ≤ C(θ)

for n ∈ Z+. Hence there exists κ(θ) > 0 such that κ(θ) < ‖a(n)‖ < κ(θ)−1 for all

n ∈ Z+, that is, (a(n)) is bounded as required. Now let

Ck =
k∏

j=1

exp

(
θJ

2j

)
Φ(j),

and note that

Ck+1 − Ck =

(
exp

(
θJ

2(k + 1)

)
Φ(k + 1) − I

) k∏

j=1

exp

(
θJ

2j

)
Φ(j)

=

((
I +

θJ

2(k + 1)
+O

(
1

k2

))(
I − θJ

2(k + 1)
+O

(
1

k2

))
− I

)

×
k∏

j=1

((
I +

θJ

2j
+O

(
1

j2

))(
I − θJ

2j
+O

(
1

j2

)))

= O

(
1

k2

) k∏

j=1

(
I +O

(
1

j2

))

= O

(
1

k2

)
,

so that the limit

T∞ = lim
k→∞

Ck

exists by Lemma 5.7. We have

T (m+ 4k) . . . T (1)
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=






Φ(k + m
4
)Φ(k − 1 + m

4
) . . .Φ(1) if m ≡ 0 mod 4

T (m+ 4k)Φ(k + m−1
4

) . . .Φ(1) if m ≡ 1 mod 4

T (m+ 4k)T (m+ 4k − 1)Φ(k + m−2
4

) . . .Φ(1) if m ≡ 2 mod 4

T (m+ 4k)T (m+ 4k − 1)T (m+ 4k − 2)Φ(k + m−3
4

) . . .Φ(1) if m ≡ 3 mod 4.

Now suppose m,n ≡ 0 mod 4. Since




k+n/4∏

j=1

exp

(
θJ

2j

)


∗
k+m/4∏

j=1

exp

(
θJ

2j

)

= exp



θJ
2




k+m/4∑

j=1

1

j
−

k+n/4∑

j=1

1

j









→ exp(0) = I,

we have

lim
k→∞

〈
JCk+m/4a(1), Ck+n/4a(1)

〉

= lim
k→∞

〈
J

k+m/4∏

j=1

exp

(
θJ

2j

)
a(m+ 4k),

k+n/4∏

j=1

exp

(
θJ

2j

)
a(n + 4k)

〉

= lim
k→∞

〈
J




k+n/4∏

j=1

exp

(
θJ

2j

)


∗
k+m/4∏

j=1

exp

(
θJ

2j

)
a(m+ 4k), a(n+ 4k)

〉

= lim
k→∞

〈Ja(m+ 4k), a(n+ 4k)〉 .

If m or n is in any of the other conjugacy classes modulo 4, then since T (j) → J

as j → ∞, the extra T -matrices contribute factors of J as in the case analysis

above. The other parts of the calculation are unaffected, and so we have

〈
Ja(m+ 4k), a(n+ 4k)

〉

=
〈
JT (m+ 4k)T (m+ 4k − 1) . . . T (1)a(1), T (n+ 4k)T (n+ 4k − 1) . . . a(1)

〉

→ 〈Jm̄+1T∞a(1), J n̄a(1)〉

as k → ∞, where m̄ and n̄ are the conjugacy classes of m and n modulo 4.
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It is of interest to consider a further analogy with the continuous case, by finding

the generating function of the polynomials pj in Proposition 5.8. This turns out to

have a similar shape to the Laplace transform of the function u(x) in the Laguerre

kernel, which we calculated in §1.11:

L(u;λ) = (n+ 1)
(λ− 1

2
)n

(λ+ 1
2
)n+2

(Re λ > −1/2).

Proposition 5.9 Suppose that p0(θ) = 1 and p1(θ) = θ. Then the generating

function f(z) =
∑∞

n=0 pj(θ)z
n satisfies

f(z) =

(
1 − iz

1 + iz

)iθ/2
1

1 + z2
(|z | < 1).

Proof. Write pn = pn(θ), and then

f(z) =
∞∑

n=0

pnz
n.

