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Abstract. The use of body-worn sensors for recognizing a person’s context has
gained much popularity recently. For the development of suitable context recogni-
tion approaches and their evaluation, real-world data is essential. In this paper, we
present two data sets which we recorded to evaluate the usefulness of sensors and
to develop, test and improve our recognition strategies with respect to two specific
recognition tasks.

1 Introduction

For the development and evaluation of recognition strategies real-world data is required.
However, collecting such data can often be very time consuming slowing down the overall
development process. In recent years, a lot of different recognition tasks have been in-
vestigated ranging from the recognition of user activities such as walking, ascending and
descending stairs or cycling, up to the recognition of emotional states!. For the evaluation
of feature extraction schemes, fusion strategies and classification algorithms, researchers
have mostly generated and used proprietary data. Based on the fact that many researchers
often focus on similar or even identical recognition tasks, the availability of common public
access data sets would increase the possibility of having statistically relevant data, improve
the quality of results and speed up the systematic development of methods. This has been
acknowledged in various fields of research, e.g. in biometric authentication? where the
development of methods is speeded up with competitions using public databases.

Contributing to those facts, we present two of our data sets that we recorded for
evaluating specific recognition tasks which could be made available for public use. Both
data sets are related to the domain of user activities. In the following we briefly describe
those two data sets.

2 Data Set 1: Simple User Activities

Many publications dealing with the recognition of user activities have targeted the recog-
nition of fairly simple activities such as sitting, standing, walking, ascending stairs and
descending stairs. Recognizing such activities is just a first step towards systems that one
day will allow the recognition of much more complex activities. Despite their simplicity,
this simple scenario where subjects walk a predefined path including level walking, as-
cending and descending stairs have become a quasi-standard scenario that is often used to

! http://affect.media.mit.edu/
2 http://bias.csr.unibo.it/fvc2004
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Table 1. Sensing Modalities, Sensor Location and Features extracted

| Sensing modalities |Sensor location |

2 three-axis accelerometers 1st accelerometer: above right knee, with axes
aligned to antero-posterior and vertical body
axis; 2nd accelerometer: Back of body, mounted
on belt (same axes orientation as 1st accelerom-

eter:

1 Air pressure sensor Inside right, inner pocket of jacket

1 One-axis gyroscope Above right knee, sensitive axis aligned with lat-
eral axis

2 Force Sensitive Resistors (FSR)|1st FSR: mounted under heel of right shoe sole;
2nd FSR: mounted under ball of right shoe sole.
Used to measure initial ground contact of heel
and ball, respectively.

investigate issues such as the usefulness of specific sensors, specific classification algorithms
and feature extraction schemes. Providing benchmark data sets based on this scenario will
be very useful for researchers in the area of context recognition. In order to investigate
the usefulness of different sensing modalities and their corresponding features for the en-
visioned recognition task, we equipped four test subjects with the sensors and instructed
them to walk repeatedly a predefined path including stairway and level walking, without
any further instructions, e.g. concerning speed of walking.

2.1 Sensors & Placement

Table 1 lists the sensors and placements used for the experiments.

The use of accelerometers and gyroscopes for classifying level walking and stairway
walking have been investigated by many researchers [6,8,7,3]. Air pressure sensors have
been evaluated in [8,5] and force sensitive resistors in [1]. Although the list of sensors used
in our experiments is not exhaustive, it covers most of the sensors recently proposed for
the recognition of the different modes of locomotion.

2.2 Labelling

Labelling was carried out manually during the experiment by the individual test subjects
and recorded together with the sensor data providing labelling accuracy in the range of
approximately 1s (depending on the reaction time of the subject). Walking on landings
between two stairs was labelled as level walking. Stairway walking started when a foot hit
a step.

2.3 Data Format & Technicalities

Technicalities All sensors, except for the air pressure sensor (Intersema MS5534A), have
been synchronously sampled with 100 Hz and converted with 12 Bit resolution®. All data
is available in simple ASCII-File Format with the sensor readings stored in columns.

3 The air pressure sensor was sampled with 1Hz an 16 bit resolution
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3 Data Set 2: Wood Workshop Tasks

As part of our work analyzing human activity using on body sensors, the Wood Work-
shop experiment provides a rich source of data for research into activity recognition using
distributed microphones and accelerometers. The details of our initial experiment can be
found in the proceedings of this conference [4].