The recurrence relation for pn is

(n+ 1)pn+1 = θpn − (n+ 1)pn−1,

and we multiply through by the complex variable zn and sum from n = 1 to ∞ to

get

∞∑

n=1

(n + 1)pn+1z
n = θ

∞∑

n=1

pnz
n −

∞∑

n=1

(n+ 1)pn−1z
n

= θ

∞∑

n=1

pnz
n −

∞∑

n=1

((n− 1) + 2)pn−1z
n,

which is equivalent to

f ′(z) − p1 = θ(f(z) − p0) − z2f ′(z) − 2zf(z). (109)
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Now recall that p0 = 1 and p1 = θ to get

(1 + z2)f ′(z) + (2z − θ)f(z) = 0. (110)

This is a separable differential equation:

∫
1

f(z)
df =

∫
θ − 2z

1 + z2
dz (111)

and the general solution is

log(f(z)) = θ arctan(z) − log(1 + z2) + C. (112)

We have f(o) = p0 = 1, so C = 0, and hence

f(z) =
exp(θ arctan(z))

1 + z2
. (113)

The complex arctangent function can be written as

arctan(z) =
−i
2

log

(
1 + iz

1 − iz

)
,

and hence f(z) is as stated.

5.6 The essential spectrum of Tracy–Widom operators

We now consider the case where of a Tracy–Widom operator which is “nearly”

equal to a squared Hankel operator. To be more precise, we look for operators

which are compact perturbations of Γ2. A well-known result in operator theory

then tells us that their essential spectra must be equal. We show that a discrete

analogue of the Carleman operator is a compact perturbation of the operator

induced by the Hilbert matrix.
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Definition 5.10 Let A and B be bounded operators on a Hilbert space H. We

say A is a compact perturbation of B if there exists a compact operator K such

that A− B = K.

The following famous result is due to Weyl [47]: we state it here without proof.

Proposition 5.11 Let A and B be bounded self-adjoint operators on a Hilbert

space H, such that B is compact perturbation of A. Then σess(A) = σess(B).

Example 5.12

The Carleman operator is an example of a bounded Hankel integral op-

erator, remarkable in having continuous spectrum of multiplicity two, as

shown by Power in [35]. It is defined on L2(0,∞) by

Γh(x) =

∫ ∞

0

h(y) dy

x+ y
.

As another example of a Tracy–Widom operator expressible as a Hankel

square, we consider the system

d

dx



 log x

1



 =



 0 1/x

0 0







 log x

1



 .

Writing Ω(x) for the 2 × 2 matrix above, we calculate

JΩ(x) + Ω(y)tJ

x− y
=



 0 0

0 −1
xy



 ,

and then by Theorem 1.43 we have

K(x, y) :=
log x− log y

x− y
=

∫ ∞

0

1

(x+ t)(y + t)
dt,

where the right hand side is clearly the kernel of the squared Carleman op-

erator Γ2. By Power [35], σ(Γ) = [0, π] of multiplicity two, so we can deduce
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by the spectral mapping theorem that σ(K) = [0, π2], also of multiplicity

two.

The Carleman operator is the continuous analogue of the Hilbert matrix, and we

now present a result showing that the discrete analogue of the kernel K above,

while not equal to the square of the Hilbert matrix, is at least a Hilbert–Schmidt

perturbation of it, so that we can use Proposition 5.11 to find its essential spectrum.

Theorem 5.13 Let K be the matrix with elements

K(m,n) =






1
m−n (logm− logn) for m 6= n

1
n

for m = n
,

Then σess(K) = σess(Γ
2) = [0, π2], where Γ is the Hilbert matrix as defined in

Proposition 1.29.