3.1 Activity Data

In the work presented, data is collected from a single subject performing a sequence of
assembly tasks in a wood workshop. More recent experiments involve up to five different
subjects. The exact sequence of actions for all of these recordings is listed in Table 2.

Z
o

action

take the wood out of the drawer

put the wood into the vise

take out the saw

saw

put the saw into the drawer

take the wood out of the vise

drill

get the nail and the hammer

9 |hammer

10 [put away the hammer, get the driver and the screw
11 |drive the screw in

12 |put away the driver

13 |pick up the metal

14 |grind

15 |put away the metal, pick up the wood
16 |put the wood into the vise

17 |take the file out of the drawer

18 |file

19 |put away the file, take the sandpaper
20 [sand

21 [take the wood out of the vise

Table 2. Steps of workshop assembly task

WO T WhN

The experiment was repeated 10 times in the same sequence to collect data for training
and testing. For practical reasons, the individual processing steps were only executed long
enough to obtain an adequate sample of the activity. This policy did not require the
complete execution of any one task (e.g. the wood was not completely sawn), allowing us to
complete the experiment in a reasonable amount of time. However this protocol influenced
only the duration of each activity and not the manner in which it was performed.

3.2 Sensors & Placement

The data was collected using the ETH PadNET sensor network [2] equipped with 3 axis
accelerometer nodes and two Sony mono microphones connected to a body worn computer.
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Fig. 1. The wood workshop (left) with (1) grinder, (2) drill, (3) file and saw, (4) vise, and (5)
cabinet with drawers. The sensor type and placement (right): (1,4) microphone, (2,3,5) 3-axis
acceleration sensors and (6) computer

The position of the sensors on the body is shown in Figure 1: an accelerometer node on
both wrist and on the upper arm of the right hand, and a microphone on the chest and
on the right wrist (the initial subject was right handed).

Audio data is stored in two channel (one for each mic) WAV format at a recording rate
of 44kHz. For the recognition algorithms, this was downsampled to 4.8kHz. One WAV file
is stored per recorded sequence.

The six continuous accelerometer feature values (wrist x,y,z; elbow x,y,z) are recorded
as columns in an ASCII file, one for each sequence, at a rate of approximately 93 Hz.

3.3 Labelling

In order to perform supervised learning, and to be able to calculate recognition rates,
the recorded data had to be segmented according to the activity classes that we wish to
recognize.

The first problem is in deciding exactly what constitutes an activity that we could
classify under a single label. In hammering, for example, should we aim to recognize
only the stroke of the hammer hitting a nail, or should we include the entire hammering
sequence? We choose, in the interests of simplicity, the second approach, defining activities
as: hammering, sawing, filing, drilling, etc. These are all activities which, at least for these
recordings, last more than a few seconds and may be regarded as, at least for sound,
quasi-stationary for their duration.
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In the first recordings, labelling was performed by observing and listening to the raw
data, marking out segments of interest by hand. Given the repetitive nature of the sequence
used, this approach allowed labelling to be carried out with a good degree of accuracy,
but at the expense of being rather time consuming.

For larger data sets, this is impractical, and so a method of performing time-of-
recording labelling was investigated. This involved a second person observing the subject,
pressing keys on a terminal to mark the start and stop times of the various activities.
Initially, this was purely an observational labelling, but errors by both subject and ob-
server - in particular the often poor reaction time of the observer - led to development of a
semi-autonomous command approach. With this scheme, the computer issues instructions,
see Table 2, which the observer instructs the subject to perform; this gives the observer
time to press the activity start/stop key, thus reducing the potential for timing errors. As
the sequence should be in order, the only labelling errors occur when a subject performs
an activity that they were not instructed to do. In such cases, the observer annotates the
recording so that the labelling can be later amended by hand.

3.4 Synchronization of Multiple Data Types

In order to ensure that any recognition based on sensor data fusion will work, and that
the labels are meaningful, the incoming sensor data must be appropriately synchronized.
This is achieved by punctuating the beginning and end of every sequence with the easily
distinguishable gesture, in both sound and acceleration, of clapping. So long as the clap
appears towards the very beginning of a recording, a simple peak detection algorithm can
be tuned to find corresponding points on both the audio and acceleration clap.

In the recognition experiments carried out on this data, the timescales of interest, e.g.
the duration of a hammering activity, is in the order of seconds. For this reason, and the
fact that the labelling itself is subject to human response errors of the same order, exact
synchronization is not an issue.
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