Proof. We shall show that the difference K − Γ2 is Hilbert-Schmidt, and hence

compact. Fix a column n, and sum the squared entries along the rows, excluding

the term on the diagonal. We use the estimate

N∑

k=1

1

k
= logN + γ +O

(
1

N

)
,

where γ is Euler’s constant, to get the following bound on the terms:

∑

m,n≥1;m6=n

(
K(m,n) − Γ2(m,n)

)2

=
∑

m,n≥1;m6=n

(
logm− log n

m− n
−

∞∑

k=1

1

(m+ k − 1)(n+ k − 1)

)2

=
∑

m,n≥1;m6=n

1

(m− n)2

(
logm− logn−

∞∑

k=1

(
1

n+ k − 1
− 1

m+ k − 1

))2

=
∑

m,n≥1;m6=n

1

(m− n)2

(
logm− log n− log(m− 1) +O

(
1

m

)
+ log(n− 1) +O

(
1

n

))2

=
∑

m,n≥1;m6=n

1

(m− n)2

(
log

(
m

m− 1

)
+ log

(
n− 1

n

)
+O

(
1

m

)
+O

(
1

n

))2

.
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Note that log(m/(m − 1)) → 0 as m → ∞, and similarly for log((n − 1)/n), so

the parts of the sum arising from these terms are finite, because
∑∞

j=1 1/j2 < ∞.

Also,

∑

m,n≥1;m6=n

1

(m− n)2

1

mn
≤ 2

∑

m,n≥1,m6=n

1

(m− n)2

1

m2

= 2

∞∑

m=1

( ∞∑

n=1

1

(m− n)2

)
1

m2

≤
∞∑

m=1

(

4

∞∑

n=1

1

n2

)
1

m2

=
2π2

3

∞∑

m=1

1

m2

=
π4

9

so that the sum of off-diagonal terms is finite. For the diagonal terms, note that

0 ≤
∞∑

k=1

1

(k + n− 1)2
≤
∫ ∞

0

1

(t+ n− 1)2
dt =

1

n− 1
,

and hence

∞∑

n=1

(
K(n, n) − Γ2(n, n)

)2
=

∞∑

n=1

(
1

n
−

∞∑

k=1

1

(k + n− 1)2

)2

≤
∞∑

n=1

(
1

n− 1
−

∞∑

k=1

1

(k + n− 1)2

)2

≤
∞∑

n=1

1

(n− 1)2

< ∞ (114)

We have shown that K − Γ2 is Hilbert-Schmidt (and hence compact), so we

can apply Proposition 5.11. The essential spectrum of the Hilbert matrix Γ is

the interval [0, π] (by Proposition 1.29), so, by the spectral mapping theorem,

σess(K) = σess(Γ
2) = [0, π2].

128



References

[1] G. Aubrun, A sharp small deviation inequality for the largest eigenvalue of a

random matrix, Springer Lecture Notes in Mathematics, 1857, Springer, Berlin,

2005.

[2] J. Agler, J.E. McCarthy, Pick interpolation and Hilbert function spaces, AMS

Rhode Island, 2002

[3] M.J. Ablowitz, A.S. Fokas, Complex Variables: Introduction and Applications,

2nd edition, CUP, 2003.

[4] A. Borodin, A. Okounkov, G. Olshanski, Asymptotics of Plancherel measures

for symmetric groups, J. Amer. Math. Soc. 13 (2000) 481-515.

[5] A. Borodin, Biorthogonal ensembles, Nuclear Phys. B 536 (1999), no. 3, 704-

732.

[6] G Blower, Operators associated with Soft and Hard Spectral Edges from Uni-

tary Ensembles, J. Math. Anal. Appl 337 (1) (2007) pp. 239-265.

[7] G. Blower, Integrable operators and the squares of Hankel operators, J. Math.

Anal. Appl 337 (2007), pp 239-265 (doi:10.1016/j.jmaa.2007.03.084).

[8] G. Blower, A. McCafferty, Discrete Tracy–Widom Operators, Proc. Edin.

Math. Soc. accepted May 2008, publication pending.

[9] Chi-Tsong Chen, Linear System Theory and Design, 3rd edition, OUP New

York, 1999.

[10] J. Conway, A course in functional analysis, Springer-Verlag New York, 1985.

[11] P. Deift, Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert

approach, Courant Inst. Lecture Notes, AMS Rhode Island, 2000.

[12] E.B. Davies, Spectral theory and differential operators, Cambridge University

Press, New York, 1995.

129



[13] K. R. Davidson, C∗-Algebras by Example, American Mathematical Society,

Providence, RI, 1996.
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